

COMPARING PLC, SOFTWARE
CONTAINERS AND EDGE COMPUTING

FOR FUTURE INDUSTRIAL USE: A
LITERATURE REVIEW

Master Degree Project in Virtual Product Realization
One year Level 18 ECTS
Spring term 2022

Mumthas Basem

Supervisor: Dr. Richard Senington

Examiner: Prof. Anna Syberfeldt

 i

Abstract

Industrial automation is critical in today's industry. The majority of new scientific and technological

advancements are either enabling technologies or industrial automation application areas. In the past,

the two main forms of control systems were distributed control systems (DCS) and programmable

logic controllers (PLCs). PLCs have been referred as the "brain" of production systems because they

provide the capacity to meet interoperability, reconfigurability, and portability criteria. Today's

industrial automation systems rely heavily on control software to ensure that the automation process

runs smoothly and efficiently. Furthermore, requirements like flexibility, adaptability, and robustness

add to the control software's complexity. As a result, new approaches to building control software are

required. The International Electrotechnical Commission attempted to meet these new and impending

demands with the new IEC 61499 family of standards for distributed automation systems. The IEC

61499 standard specifies a high-level system design language for distributed data and control. With

the advancement of these technologies like edge/fog computing and IIoT, how the control software in

future smart factory managed is discussed here. This study aims to do a systematic literature review

on PLC, software containers, edge/fog computing and IIoT for future industrial use. The objective is

to identify the correspondence between the functional block (IEC 61499) and the container technology

such as Docker. The impact of edge computing and the internet of things in industrial automation is

also analysed. Since the aim is to do a comparative study, a qualitative explorative study is done, with

the purpose to gather rich insight about the field. The analysis of the study mainly focused on four

major areas such as deployment, run time, performance and security of these technologies. The result

shows that containerisation or container based solutions is the basis for future automation as it

outperforms virtual machines in terms of deployment, run time, performance and security.

Keywords: Programmable Logic Controller (PLC), Functional Block, Container Technology, Edge

Computing, Fog Computing, Industrial Internet of Things (IIoT).

 ii

Certificate of Authenticity

Submitted by Mumthas Basem to the University of Skövde as a Master Degree Thesis at the School

of Engineering.

I certify that all material in this Master Thesis Project which is not my own work has been properly

referenced.

Mumthas Basem

 iii

Table of Contents

1 Introduction ... 9

1.1 Problem Description .. 9

1.2 Goals and Objectives ... 10

2 Theoretical Framework ... 12

2.1 Programmable Logic Controllers (PLC) ... 12

2.2 Functional Blocks .. 13

2.3 Containers .. 15

2.4 IIoT, Edge and Fog Computing ... 17

2.4.1 Edge and Fog Computing .. 18

2.4.2 Industrial Internet of Things (IIoT) ... 22

3 Research Methodology .. 24

3.1 Research Design .. 24

3.2 Research Strategy .. 25

3.3 Data Collection Methods ... 26

4 Literature Review .. 27

4.1 Literature Search Process .. 27

4.1.1 Concepts and Themes .. 27

4.1.2 Database Search ... 28

4.1.3 Data Analysis Method ... 30

5 Results ... 33

5.1 IEC 61499 Function Block and Docker Container .. 33

5.1.1 Deployment ... 33

5.1.2 Run time .. 37

5.1.3 Performance ... 41

5.1.4 Security .. 43

5.2 Edge/ Fog Computing and IIoT ... 44

 iv

5.2.1 Deployment and Run Time.. 44

5.2.2 Performance ... 49

5.2.3 Security .. 52

6 Sustainability ... 55

7 Conclusion, Limitations and Future Work .. 58

7.1 Conclusion ... 58

7.2 Limitations ... 60

7.3 Future works .. 61

8 References ... 64

9 Appendix ... 70

Appendix A: Article Categories .. 70

Appendix B: Article Categories Refined ... 71

 v

Table of Figures

Figure 1: Research Process .. 11

Figure 2: An overview of Functional Block Diagram ... 13

Figure 3: IEC61499 - Distributed intelligent devices & machines ... 15

Figure 4: Comparison of container-based and hypervisor-based approaches ... 16

Figure 5: Docker Today .. 16

Figure 6: Edge computing paradigm .. 18

Figure 7: Edge and Fog Computing.. 20

Figure 8: Comparison Between Consumer IoT and IIoT .. 22

Figure 9: Types of Qualitative Research Design .. 24

Figure 10: Literature search approach ... 27

Figure 11: Database search process ... 29

Figure 12: Literature Review Articles ... 29

Figure 13: Number of Articles and the corresponding year of publications... 30

Figure 14: Data Analysis Process ... 31

Figure 15: Creative Analysis Process using colour codes in excel ... 32

Figure 16: Analysis of articles based on concepts Figure 17: Analysis of articles based on objectives 32

Figure 18: Container vs traditional deployment model .. 35

Figure 19: Architecture-based container in computing system .. 35

Figure 20: Proposed architecture ... 47

Figure 21: System architecture of the edge-PLC-enabled IIoT .. 50

 vi

Index of Tables

Table 1: Difference between Edge and Fog Computing ... 19

Table 2: Splitting research topic into different concepts... 27

Table 3: Alternative terms for research concepts. .. 28

Table 4: Data Extracted from study. ... 30

Table 5: Main Challenges for Industrial adoption of IEC 61499 ... 34

 vii

Terminology

A

API

Application Programming Interface 31

C

CPU

Central Processing Unit .. 11

CL4FB

Confidentiality Layer for Function Blocks 34

CBD

Component Based Design 43

CPS

Cyber Physical System .. 43

E

EC2

Elastic Compute Cloud ... 35

F

FBD

Function Block Diagram ... 9

FS

File System ... 15

FBDK

Function Block Development Kit 29

H

HPC

High Performance Computing 34

I

IEC

International Electrotechnical Commission 8

IL

Instruction List .. 11

IT

Information Technology ... 11

IoT

Internet of Things ... 16

IIoT

Industrial Internet of Things 20
IACS

Industrial Automation and Control System 32

K

KVM

Kernal based Virtual Machine 15

L

LD

Ladder Diagram .. 11

LXC

Linux Container .. 17

O

OT

Operation Technology .. 11

OS

Operating System ... 14

OOD

Object Oriented Design .. 43

 viii

P

PLC

Programmable Logic Controller 8

R

RAM

Random Access Memory.. 16

S

SCADA

Supervisiory Control and Data Acquisition 10

SFC

Sequential Function Chart 11

ST

Structured Text .. 11

SOA

Service Oriented Architecture 43

V

VM

Virtual Machine .. 15

VC

Virtual Commissioning ... 42

W

WSN

Wireless Sensor Network 37

 9

1 Introduction

Programmable Logic Controllers (PLCs) are certainly an alternative for a wide range of industrial

automation applications. PLCs as one of its primary building elements, must become more adaptable

and self-aware of the functionality running on them in order to provide the increased production

flexibility envisioned for future automation systems. As a result, they transition from standard

automation components to smart, reconfigurable cyber-physical systems. In a variety of application

areas, the Internet-of-Things and cyber-physical systems are gaining traction. In this thesis, a

systematic literature review is conducted based on PLC, software containers and edge computing. A

comparison between the functional block (IEC 61499) and the container technology such as Docker is

studied. Edge computing and the internet of things' impact on industrial automation is analysed. Based

on these studies, how the control software in future smart factories is managed with these technologies

is also discussed.

1.1 Problem Description

PLC is the first element directly related to the control infrastructure because sensors and actuators are

commodity hardware accessible from a variety of manufacturers. There is an element of parallel

development between PLC and computer systems in terms of programming and also being historically

the core of automation. PLC is an industrial computer designed to regulate industrial processes in an

industrial environment. A PLC's primary duty is to control a system's functioning using logic that has

been put into it. Businesses all across the world utilize PLCs to automate their most important

processes. PLC is a special computer device used in industrial control systems that can accept data and

deliver operational instructions through its inputs and outputs. In order to build a functional

relationship between inputs (mainly sensors) and outputs (mostly actuators), PLC is utilized in

practically every element of industrial and non-industrial automation.

The PLC programming has evolved slowly, but now there is much more significant change coming

for the impending Industry 4.0 era to incorporate technologies such as wireless instrumentation, cloud-

based management systems, and autonomous field elements. PLCs were created to address the issue

of automating and manufacturing control systems. Any changes to the controller design, however, will

have a negative impact on the installed base due to the conservative character of the domain. There are

several techniques to taking control structures to the next level currently available, but none of them

address flexible function deployment while maintaining legacy support. An architecture for a multi-

 10

purpose controller is offered that is influenced by the virtualization trend in cloud systems, which is

moving away from heavyweight virtual machines and toward lightweight container solutions like

Docker. The solution includes support for a variety of PLC execution engines, as well as the emulation

of legacy engines. The design is assessed by running performance tests that look at the influence of

container technologies on PLC engines' real-time capabilities. Many studies has already been done

based on virtualisation, PLC and edge computing. There are still research gaps identified on the

advancement of PLC in terms of deployment, run time, performance and security. The previous PLC-

based software testing technique generates intermediate code from function block diagram (FBD)

networks and uses the intermediate code for testing purposes. The impact of running real-time

programs within containers need to be analysed, as container-based virtualization approaches were

originally built for server-based systems rather than embedded systems. Containers seem to be

evolving in a similar way as function blocks. Is there any similarities between them, if yes, why do we

need two similar competing approaches. These are to be studied and how the functional blocks and

containers impact edge compting and IIoT for future industrial use also need to be discussed.

1.2 Goals and Objectives

This thesis aims to do a comparative study of different technologies in informatics with PLC. The

research questions are:

 Is the container-based solution for industrial control a basis for future automation system

architectures?

 How will control software in the future smart factory be written and managed, in light of advances

in the technologies of PLC, IIoT, and Edge/Fog Computing?

The main objectives of the study is to do a:

 Comparison between functional blocks and container technology.

 Analyse the impact of edge computing and the internet of things in industrial automation.

 11

Figure 1: Research Process

Figure 1 shows the research process planned to achieve the goal. The study has a qualitative research

approach. A "systematic review" is a sort of study that use rigorous and transparent methodologies in

order to summarize all relevant evidence with little bias. By analyzing relevant literature and

identifying gaps to research, a deeper knowledge of the breadth and depth of the existing body of work

can be achieved. A criterion is used to assess the validity and quality of previous work, revealing flaws,

inconsistencies, and contradictions (Xiao and Watson, 2019).

Identify the research
problem

Identify research
strategy and methods

Conduct a systematic
literature review

Analyse the findings

 12

2 Theoretical Framework

In this chapter an overview of current technologies related to research like PLC, Functional Block,

Containers, Edge Computing and Industial Internet of Things is given.

2.1 Programmable Logic Controllers (PLC)

A PLC is a type of industrial computer that is commonly used in control systems like chemical

processing, nuclear power plants, and traffic control. It is a portable industrial computer used to control

manufacturing processes such as assembly lines, machineries, robotic devices, or any activity requiring

high dependability, ease of programming, and process fault diagnosis. Small modular devices with a

few tens of inputs and outputs (I/O) in a housing built into the processor to enormous rack-mounted

modular devices with thousands of I/O that are regularly networked with other PLC and SCADA

systems are all examples of PLCs. The automotive industry was the first to use PLCs to replace hard-

wired relay logic circuits with flexible, resilient, and easily programmable controllers. They've been

frequently used as high-reliability automation controllers in severe situations since then. PLCs can

handle a wide range of automation tasks. These are often industrial processes in manufacturing where

the cost of building and maintaining the automation system is high in comparison to the total cost of

the automation, and when changes to the system are expected during the system's operating life.

PLCs have long been used in the automation process to control a wide variety of applications. These

systems will be used for a wide range of data conversion, signal processing, and communication

interface applications. The basic PLC module is adaptable and customized to meet the needs of a wide

range of manufacturers and applications. For decades, the PLC's general architecture has remained the

same. The controller hardware can be considered a normal embedded system, and the controller

software comprises of an operating system and standardized communication stacks, upon which the

controller firmware generates its domain-specific functionality. This design is modified for the

Industry 4.0 era to accept new technologies such as wireless instrumentation, cloud-based management

systems, and autonomous field elements, while retaining a consistent and predictable behavior. Both

operational technologies (OT) and information technologies (IT) must be met by a modern PLC (IT).

An Industry 4.0 PLC, in particular, must meet common real-time limitations from the OT sector, as

well as being interoperable and extremely flexible for interface with IT systems. As a result, a modern

PLC is by definition a component that facilitates OT-IT integration. A fundamental functionality of a

PLC that should be ensured in each new development is the ability to meet stringent timeliness limits,

which are common in the OT sector (Mellado and Núñez, 2022). The application domain determines

 13

the timeliness limitations, with typical cycle times ranging from microseconds to milli seconds. In

addition, an Industry 4.0 PLC must be interoperable and ready to interface with systems from the IT

domain, where tight timeliness requirements and deterministic communications are not required. As a

result, a modern PLC is by definition an aid to operation and information technology integration. Based

on the study of different current technologies, there are enormous developments that have been brought

with PLC.

PLCs are utilized in a variety of industries, including the steel industry, automobile industry, chemical

industry, and energy sector. PLC applications are frequently highly customized, the cost of a packaged

PLC is minimal when compared to the cost of a custom-built controller design. Customized control

systems, on the other hand, are cost-effective in the case of mass-produced goods. This is owing to the

reduced cost of the components, which can be chosen optimally instead of a "generic" solution, and

where non-recurring engineering costs are distributed over hundreds or millions of units. One of the

most significant differences between a PLC and a PC is how programs are created and executed. A

PLC typically executes scan-based programs, whereas PC software is typically event-driven. Different

execution strategies correspond to different programming philosophies. Structured Text (ST), Function

Block Diagram (FBD), Ladder Diagram (LD), Instruction List (IL), and Sequential Function Chart

(SFC) are among the PLC programming languages. FBD is a popular PLC programming language.

FBD is a simple and effective way to depict data flow between control blocks.

2.2 Functional Blocks

The Function Block Diagram (FBD) is a graphical representation of a programmable logic controller

design that may illustrate the function between input and output variables. A function is represented

as a collection of basic blocks. Connection lines connect input and output variables to blocks.

Functions are code blocks that should ideally be compact and have a single purpose.

Figure 2: An overview of Functional Block Diagram (‘FBD Docs’, 2018)

 14

A functional block produces a system's output as the result of a combined event specified by the

system's inputs and various states. Functional blocks relating to distinct subsystems are joined to

generate a functional block diagram that depicts the combined system's functional properties. Figure

2 shows an overview of a Functional Block Diagram. A box is used to represent the function block. A

symbol or writing is frequently placed in the middle of the box. This symbol indicates the function

block's real functionality. The function block can have any number of inputs and outputs depending

on the function. The output of one function block can be connected to the input of another. As a result,

a Function Block Diagram is created.

Compared to PLC which executes scan-based programs, IEC 61499 Function Blocks are event-driven,

which means they don't do anything unless an event is provided to one of its event inputs. The concept

of event-driven function blocks was first proposed in the international standard IEC 61499. It was first

released as an IEC standard in 2005, to addresses the needs for adaptability, reconfigurability, and

flexibility in production systems and automation utilizing a distributed control system approach

(International Electrotechnical Commission and Technical Committee 65, 2012). IEC 61499 can be

used in industrial automation environment where software applications can run on a variety of

hardware platforms. The IEC 61499 standard is most commonly used in PLC-based control systems,

although it is also applicable to and can be used in other industrial control systems such as robotic

control.

According to (Li Hsien Yoong, Roop and Salcic, 2009), a function block encapsulates local data, state

changes, and algorithms within a well-defined event-data interface, abstracting a functional unit of

software. This ability to encapsulate a self-contained unit of software helps application reuse and

distributed design. By connecting function blocks in a network, entire systems can be defined,

regardless of implementation platform. IEC 61499 includes an event-driven paradigm based on

function blocks that addresses the issue of portability, configurability, and interoperability across

vendors while maintaining software and hardware independence (Keith Larson, 2020).

 15

Figure 3: IEC61499 - Distributed intelligent devices & machines (James H. Christensen, 2022)

Function blocks can be developed and deployed in distributed systems, as shown in fig 3, that will

meet the requirements of :

 Portability: Other software tools' software components and system configurations can be

accepted and correctly interpreted by software tools.

 Interoperability: Embedded devices can collaborate to fulfill the tasks required by distributed

applications.

 Configurability: Software tools from a variety of suppliers can be used to customize any device

and its software components.

2.3 Containers

A container is a standard software unit that encapsulates code and all its dependencies so that the

program can be moved from one computing environment to another quickly and reliably (Docker

Docs, 2022). A Docker container image is a small, standalone software package that contains

everything needed to run a program, including code, runtime, system tools, system libraries, and

settings. Containers are light because they don't require the added load of a hypervisor; instead, they

share the host machine's kernel but are limited in how much of the machine's resources they can view

and/or use (Senington, Pataki and Wang, 2018).

 16

Figure 4: Comparison of container-based and hypervisor-based approaches (Kozhirbayev and
Sinnott, 2017)

Figure 4 depicts the differences between the two technologies. With container-based solutions, guest

processes get abstractions right away because they function through the virtualization layer at the

operating system (OS) level. In hypervisor-based techniques, however, each guest OS is typically

represented by a single virtual machine. In container-based systems, one OS kernel is often shared

among virtual instances. As a result, the security of this technique is thought to be poorer than that of

hypervisors (Kozhirbayev and Sinnott, 2017). Containers appear to the developers as autonomous

operating systems that can run independently of hardware and software. A containerized architecture

allows software and its dependencies to be packaged in an isolated unit known as a container that can

run reliably in any environment. Container orchestration automates a lot of the labor that goes into

running containerized workloads and services. This covers provisioning, deployment, scaling (up and

down), networking, load balancing, and other tasks that software teams must perform to manage a

container's lifespan.

Figure 5: Docker Today (Docker Docs, 2022)

 17

Docker can package an application together with its dependencies into a virtual container that can run

on any Linux, Windows, or macOS machine. This allows the application to run in a variety of

environments, including on-premises, in the public cloud, and in the private cloud. Docker uses the

Linux kernel's resource isolation capabilities (such as cgroups and kernel namespaces) and a union-

capable file system (such as OverlayFS) to allow containers to run within a single Linux instance,

removing the overhead of creating and maintaining virtual machines. In addition to leveraging

abstracted virtualization interfaces via libvirt, LXC (Linux Container), and system- nspawn, Docker

provides its own component (named "libcontainer") to leverage virtualization facilities supplied

directly by the Linux kernel.

Containers are being widely used for their convenience in encapsulating, deploying, and isolating

programs, lightweight operations, and resource sharing efficiency and flexibility. Rather than installing

the operating system and all essential applications in a virtual machine, a Docker image may be quickly

generated with a Dockerfile, which specifies the initial tasks when the docker image starts to operate

(Zhang et al., 2018). Furthermore, container saves space by allowing multiple containers to share the

same image. In other words, by adding another layer to an existing image, a new image can be formed

on top of it. Containers give more flexibility and variety than standard virtual machines, allowing for

better resource use. Since the hardware resources, such as the CPU and RAM, will be instantly returned

to the operating system. Because a container lacks a virtualization layer, it has a lower performance

overhead for applications. As a result, a large number of new applications are being programmed into

containers.

2.4 IIoT, Edge and Fog Computing

Edge Computing in the Industrial Environment, explains how moving to an edge-compatible control

infrastructure has aided changes in industrial control designs, suppliers, and users, resulting in a more

adaptable and configurable environment. The shift in information technology (IT)/operational

technology (OT) towards event-driven architectures like containers, offers a unique opportunity to

connect PLC with cloud-based smart management solutions. Edge computing connects changes on the

factory floor to enterprise resource planning and management systems that automate company

activities and give insights quickly and efficiently. Integrating IoT data processing and other functions

directly into an industrial automation module, such as PLC, may make more sense in many cases.

When cloud computing is used in conjunction with IoT applications, communication latency and vast

amounts of sensing data make it difficult to use IoT in smart manufacturing. Edge computing is a new

concept that aims to alleviate the problem by allowing data to be handled locally and responses to be

 18

delivered quickly. IoT automation in production control is enabled via edge computing. Lets have a

look in detail what are IIoT, edge and fog computing.

2.4.1 Edge and Fog Computing

Edge computing refers to the technologies that enable processing to take place at the network's edge,

on downstream data for cloud services and upstream data for IoT services. Any computer and network

resources in the path between data sources and cloud data centers are referred to as "edge" in this

context. Edge computing is based on the idea that computing should take place close to data sources

(Shi et al., 2016). Edge computing is more focused on the things side, whereas fog computing is more

focused on the infrastructure side. Fog computing is a cloud computing extension. It's a layer that sits

between the cloud and the edge. Fog nodes collect massive volumes of data sent to the cloud by edge

computers and analyze what's essential. The fog nodes then send the important data to the cloud to be

stored, while keeping the less important data on their own for future analysis. Fog computing saves a

lot of space in the cloud and allows vital data to be transferred fast. Edge computing, like cloud

computing, will have a significant impact on the society.

Figure 6: Edge computing paradigm (Shi et al., 2016)

Figure 6 shows the two-way computing streams in edge computing. The things in the edge computing

paradigm are not just data consumers, but also data providers. Things at the edge can use the cloud to

not just seek services and content, but also to conduct computing tasks. Computing offloading, data

storage, caching, and processing can all be done at the edge, as well as distributing request and delivery

 19

services from the cloud to the user. With those jobs on the network, the edge itself must be well-

designed to meet service requirements such as dependability, security, and privacy protection

efficiently.

Table 1: Difference between Edge and Fog Computing

Edge Computing Fog Computing

Less scalable. High scalable.

There are billions of nodes. There are millions of nodes.

The nodes are placed distant from the
cloud.

The computing nodes in this system are
located closer to the cloud (remote
database where data is stored).

Edge computing is a subdivision of fog
computing.

Fog computing is a subdivision of cloud
computing.

The amount of bandwidth required is
little. Because the data is generated by the
edge nodes themselves.

The amount of bandwidth required is
considerable. The data generated by edge
nodes is sent to the cloud.

Operational cost is higher. Operational cost is comparatively lower.

High levels of privacy. Data breaches are
quite rare.

Data breaches are more likely to occur.

The incorporation of IoT devices or the
client's network is known as edge devices.

 Fog is a cloud layer that has been
expanded.

Nodes have a low power consumption.

The power consumption of nodes filters
vital data from the vast volume of data
collected from the device and keeps it in a
high-performance filter.

Edge computing enables devices to
achieve faster outcomes by processing
data received from multiple sources at the
same time.

By transferring the filtered data to the
cloud, fog computing assists in filtering
critical information from the enormous
amount of data collected by the device.

Edge computing is a technique that enables the network edge, or the area between the data generator

and the cloud center, to quickly do the necessary computational operations (Liu et al., 2020). The

workload that is focused in the central cloud can be decreased by conducting the necessary computing

operations locally to the machine that creates the data. Furthermore, processing and analyzing data

 20

without network interactions is more cost effective for simple jobs that do not require communication

with a central cloud center, such as simple facility operations.

Figure 7: Edge and Fog Computing (Jena, 2021)

(Shi et al., 2016) proposed the notion of computing stream to address the programmability of edge

computing, which is defined as a series of functions/computing applied to data along the data

propagation channel. The functions/computing might be the complete or partial functionality of an

application, and the computing could take place anywhere along the path as long as the application

specifies where it should be done. The computing stream is a software-defined computing flow that

allows data to be handled in a distributed and efficient manner among data generators, edge nodes, and

the cloud. A lot of computing can be done at the edge instead of in the center cloud, as defined by edge

computing. In this situation, the computing stream can assist the user in determining which

functions/computing should be performed, as well as how the data will be transmitted once the

computing has occurred at the edge. Latency, energy cost, and hardware/software-specific constraints

could all be used as function/computing distribution metrics.

According to (Bentaleb et al., 2022) fog computing extends typical cloud computing architecture to

the network edge, allowing for greater server scalability. Both of them have opened a new era of IoT

application design, deployment, and distribution via FoT nodes. While fog nodes give capabilities for

managing storage and data processing in devices, resource allocation, monitoring, and security are all

factors to consider. To save network bandwidth, edge computing tends to push computing applications,

 21

data processing, and services away from centralized cloud data center designs to the underlying

network's edges.

Fog computing can help service providers overcome the limits of traditional centralized cloud

infrastructures by putting their applications over geographically scattered clouds, bringing real-time

processing, storage operations, and data analytics closer to end users (Santos et al., 2020). Fog

computing is the ultimate progression of Edge computing principles, rather than just another

implementation of Edge computing. Fog computing isn't just for the network's edge; it also

encompasses the Edge computing notion, creating a structured intermediate layer that bridges the gap

between IoT and Cloud computing. Fog nodes, in reality, can be found anywhere between end devices

and the Cloud, thus they aren't always physically connected to them (De Donno, Tange and Dragoni,

2019). Furthermore, Fog computing not only focuses on the "things" side, but it also offers Cloud

services. Fog computing, in this vision, is not merely an extension of the Cloud to the network's edge,

nor is it a replacement for the Cloud; rather, it is a new entity that works between the Cloud and the

Internet of Things to fully support and improve their interaction, integrating IoT, Edge, and Cloud

computing.

Fog computing can be utilized to provide advanced services like intelligent and adaptive control, defect

detection, and condition analysis, among others. (Nikolakis et al., 2020) proposed the scheduling

strategy based on Docker containers, which help to improve fog node utilization and reduce job delays.

Fog computing is defined as the expansion of cloud computing to network edge nodes. Its goal is to

preserve the benefits of cloud computing by increasing the efficiency, security, and sustainability of

an integrated system while lowering the amount of data sent to the cloud for processing. A fog

network's distributed architecture decreases the amount of bandwidth required for back-and-forth

communication between field devices and a cloud-based central administration and orchestration

node(s). Fog nodes supply devices with processing, storage, and network resources. As a result, it is

possible to accomplish distributed control of independently operating devices while also providing

local data storage. However, because those resources are finite, good administration and usage are

critical for enabling enhanced industrial flexibility. In this context, virtualization and current software

techniques, which also address the connectivity to legacy systems, are being used to improve upon

more monolithic control and production paradigms.

According to (Zeyu et al., 2020), edge computing decreases the time it takes for data to be processed

by bringing computer and storage resources closer to users. On the one hand, edge nodes can handle

some jobs that do not require the resources of a cloud server. They can, on the other hand, preprocess

 22

the tasks and data that must be delivered to the cloud server in order to reduce the server's bandwidth

usage. Edge computing may also improve the security and controllability of sensitive data as well as

user privacy by lowering the likelihood of user data being transmitted via the main network and

employing encryption and anonymization technologies on the edge. Edge computing has grown fast

in recent years as a result of these benefits.

2.4.2 Industrial Internet of Things (IIoT)

According to (Sisinni et al., 2018), the emergence of digital and smart manufacturing in the industrial

world, attempts to integrate operational technology (OT) with information technology (IT) domains.

The IIoT entails connecting all industrial assets, such as machines and control systems, to information

systems and business processes. As a result, the vast amount of data obtained can be used to feed

analytic solutions, resulting in more efficient industrial operations. Smart manufacturing, on the other

hand, is clearly focused on the production stage of the product life cycle, with the purpose of

responding rapidly and dynamically to demand changes. As a result, the IIoT has an impact across the

whole industrial value chain and is a prerequisite for smart production.

Figure 8: Comparison Between Consumer IoT and IIoT (Sisinni et al., 2018)

Figure 8 shows a comparison between Consumer IoT and Industrial IoT. Machine-to-machine

communication is common in the IIoT, and it can span a wide range of market sectors and activities.

Legacy monitoring applications (e.g., process monitoring in manufacturing plants) and creative ways

for self-organizing systems are among the IIoT possibilities (e.g., autonomic industrial plant that

requires little, if any, human intervention). IoT is more flexible in terms of connectivity and criticality,

allowing for ad hoc and mobile network structures as well as less rigorous timing and reliability

 23

requirements. IIoT, on the other hand, usually uses fixed and infrastructure-based network solutions

that are well-suited to communication and coexistence requirements.

According to (Siqueira and Davis, 2022), IoT devices are growing cheaper and more powerful as

hardware technology progresses, creating vast volumes of data. IIoT systems, which use IoT and other

emerging computer technologies to fully automate, monitor, and integrate manufacturing processes,

are becoming more common in industrial settings. These systems, on the other hand, are intrinsically

complex in terms of design, management, and operation, and their complexity can only be properly

managed with the assistance of adequate computer support. The addition of a service interface to these

devices can make it easier to integrate them with other edge devices as well as external systems running

on cloud and fog platforms. IIoT helps to maximize overall production value and boost productivity

in smart factories, which are data-driven and self-organized.

Fixed and infrastructure-based network solutions are commonly used in the IIoT, and they are well-

designed to meet communication and coexistence requirements. Machine to machine communications

are used in the IIoT, and they meet strict timeliness and reliability criteria. Monitoring/supervision,

closed-loop control, and interlocking and control are the three subcategories of process monitoring and

control applications in the sphere of process automation. Closed-loop control and interlocking, as well

as control applications, require bounded delay at the millisecond level (10100 ms) and a transmission

reliability of 99.99 percent. While monitoring and supervision applications are less sensitive to packet

loss and jitter and can tolerate transmission delay at the second level (Sisinni et al., 2018).

Manufacturers, utilities businesses, agriculture producers, and healthcare providers are all using IIoT

to improve productivity and efficiency through smart and remote management. IIoT also offers

chances to improve worker efficiency, safety, and working environment. The rapid development of

IIoT technologies has resulted in the need for interoperability. For example, a fully working digital

ecosystem in the future will necessitate frictionless data sharing between machines and other physical

systems from various manufacturers.

According to (Digi Key Electronics, 2017), IIoT promises to boost efficiency and profitability by

redesigning machinery, reorganizing processes, and leveraging the power of big data. Some believe

that established designs and components, such as PLCs, will be phased out. Another viewpoint is that

the growth in data collecting will spur the development of even more compact devices, such as micro

or nano PLCs, that can be installed practically anywhere in the factory.

 24

3 Research Methodology

In this chapter, the overall research process is presented. In the first part the research design, research

strategy, are introduced and in the second part the data collection techniques is presented.

3.1 Research Design

The general plan of the research project is known as the research design. It specifies the study type,

subtype, research problem, hypothesis, variables (dependent and independent), experimental design,

data collection techniques, and so on. The type of information the researcher wishes to find may also

influence the design of study. As a result, there is a distinction between research designs utilized in

quantitative and qualitative studies. There are three types of research methods: qualitative, quantitative,

and mixed methods. This research is qualitative in nature. According to (Creswell, 2009), qualitative

research is a method for investigating and comprehending the meaning of a social or human situation

as stated by individuals or a group of individuals. Qualitative research is distinguished by the fact that

it is conducted in a natural setting and it frequently takes a holistic approach in order to generate a

comprehensive picture of the situation (Creswell, 2009).

Figure 9: Types of Qualitative Research Design (Hasa, 2017)

A qualitative technique is used to thoroughly examine a problem and produce theories or hypotheses.

It's also used to figure out what's behind something's fundamental causes, beliefs, and motivations, as

 25

well as to spot trends in people's opinions and thoughts. Because it includes observations and

descriptions rather than merely statistical data, this is considered a subjective method. Qualitative

research is investigative or exploratory in nature. Since the aim is to do a comparative study of different

technologies, a qualitative exploratory study will be best suited.

Researchers employ qualitative research to investigate human habits and behavior. Figure 9 shows the

types of qualitative research design. This thesis focus on the historical study design. Historical studies

look at what happened in the past to help us understand what is happening now and what might happen

in the future (Hasa, 2017). Selecting a suitable topic after reading related literature, generating research

questions, locating an inventory of sources such as accomplishments, publications, private libraries,

and so on, checking their legitimacy and dependability, and collecting data are all part of the process.

In this method, data analysis will entail the synthesis of all information as well as the reconciliation of

conflicting data.

3.2 Research Strategy

An entire approach to answer the research problem, such as surveys, experiments, case studies, and

ethnography, is referred to as a research strategy (Oates, 2006). The qualitative systematic method is

the method for integrating or comparing the findings from qualitative studies (Grant and Booth, 2009).

It looks for ‘themes’ or ‘constructs’ that lie in or across individual qualitative studies. A systematic

review is a research technique and procedure for locating, critically evaluating, gathering, and

analyzing data from relevant studies. Bias can be reduced by utilizing explicit and systematic processes

when assessing papers and all relevant material, resulting in accurate findings from which conclusions

and judgments can be taken (Snyder, 2019). The research strategy for this study is a systematic

literature review. Literature reviews can be basic or sophisticated, and they can employ a number of

strategies for locating, evaluating, and presenting data. Since the goal is to do a comparative study

about the different technologies in informatics, a systematic literature review would be appropriate to

learn more about the topic because it examines current primary papers in detail, describing their

methodology and findings. Systematic review aims to bring together all available information on a

certain topic. Because of the broad scope of this sort of review, it frequently includes numerous study

types instead than focusing on a single favored study design. As a result, they can provide a

considerably more comprehensive picture of the prevalence of research on a topic than a systematic

review limited to randomized controlled trials.

 26

According to (Grant and Booth, 2009), published materials that provide an evaluation of previous or

current literature is what a literature review is. Based on literature assessments that may contain

research findings, review articles can cover a wide range of topic matter at varied levels of

completeness and comprehensiveness. Because this is a fairly broad description, it's tough to

generalize. A literature review, on the other hand, typically evaluates published literature, meaning

that the materials included have some degree of permanency and, in some cases, have been subjected

to a peer-review process. In general, a literature review entails some process for identifying materials

for possible inclusion—whether or not a formal literature search is required—for selecting included

materials, synthesizing them in textual, tabular, or graphical form, and performing some analysis of

their contribution or impact.

3.3 Data Collection Methods

Data collection is the process of gathering and analyzing information from a variety of sources in order

to find answers to real questions and gain new insights that would not otherwise be evident. Searching,

collecting, assessing, reading, critically evaluating, and writing a critical review are the seven tasks

that make up a literature review (Oates, 2006). The qualitative research method is based on non-

quantifiable factors such as emotions, opinions, and sentiments. There are no numbers or calculations

involved in this procedure. Open-ended feedback, such as a survey form send to clients, is a great

example of a qualitative data collection strategy. But in this thesis the data collection strategy used is

to find out previously published articles which align with the current research topic. The most common

place to find published literature collections is in electronic databases. Because no single database

contains the entire body of published literature, a comprehensive literature search should employ

numerous databases. A backward search must be done to locate relevant material cited by the

publications in order to obtain a complete list of literature (Xiao and Watson, 2019). A method for

obtaining different search phrases is given prior to the search procedure, in which the entire study topic

is expressed in a phrase, then the words are broken into independent concepts, with a collection of

alternative terms for each concept. Following that, during the database search, the concepts are merged

in various combinations. Major themes and concepts will be looked for in the literature analysis, and

the literature will be organized thematically or by essential topics. Based on the principles, the findings

will be grouped and mapped in a matrix.

 27

4 Literature Review

In this section the search process and data analysis methods is explained in detail.

4.1 Literature Search Process

Figure 10 depicts the three key processes in the literature search approach used in this study. Concepts

and themes are defined based on a research phrase, followed by an article search in databases and

analysis of the findings.

Figure 10: Literature search approach

4.1.1 Concepts and Themes

The first step for a structured literature review is to know how and what to search. Define the keywords

and phrases for the search. Considering the phrase, “Comparative study of different technologies in

informatics with PLC”, the phrase is split into four different concepts: Comparative study, Different

technologies, Informatics and PLC as shown in Table 2.

Table 2: Splitting research topic into different concepts.

Concept 1 Concept 2 Concept 3 Concept 4

Comparative study Different technologies Informatics PLC

Now a list of alternative names for each notion that may be used to express that concept is made by

the use of a dictionary and thesaurus, as well as the assistance of others.

Concept
and

Themes

Database
search

Result
analysis

 28

Table 3: Alternative terms for research concepts.

Concept 1 Concept 2 Concept 3 Concept 4

Comparative Analysis Several techniques Information science Ltd

Comparative Testing More techniques Information technology Plc-s

Comparative Assessment Several technologies Computing Holdings

Equivalent study Variety of techniques Information theory Investments

Comparison by classes Various technologies Computational subsidiary

Similar study Computerised

Analysis by comparison Information services

Considering the research questions and objectives, keywords like Functional Blocks, Containers, IIot,

Fog and Edge computing were used for the search. The database chosen were IEEE Xplorer, ACM

Digital library, Science Direct and Scopus, since they cover more articles. These databases were

chosen because they provide extensive coverage of the research fields of computer science and

software engineering. Furthermore, the journals and conference proceedings in these databases usually

have a high impact factor. In the database search, the numerous search terms from each notion were

combined in a variety of ways. The literature was found by searching databases for titles, abstracts,

and keywords. In the database search the different search terms, shown in Table 2, from each concept

were combined in many various ways, with and without symbols and Boolean operators. The search

strings could for example look like this: ”Different technolog*” AND “PLC”, “PLC” AND “various

technologies or several techniques” AND “information science”, “Comparative analysis and

information technology and control software”, “Analysis by comparison” AND “more techniques in

Information science or technology”, “Functions” AND “Containers” AND “Edge computing” AND

“Fog computing”. As the search goes on, the search terms were jotted down. This helped in being

methodical, keeps from repeating searches, and can assist in spotting combinations or terms that have

not yet been used. The search phrases were combined till the search result became saturated.

4.1.2 Database Search

The focus was on peer-reviewed articles having full-text access in English from journals, conferences,

and workshops published through 2005 in order to locate all relevant studies. Studies that did not

expressly relate to the control software, IIoT adoption, or edge computing technologies from an

industry perspective were removed. Editorial papers, panel summaries, posters, and instructional

 29

summaries were also removed. The keyword “PLC” didn’t give much expected result as the acronym

lead to more biological terms and articles related to health care and industries.

Figure 11: Database search process

Figure 11 shows the database search process. A total of 2564 papers were obtained from the selected

databases by using the search criteria. Irrelevant publications were removed by deleting duplicated

papers, papers with numerous versions, and articles that did not focus on PLC, edge computing and

IIoT for the smart industry field, leaving 1149 publications. After reading the titles and abstracts to

check that the contents of articles are relevant to the study, there were 293 papers left for full-text

screening. After all was done, 55 articles were confimed for the study as shown in figure 12.

Figure 12: Literature Review Articles

2564 • Initial
Search

293 • Refined
search

55 • Total

 30

Figure 13 shows the timeline of the chosen articles for the literature review. The articles were published

between 2005 and 2022, with the majority 34 of 55 coming from the years 2018-2021. The majority

are journal articles (26) and conference proceedings (29). Articles 8, 16, 40, 42 and 50 are the most

cited articles, with 3166, 672, 533, 490 and 480 citations respectively being the review's oldest articles.

Five papers, namely 13, 22, 32, 33 and 41, have not been cited by others, which could be explained by

the fact that they were recently published articles.

Figure 13: Number of Articles and the corresponding year of publications

4.1.3 Data Analysis Method

The categorization scheme proposed by (Petersen et al., 2008) was used to classify the selected primary

studies. As a result, the primary studies were divided into three categories: research topic, contribution

kind, and research type. Excel spreadsheets were used to store and organize the important data acquired

from reading each of the 55 publications properly. Table 4 shows the major data that were gathered

from the 55 research. Then analyzed how to synthesize data by summarizing and examining the

retrieved data for relationships and patterns.

Table 4: Data Extracted from study.

Extracted Data Description

Bibliographic Information Author, title, year and source of publication

Type of Study Journal and Conference paper

Topic of Study Main topic, concept and object of study

Research method used in
study

Systematic Literature review

Contribution type Methods, models and formal study

0

2

4

6

8

10

12

2000 2005 2010 2015 2020 2025

 31

It's crucial to determine how the articles will be used to undertake proper analysis after conducting the

literature review and selecting a final sample. That is, once a final sample has been chosen, a systematic

method of extracting relevant information from each article is to be applied. Data is abstracted in the

form of descriptive information, such as authors, publication years, topic, or study type, or in the form

of impacts and findings. It can also take the shape of conceptualizations of a certain topic or theoretical

point of view. The study is exploratory in nature, so a qualitative research analysis method is chosen.

Case studies, action research, and ethnography are the most common types of data or evidence

generated (Oates, 2006). A frequent methodology is content analysis, which is defined as a process for

detecting, analyzing, and reporting patterns in the form of themes inside a text.

The results were analyzed in a three-step process inspired by (Machi & McEvoy, 2016), who suggest

organizing the core maps and outlines related to the themes, creating a historical log out of scanning

processes, arranging maps, core ideas, keywords, and notes to build up evidence categories, and

applying a warrant scheme to each theme group.

Figure 14: Data Analysis Process

Step1: To begin, all of the articles in the search protocol were grouped in a matrix in which the

important concepts, or categories, as well as the major ideas and data quality, were highlighted in

relation to the subject and research objectives.

Step2: The articles were then mapped into the different categories that had been listed in the previous

phase (Appendix A). The groupings were improved and categories were created in this step in a

creative process using color codes in excel as shown in figure 15, until each category fit nicely within

the overall.

Find
Categories

Map article to
categories

Refine
categories

 32

Figure 15: Creative Analysis Process using colour codes in excel

Step3: In the final phase, the categories and subcategories were sorted, rearranged, and renamed.

Categories that were out of scope according to the research question were removed, and the remaining

categories were refined once more, to four: deployment, run time, performance and security (Appendix

B). Figure 16 and 17 below shows the graphical representation of the final analysis done based on

concepts and objectives.

 Figure 16: Analysis of articles based on concepts Figure 17: Analysis of articles based on objectives

36%

22%

27%

15%

No. of Articles

Deployment Run Time Performance Security

0

5

10

15

20

25

30

Containers Function
Block

Edge/Fog
Computing

IoT/IIoT

27

18

28

20

No. of Articles

 33

5 Results

In this section results will be depicted based on the analysis done on concepts and objectives.

5.1 IEC 61499 Function Block and Docker Container

In this section, the result will be presented, out from the main categories found in the analysis, namely

deployment, run time, performance and security.

5.1.1 Deployment

Considering IEC 61499 Function Block and Docker Container, both are similar in the way of

encapsulating everything in a single unit. The function block (FB) which integrates data and algorithms

in one abstract control unit, is the foundation of IEC 61499 control systems (International

Electrotechnical Commission and Technical Committee 65, 2012). (Zoitl and Vyatkin, 2009) said in

IEC 61499, an FB is a separate software entity that may be implemented, tested, and used without the

involvement of other FBs. As a result, IEC 61499 greatly facilitates the production and reuse of tested

components resulting in higher-quality industrial automation software.

According to (Dai, Dubinin and Vyatkin, 2014), the IEC 61499 standard is widely regarded as the

foundation for enabling dispersed control and incorporating intelligence into industrial automation.

The majority of systems still use PLCs that are programmed in traditional ladder logic, structured text,

or sequential function chart (SFC) languages. Lower design effort paired with higher flexibility,

reconfigurability, and maintainability are some of the potential benefits of using IEC 61499 technology

to create complex automation systems. A function block is the most fundamental component of an IEC

61499 application which is an industrial system design language for distributed information and

control systems at a high level. (Lyu and Brennan, 2021) examined the study on IEC 61499 over the

last decade which included a discussion and analysis of major challenges related to system redesign,

design, and implementation. As a consequence of the study, three major types of challenges with the

transition to IEC 61499 were found, including industrial problems on business development, technical

obstacles related to the standard, and societal concerns as shown in table 5. Manufacturing

organizations are attempting to construct distributed and intelligent industrial automation systems to

meet new requirements by combining emerging technologies in the Industry 4.0 era in order to remain

competitive in the global market. The IEC 61499 standard is designed to help modeling industrial

 34

automation and control systems so that they may respond quickly to changes while maintaining stable

operations in dynamic situations and making efficient use of dispersed resources.

Table 5: Main Challenges for Industrial adoption of IEC 61499

Challenges Explanation

Industrial Concerns Little demand for a completely new design approach

 Huge cost incurred by introducing new technologies

Technical Issues Few proved methods to redesign existing systems

 Same execution semantics but different system behaviours

Societal aspects New qualification requirements for control engineers

 New industrial training for applying and using IEC 61499

In recent years, the container approach has gained traction as a viable alternative to traditional virtual

machines. A container is lighter than a virtual machine which contains only executables and their

dependencies, and multiple containers on the same machine share the same operating system (OS),

whereas a VM has its own operating system, which it does not share with other VMs. Containers

require fewer resources than virtual machines because they all share the functions of a single operating

system kernel, according to ('Docker Docs', 2013). Docker is an open platform for building, deploying,

and operating apps. Docker allows to decouple apps from the infrastructure, allowing to swiftly release

software. The infrastructure can be managed the same way as how to control the applications with

Docker. Inspired by the trend in virtualization, industrial researchers have begun to use a container

platforms to provide flexible architectures for multi-purpose industrial control, as seen in this study

(Garcia et al., 2018). Control application virtualization is implemented using lightweight container-

based systems like Docker and IEC 61499 to achieve this purpose. IEC-61499 standard is a key

integrating tool in industry 4.0 scenarios. It is regarded as a key component of a CPPS's automation

architecture.

Figure 18 depicts a comparison between the traditional software deployment approach and the Docker

technology-based deployment model.The major difference between them, as shown in the diagram, is

that each application in the traditional deployment style shares the same library, but each application

 35

program in the Docker deployment mode has its own separate library. The problem of environmental

dependency conflicts is thus resolved. Traditional deployment strategies will produce environmental

conflicts if two apps are deployed on a single server. This problem may be solved by purchasing a new

server, however this will incur additional costs. This shows using Docker technology to solve this

problem is a viable option.

Figure 18: Container vs traditional deployment model (Liu et al., 2019)

According to (Morabito, 2016), containerization is not new in the virtualization world, but with the

introduction of Docker, it has gained more relevance and real-world use. Docker provides an

underlying container engine as well as a complete API for quickly creating, managing, and deleting

containerized applications. Multiple containers can run in devices with low processing resources due

to the tiny overhead incurred. Because of their lightweight and versatile qualities, containers have been

employed in a range of applications, from Cloud Computing to Internet of Things (IoT) scenarios.

Figure 19: Architecture-based container in computing system (Bentaleb et al., 2022)

 36

An overview of a container-based architecture paradigm of computing systems is shown in Figure 19.

This architecture shows how container technologies can be used for intense application processing. It

offers key layers that give an architecture based on container environments, as well as their

management systems that demonstrate parallelization functionalities, to enable large-scale high-speed

distributed processing of intense scientific applications. Because of the benefits given by container

technologies, such as performance, isolation, scalability, portability, dependence, fault-tolerance, and

load balancing, containerization has grown in popularity. Infrastructure services, load distribution

between container instances, and application efficiency are just a few of the benefits.

According to (Lyu, Dwi Atmojo and Vyatkin, 2021), although containerization technology is not yet

commonly employed in industrial control systems, its potential benefits are numerous, including faster

control application development and deployment, deployment of diverse runtime environments, load

balancing, and legacy device upgrades. A cloud-based, web-based, and container-based architecture

was presented by them for virtual commissioning of control software. Considering the potential

benefits and features of containerization, a cloud computing platform and Docker container technology

was used to deploy IEC 61499 runtime environments and IEC 61499 based control applications.

Finally, a web platform was created to connect developers, multiple runtime environments, and virtual

entities through interfaces.

(Salah et al., 2017) said Docker containers are often used to assist the deployment of microservice

architecture-based services. Docker containers are small, lightweight, and scalable. Such

characteristics entice developers to create containerized services (or microservices). Containers excels

more than VMs in terms of throughput, power consumption, latency, execution time, CPU utilization,

and memory usage. According to (Bentaleb et al., 2022), containerization is a popular method of

running applications. Containerization essentially entails the ability to design, test, and deploy

applications within containers. Due to their ability to share resources with the host machines, they have

a faster start-up time than one of the virtual machines (Vms). These capabilities can help them make

better use of resources, such as CPU, memory, and storage disks, and use fewer of them.

Containerization is a good solution for microservices-based systems because it allows an application

to be broken down into smaller components, each of which serves a specialized purpose. This

decomposition allows the operation to be parallelized using computational resources, making the

program expandable and simple to maintain.

 37

5.1.2 Run time

In traditional PLCs, all programs are cyclic scan-based tasks, even if its not necessary to run

sequentially and periodically for all tasks. But IEC 61499 is event driven function block which are

invoked only when an event arrives at one of their event inputs. During rest of the operation time the

FB remains idle which significantly improve the efficiency and reduce computing power consumption

and communication bandwidth. The standard programming language used for traditional PLC are

structured text, ladder diagram, instruction list and sequential function chart. But in IEC 61499, any

high-level programming languages such as Java or C is used for writing internal FB logic.

According to (Chenaru et al., 2015) even if the function blocks are linked to control devices (either

through sensors or actuators or through filtering of sensor signals), they can be installed on any

computing resource that can run the IEC 61499 runtime. For example, FBDK2, a popular Java-based

function block development kit and runtime, can be installed on any machine that supports the Java

virtual machine. Encapsulation of functionality, graphical component-based design, event-driven

execution, and distribution of automation programs for execution across a wide range of automation

and control devices, as well as edge computing devices, are all possible with the standard. The concept

of event-driven function blocks was first established in the international standard IEC 61499

(International Electrotechnical Commission and Technical Committee 65, 2012) and it addresses the

demands for adaptability, reconfigurability, and flexibility in production systems and their automation

utilizing a distributed control system paradigm. The IEC 61499 standard is most commonly used in

PLC-based control systems, although it is also applicable to and can be used in other industrial control

systems such as robotic or CNC (computer numeric control). According to (Holm, Adamson and

Wang, 2012), control code or machining data can be encapsulated in event-driven function blocks,

which can then be utilized to build and execute process plans. A device or machine becomes more

intelligent and autonomous, aiding decision-making at run-time, by using event-driven function blocks

in a distributed control system, as defined by the IEC 61499 standard. Resources are the basic

components in the IEC 61499 design, providing the services required to combine all the applications

into a functioning distributed system. The resource allows the function block network within it to run

and be controlled independently. Within the resource, loading, setup, and start/stop processes can be

performed without affecting other resources on the same device or network. Aside from function block

networks, the resource also has scheduling functions, as well as communication and process interfaces.

Therefore, process monitoring, dynamic resource scheduling, and execution control are all possible

with a control system based on event driven function blocks.

 38

(Li Hsien Yoong, Roop and Salcic, 2009) proposed a formal synchronous model for function block

execution, as well as a related function block compiler, which can produce extremely fast and compact

code for function block applications, far outperforming all other available solutions. They believed

this capacity to generate efficient code, as well as the ability to obviate the need for a run-time

environment will help the industry use IEC 61499 function blocks more widely. But no supporting

articles till now was available to prove this. (Martinez Lastra, Godinho and Lobov, 2005) said the

event-based execution approach only runs programs when at least one event is triggered. In other

terms, an event is something that occurs at a specific location and time and is triggered by a previous

occurrence. Each task or program must be linked to at least one event that will cause the program to

run. One advantage of this technique is that programs are only performed when they are required,

avoiding resource consumption and lowering overall performance.

(Strasser et al., 2011) commented about the challenges of the design and execution concerns with the

IEC 61499 elements FB, resource, and device, which have resulted in various interpretations and

implementations in the past. To address the issues that have arisen as a result of differing

interpretations, a move toward a more rigid specification of IEC 61499 execution semantics through

the development of execution models for devices, resources, and FBs is proposed. The standard IEC

61499 specifies that events are used to control the execution of event-driven function blocks in the

network. Even with complex networks, the engineer can clearly determine the execution order by using

events while constructing the function block network (Holm, Adamson and Wang, 2012).

According to (Wiesmayr et al., 2021), a platform-independent IEC 61499 applications can be

distributed among many runtimes or deployed to a single runtime. IEC 61499 models can be simulated

in real time on a PC, allowing for early feedback and review before the software is deployed to

automation devices. A distributed application can operate on several vendors' runtimes because IEC

61499 is designed for compatibility and portability. Directly evaluating the platform-independent IEC

61499 application is not currently supported, however it may help with development and portability.

According to (Conway, 2020), early field evaluations of tools based on the IEC 61499 standard

indicate engineering gains of three to four times over traditional engineering programming

methodologies. The switch to IEC 61499-based automation systems is more than a technical shift. It

has the ability to significantly alter the design of processes and machines. The foregoing technical

capabilities will drive application software portability and interoperability across multi-vendor

platforms, enabling an app-store model for industrial automation. Industry will benefit from a step-

 39

change in efficiency, flexibility, and speed due to lower engineering costs and simplified

implementation of complicated Industry 4.0 use cases.

The existing and potential execution models, from a theoretical standpoint, demand further

examination. The present classification frameworks aid in distinguishing essential distinctions

between runtime environments, but they fall short of accurately describing the standard's various

execution models. Because the standard's execution semantics are open to interpretation, it's much

more crucial to distinguish between implementations. The IEC 61499 may provide adequate models

for this application, given the availability of lightweight, multitasking embedded systems that require

real-time performance. In this regard, deterministic real-time scheduling of multitasking IEC 61499

systems demand additional research. Most runtime environments concentrate on execution semantics,

but the IEC 61499 frameworks for deployment, distribution, configuration, and reconfiguration are

also important selling advantages.

IEC 61499 seems to have a stronger run time, whereas Docker has a simple control application and

more capability carried in the “standalone executable bundle”. By leveraging Docker's methodologies

for swiftly shipping, testing, and deploying code, the time between developing code and executing it

in production can be dramatically reduced. Using Docker container-based systems, the light-weight

feature of container-based virtualization compared to hypervisor-based virtualization reduces the

overall execution times of high-performance computing applications due to approximately zero start-

up time when launching containers. Container-based services are reported to always outperform VM-

based services in terms of execution time, latency, throughput, power consumption, CPU utilization

and memory usage.

(Sollfrank et al., 2021) studied the impacts of Docker containerization on a soft real-time application.

The tests revealed that Docker-based virtualization can match the soft real-time needs of automation

applications. Another study was to measure a program's average CPU time with or without an

underlying container. The results showed the additional time delay on the node more than doubles the

processing time. (Senington, Pataki and Wang, 2018) in their research mentioned about the number of

challenges and unanswered questions with the Docker that need to be solved. The most obvious

concerns are connected to the performance cost of employing container technology. A second

difficulty with Docker is its stability, both in terms of runtime and the technology and protocols

themselves, which are still evolving.

 40

Docker is made to run a single app per container and is loosely connected from one Docker Container

to the next. When comparing Docker to a virtual machine operating on a hypervisor, the hypervisor

consumes around 10% to 15% of the host resources, whereas Docker uses the host resources to the

bare minimum. (Adufu, Choi and Kim, 2015) showed that when compared to hypervisor-based

virtualization, the light-weight feature of container-based virtualization reduces total execution times

of high performance computing (HPC) scientific applications due to the near-zero start-up time when

launching containers using Docker container-based systems. Despite the fact that main memory

(RAM) is the most used resource in a Docker container-based system, Docker efficiently maintains

memory resources, resulting in a stable environment for high performance computing (HPC)

applications. As a result, Container-based systems are better suited for HPC applications that demand

real-time resource launching. Because of the benefits they provide, such as lightweight nature,

portability, and deployment automation, containerization virtualization technologies like Docker are

progressively becoming an effective and flexible development tool in industrial automation.

(Rufino et al., 2017) said Docker is an open platform that allows developers and system administrators

to create, share, and run distributed applications. Container-based microservices are transforming the

way developers create software applications right now. Instead of the typical code-heavy monolithic

application, an application is deconstructed into a group of small, self-contained containers that are

deployed across a large number of servers. Because of their minimal overhead and excellent

portability, containers have become the de facto alternative to traditional VMs (Santos et al., 2020).

Containers are used as higher-granular building blocks than function blocks, allowing strategies for

controlling control software to be implemented across many standards and not be dependent on a

specific execution engine.

The container concept is at the heart of current computing infrastructure because it avoids various

issues associated with complex execution environment dependencies that are frequently in conflict

with other aspects of application operations (Bentaleb et al., 2022). IT businesses such as Google,

Microsoft, Netflix, and others are now using container technology in their production environments

because it is feasible to build scalable architecture made of a high number of services (micro-services)

with containers. The results of this investigation are promising in that the overhead of containerization

is extremely low and fairly constant, and it appears to increase the stability of the real-time application

when additional, non-real-time workloads are run in parallel on the system, as well as within

containers.

 41

The state-of-the-art in industrial automation and virtualization techniques explores time aspects. This

literature study has not found the temporal restrictions of containerization for real-time applications,

distinguishing between on-node time and network propagation delay, as well as outlier identification.

New technologies must be evaluated to see if they are appropriate for (soft) real-time activities in

industrial automation. The evaluation of distributed communication nodes for control tasks using

container virtualization like Docker is currently a work in progress.

5.1.3 Performance

Performance is measured in a typical PLC in terms of response time, which is constrained by the

doubled scan time. Apart from traditional PLC, IEC 61499 adds the possibility to model and distribute

automation applications independently of the underlying automation hardware, providing the user

greater independence in the choice of suppliers. In addition, IEC 61499 adds an event-driven paradigm

that facilitates the convergence of operation technology and information technology systems and a

software component approach to automation. Overall, IEC 61499 allows for much more efficient

engineering and new solution options for modular machines and systems. The IEC 61499 compliant

controller's reaction time is more difficult to predict because it varies greatly depending on the input

source. Many criticisms about IEC 61499's poor performance stem from an inaccurate association with

Java technology, which was employed in early IEC 61499 implementations like the functional block

runtime environment.

(Felter et al., 2015) found in their studies that Docker equals or beats VM performance in every case

tested when both are adjusted for performance. The findings reveal that both VM and Docker have

very little impact on CPU and memory performance. Recent operating container-based virtualization

implementations provide a lightweight virtualization layer with near-native performance. (Xavier et

al., 2013) suggest that container-based virtualization can be a strong solution for high performance

computing environments in this context, and proposed a performance and isolation evaluation of recent

container-based implementations. The study found that all container-based systems have near-native

CPU, memory, storage, and network performance. The biggest difference between them is in how they

handle resource management, which results in poor isolation and security.

(Zhang et al., 2018) said for a variety of reasons, researchers and practitioners are becoming

increasingly interested in container technology. Containers are typically tens of megabytes in size,

whereas virtual machines might be several gigabytes. A container also uses less hardware resources to

run the same application because it does not require an operating system. (Morabito, Kjallman and

 42

Komu, 2015) has done a performance analysis of hypervisor-based, container, and alternative solutions

using several benchmark tools. The goal is to determine the amount of overhead provided by these

platforms, as well as the gap between them and a non-virtualized environment. The result showed that

containers implement process isolation at the operating system level, eliminating the overhead. These

containers run on the same shared operating system kernel as the underlying host machine, and each

container can run one or more processes. Therefore, containers have a negligible overhead. Taking

into account all of the differences between LXC and Docker, containers function well, however the

diversity and ease of management come at a cost in terms of security.

(Kozhirbayev and Sinnott, 2017) presented a comprehensive performance evaluation of popular micro-

hosting virtualization techniques, with a focus on Docker and LXC, as well as comparisons to native

platforms. The results showed, neither Docker nor LXC suffered significant overheads in memory or

CPU use, while I/O and operating system interactions did. As a result, applications with higher input–

output needs have more drawbacks than applications with lower input–output demands. As a result of

these overheads, input–output delay is increased. This can inturn harm the performance by the CPU

cycles required for utility operations.

The Docker container, or lightweight technology, is becoming a popular cloud computing platform.

(Chung et al., 2016) used Docker containers and virtual machines to investigate data accessibility and

computation performance in HPC applications. They showed that virtual machines and Docker

containers have both beneficial and negative aspects. As a result, the utilization objective as well as

the program type operating on them must be considered. While VMs have a point when it comes to

isolation, Docker containers have a lot of advantages when it comes to cutting overhead due to the

architecture's ability to share the OS kernel. The result shows that using virtual machines and Docker

containers provides numerous benefits in terms of mobility, ease, and scalability. However, the size of

the problem, the types of applications, and the system restrictions must be considered. Docker is more

suited to data-intensive applications than virtual machines.

According to (Ismail et al., 2015) Docker containers do not virtualize hardware and are therefore

significantly lighter and faster. A Docker container is 26 times faster than a virtual machine. The

overhead of a hypervisor is enormous, and it grows exponentially when multiple VMs are running on

the same computer. Docker containers may run on anything from a small device to a huge server,

making it an appealing computation platform for edge servers with lesser resource capacity than

Docker container. Docker becomes more agile, portable, and transportable as a result. Despite all these

advantages (Salah et al., 2017) proved that VM-based web services beat container-based web services

 43

across all performance measures in the deployment situations using web services in Amazon cloud

environment. The performance difference, in particular, has been found to be considerable. The

fundamental cause for the unexpected performance degradation of container-based applications when

deployed on Amazon cloud is that Amazon cloud executes containers on top of EC2 (Elastic Compute

Cloud) VMs rather than directly on bare-metal physical hosts. This is in contrast to the commonly

accepted technique of deploying containers on bare-metal systems.

5.1.4 Security

PLCs can become easy targets for cyber-adversaries because they are resource-constrained and

sometimes built with legacy, less-capable security mechanisms. Security threats can have a major

impact on system availability, which is critical for Industrial automation and control system (IACS).

(Tanveer et al., 2019) suggested an approach for improving the security of PLC applications. The

solution allows designers to annotate essential areas of an application during design time, based on the

well-known IEC 61499 function blocks standard for designing IACS software. These areas of the

program are automatically secured after deployment, utilizing appropriate security measures to detect

and prevent threats. This strategy is better suited for active security defense against unknown

vulnerabilities. Experiments indicate that successful logging of error can prevent attacks at the

application level, as well as assist the program into safe mode.

There is no solution available that provides confidentiality and integrity services to IEC 61499-based

applications, exposing communication between control devices makes them vulnerable to attackers.

Existing secure communication methods, such as OPC Unified Architecture or Secure Socket Layer,

require greater processing power in small embedded devices, which isn't always available. (Tanveer,

Sinha and MacDonell, 2018) presented a method for annotating IEC 61499 distributed FB data

networks with security requirements at design time. Then, at compile time, pre-configured security

mechanisms are included to establish a security layer, ensuring secure connections between distributed

slices of the program. A security layer known as Confidentiality Layer for Function Blocks (CL4FB)

is proposed that focuses solely on confidentiality and provides a range of encryption/decryption and

secure key exchange features. This layer serves as a secure communications library, supporting a range

of security algorithms with differing performance overheads and security levels.

(Azarmipour et al., 2019) introduced a new architecture for the control device that can be a solution

for providing seamless integration without jeopardizing security, safety, and other factors. It serves as

a bridge between industrial automation applications and IT technologies, as well as a virtual platform

 44

for tests and simulations that run concurrently with the control method. This architecture is known as

PLC 4.0. The new architecture makes use of virtualization technologies to keep physical and virtual

environments separate while guaranteeing security and allowing for independent execution. As a

result, upgrading, resetting, or changing a partition can be done safely without disrupting the operations

of other containers. Furthermore, it allows for dynamic resource reallocation in response to changing

requirements. Real-time communication between partitions and programs, as well as system security,

are two crucial components of this system. External (e.g., cloud) and internal (e.g., another partition)

access to the various partitions are dealt with by security. This can be defined and limited to permitted

individuals.

(Morabito, 2017) in his research has highlighted worries regarding the level of security that programs

developed within containers. To address these concerns, Docker releases incorporate various security

changes. Docker gives thorough suggestions for creating safer Docker environments on a regular basis.

A cooperation between Docker and the Centre for Internet Security has resulted in the publication of

the Docker Security Benchmark, a developer's tool that can check for a wide variety of known security

problems within virtualized apps. Container developers are currently vulnerable to malware, and there

are no tools available to effectively measure this risk. Existing tools are time consuming and difficult

to implement, and if done incorrectly, can pose new dangers. (Brady et al., 2020)’s research addresses

these concerns by developing user-friendly tools for detecting vulnerabilities and harmful code. Virus

scans and dynamic analysis are both successful in detecting harmful behaviour in Docker containers,

according to the findings. Developers can construct better secure applications by automating static and

runtime tests.

5.2 Edge/ Fog Computing and IIoT

In this section the second objective of the study area is presented based on analysis done, namely

deployment, run time, performance and security.

5.2.1 Deployment and Run Time

Edge computing systems based on software services are gaining popularity in a variety of fields. It is

feasible to react to service outages and boost system availability by utilizing container and

orchestration technologies. Developing, configuring, and deploying such complex edge computing

systems is a difficult, time-consuming, and error-prone task. In such edge computing systems,

(Betancourt, Liu and Becker, 2020) presented a model-based engineering process for describing and

 45

deploying dynamic services. With the model-based approach, a better understanding of the

investigated edge system is gained, and the modelled knowledge may be reused to produce appropriate

configurations for the service reallocation scenario. This decreases the developer's efforts in managing

the complex configuration process, as well as human mistakes, ensuring exact execution and

deployment in accordance with the design.

In the context of a CPPS, (Nikolakis et al., 2020) examined an end-to-end implementation of a software

framework, connecting high-level planning functionalities and low-level execution control. This is

accomplished by dynamically deploying IEC 61499 compliant FBs that represent manufacturing

operations and run them in Docker containers. Horizontal scalability is enabled by containerisation

technologies, while control and vertical integration are enabled by industry standards. Manufacturing

processes are managed at a high level on a centralized node, while data processing and execution

control are handled at the network edge. A variation of IEC 61499 function blocks is used to produce

runtime events at the edge and in smart connected devices. At the edge devices, software containers

control the deployment and low-level orchestration of FBs. Since the existing method relies on

asynchronous IEC 61499 events, (Nikolakis et al., 2020) suggested a new method for both

synchronous and asynchronous events. (Zhou and Li, 2022) proposed and implemented an IEC 61499

based runtime framework termed Hybrid Execution Runtime Environment capable of enabling hybrid

synchronous and asynchronous execution models for FB based programs. The focus is on dealing with

the inherent heterogeneity of edge computing automation jobs in terms of behaviors and real-time

restrictions.

According to (Conway, 2020), the IEC 61499 standard specifies a high-level system design language

for distributed data and control. The benefits of IEC 61499 are function encapsulation, graphical

component-based design, event-driven execution, and distribution of automation applications for

execution across automation and control, as well as edge computing devices. The IEC 61499 standard

lays the groundwork for industrial automation application portability, resulting in benefits such as

IT/OT system convergence, improved return-on-investment on software applications that can run on

any hardware platform, and engineering design efficiency that reduces new product time-to-market

dramatically. Technology has now progressed far enough to allow the standard to reach its full

potential. That is, IEC 61499 can now be used as a foundation for the creation of a genuinely open

industrial automation system in which software applications can run on a variety of hardware

platforms.

 46

(Lyu, Dwi Atmojo and Vyatkin, 2021) presented a web-based online collaborative virtual

commissioning (VC) platform for IEC 61499-based control applications using web technologies and

containerization. Containerization technology was employed to build IEC 61499 runtime images

because of the various benefits of containerization, such as great flexibility and mobility. Results

showed that IEC 61499 runtime images are compatible with cloud and edge computing platforms.

(Senington, Pataki and Wang, 2018) believe that Docker or a related container technology will be

beneficial in the smart factory environment, allowing for the deployment and control of control

software on distributed computing hardware, in accordance with existing research on Docker's usage

for edge computing. This allows for more flexibility in factories in general by allowing for quick

modifications to control software as needed by the process and modifications planned

centrally/remotely from the machines and then deployed, which would subsequently help the trend

toward mass customization in the manufacturing business.

In cloud computing, due to privacy issues and the prohibitive cost of data transfer, stakeholders' data

is rarely exchanged with one another. As a result, the chances of numerous stakeholders collaboration

is limited. (Shi et al., 2016) presented a collaborative edge computing, which connect end users and

clouds, despite their physical location and network structure, which allows the traditional cloud

computing paradigm to continue the support and also connecting long-distance networks for data

sharing and collaboration due to data proximity. (Ismail et al., 2015) conducted a technical review and

experimentation on Docker, a container-based technology, as a platform for edge computing. Four

fundamental criteria was analyzed such as 1) deployment and termination, 2) resource and service

management, 3) fault tolerance, and 4) caching. Based on the test conducted, Docker outperforms the

VM-based edge computing platform in terms of deployment speed, flexibility, and performance. It

makes Docker a more appealing technology than edge computing technologies based on virtualization.

(Betancourt, Liu and Becker, 2020) presented a model-based development framework for dynamic

edge computing systems that works in conjunction with Docker containers and a service orchestrator

to aid in the development of dynamic service-based systems. The findings show that reallocation

algorithms and regulations can be used to describe a container-based edge computing system. By

generating configurations, this aids the developer during the system's implementation and deployment.

Errors can be prevented and development time can also be reduced in this manner.

 47

Figure 20: Proposed architecture (Rufino et al., 2017)

(Rufino et al., 2017) proposed a method for merging Docker and microservices techniques with a

distributed, modular, and easily scalable architecture, as shown in figure 20, that meets essential needs

for IIoT application execution. Containerization allows for service separation, and various Docker

tools make it possible to scale containerized services. Modularity and decentralization are achieved by

breaking down applications into separate microservices and deploying them across multiple system

components. Furthermore, employing REST-based protocols and/or a distributed database at the

gateway for communication mediation, interoperability between devices and machines can be

abstracted. The design is abstracted from technological specifications and complications, making it

easier to develop new services. Furthermore, combining these two capabilities with thorough testing

speeds up development and orchestration. The proposed architecture was put to the test in a use case

scenario in which a time-critical application was deployed with enddevices that rely heavily on cloud

input data. According to the findings, the enterprise layer has management and control capabilities that

assure application deployment via orchestration tools. The findings also show that the proposed

architecture can be used to deploy time-dependent microservices for IIoT.

According to (Siqueira and Davis, 2022) industrial IoT systems, which use IoT and other emerging

computer technologies to fully automate, monitor, and integrate manufacturing processes, are

becoming more common in industrial settings. These systems, on the other hand, are intrinsically

complex in terms of design, management, and operation, and their complexity can only be properly

managed with the assistance of adequate computer support. Providing these devices with a service

interface can make it easier to integrate them with other edge devices and external systems running on

cloud and fog platforms. Control software handles the complex task of controlling the behavior of

manufacturing equipment. Such software can execute on the equipment itself, utilizing native software

 48

interfaces to manage its behavior, or on a controlling device, such as a PLC, which transmits binary

commands to the equipment over an industrial network.

(Goldschmidt et al., 2018) provided an architecture for a multi-purpose industrial controller, which,

when combined with its flexible function deployment mechanism, forms a cyber-physical system for

industrial automation. Legacy emulation and flexible function deployment are two major challenges

in future production systems addressed by the design. The architecture is primarily reliant on container

notions borrowed from cloud computing. These approaches were applied to embedded systems and

assessed the impact of such a solution using real-time test benchmarks and extended measurements.

The results of this investigation were promising in that the overhead of containerization is extremely

low and rather constant, and it appears to increase the stability of the real-time application when

additional, non-real-time workloads are run in parallel on the system, as well as within containers.

(Mellado and Núñez, 2022) proposed an IoT-PLC, an Industry 4.0-oriented PLC based on the Internet

of Things (IoT) paradigm, that enables for flexible controller deployment, direct integration with

cloud-based management systems, and efficient communications with wireless instrumentation. Each

field device is described as a resource (virtual device) for edge and cloud applications in the proposed

IoT-PLC, allowing for a seamless, consistent, and reliable information flow from field to cloud.

Containerization allows application transfer across IoT-PLCs, as well as control loop reconfiguration

and fine tuning of computing resources given to each process within the IoT-PLC, resulting in greater

resilience and predictability.

According to (Pitstick and Ratzlaff, 2022), building software systems that prevent problem scenarios

is an important component of edge reliability. Container isolation refers to the fact that all application

dependencies are packed within the container, preventing conflicts with software in other containers

or on the host system. Container apps can be written and tested in the cloud or on other servers with

great confidence that they will work correctly when deployed to the edge. This separation allows

developers to upgrade programs without worrying about conflicts with the host or other container

applications, which is especially useful when conducting container upgrades at the edge. Another

aspect of software system reliability is its ability to recover and continue operating in the event of a

failure. Containers enable microservice designs, which means that if a container application fails, only

a single feature, not the entire system, is affected. For long-term stability, orchestration systems can

also automatically redeploy containers. Containers can simply be deployed among many edge systems

to maximize the likelihood of operation continuing even if one of the systems is disconnected or

destroyed.

 49

5.2.2 Performance

(Karmakar et al., 2019) said that the IIOT incorporates machine learning and big data technology, as

well as PLC to improve automation technology through self-diagnosis and rectification capabilities.

The IIoT is the next level of innovation that will impact how the world connects and optimizes

machines. Some machine learning algorithms are capable of foreseeing failure. Every business aims

to have as few accidents, environmental mishaps, safety problems, and breakdowns as possible.

Sensors on any machine may evaluate the machine's health data points and issue warnings as

necessary, but they cannot predict why or when the system will collapse. Instead of just providing data,

the goal of predictive maintenance is to create a system that can deliver accurate probability

predictions. An automated system, for example, can control a company's entire manufacturing unit.

The system can forecast when a component will break and place an order for it in advance, allowing

the maintenance staff to replace it on time and maintain the unit's overall efficiency. This results in a

cost-effective and productive output. In terms of IIOT, transportation is the second largest market.

Transportation and logistics companies are looking forward to the value chain system being improved

with the IIOT-based technical communication and monitoring system. These technologies, according

to IIOT experts, will considerably improve quality control, sustainability, and green practices, as well

as supply chain management and efficiency. Overall, the IIOT is causing a significant shift in the

automation business around the world.

The most important part of system design and maintenance is problem detection of machinery and

real-time monitoring of the production process, as modern industrial production demands more and

more stability and efficiency. (Liu et al., 2020) proposed a hierarchical structure in which edge-PLCs

are used to capture sensed data locally and reduce communication costs. A typical edge-PLC enabled

IIoT reference architecture, as shown in figure 21, divides applications and systems into three layers.

The edge layer, which comprises edge-PLCs that conduct control logic and collect data from sensors

or actuators for factory-level production equipment, is at the bottom of the stack. The platform layer

is responsible for preparing, transforming, and analyzing data received from the lower edge layer, as

well as transferring specialized information to the upper layer. The cloud layer is at the top of the stack,

and it's in charge of data processing and sending commands to the platform and edge layers. The most

crucial part of system design and maintenance is problem detection of machinery and real-time

monitoring of the production process, as modern industrial production demands more and more

stability and efficiency. Because a single defect might be caused by numerous influencing features,

 50

they wanted to reduce the number of features required to determine a fault, then find the smallest

number of edge-PLCs that can cover all key features while minimizing deployment costs.

Figure 21: System architecture of the edge-PLC-enabled IIoT (Liu et al., 2020)

(Morabito, 2017) conducted a thorough performance analysis to determine the viability of running

virtualized instances on a variety of low-power nodes, such as single board computer (SBC)s. The

rising use of such devices in various Edge-IoT scenarios is the driving force behind this research. When

compared to native executions, using container-virtualization methods on SBCs has a virtually small

performance impact. This finding is true even when multiple virtualized instances are running at the

same time. The SBCs' energy efficiency was demonstrated by considering the tradeoff between

performance and power consumption (energy efficiency) under a variety of workloads.

According to (Siqueira and Davis, 2022), low latency, location awareness, geographical distribution,

mobility support, performance consistency, and improved reliability are all advantages of fog

computing. Edge devices, despite having fewer computational capacity than fog devices, can perform

complicated real-time activities like equipment management, process monitoring, and alarm activation

that would be impossible on the cloud due to non-deterministic performance and excessive network

latency. Containerisation software provides a number of advantages, including streamlined

deployment procedures, increased device monitoring, automatic failure recovery, and greater security

 51

and resilience, to name a few. Although this technology has matured to the point that it is widely used

on high-end servers such as those found in cloud infrastructures, there is minimal support for

containerization on embedded devices found on edge platforms.

PLCs have become increasingly important in industrial control systems (ICSs) as the Industrial Internet

of Things (IIoT) has advanced, allowing local data processing, decentralized control, and fault

detection. These so-called edge-PLCs receive raw data from sensors installed in production equipment.

Allocating blocks in a fixed-size memory to distinct sensors in order to meet irregular data flows and

maximize system performance is a difficulty. To do this, (Peng, Liu and Fu, 2020) suggested

partitioning the memory space of an edge-PLC memory into numerous memory allocation instances

and performing performance analysis by modeling the problem as several independent single server

queues.

(Sollfrank et al., 2021) said container-based virtualization enables platform-independent development

as well as secure and separated applications. Containerization can also be utilized for the creation and

testing of network architecture nonfunctional requirements. The Docker container is simple to move

from one location to another after configuring the program in it. This is a useful feature for Edge

computing, since it allows an application or service to be moved closer to the user with less data

transfer overhead. Overall, Docker outperforms the VM-based edge computing platform in terms of

deployment speed, flexibility, and performance. It makes Docker a more appealing technology based

on virtualization.

According to (Pérez de Prado et al., 2020) containers contain all of the software required to operate

them, such as code, system tools, libraries, runtime, and so on, and Docker provides a lightweight and

stable framework for swiftly generating and executing jobs. Docker's features are built on Docker

Engine, which is a lightweight containerization architecture that integrates all the software tools for

setting up and managing Docker containers. In addition, Docker Engine comes with an API that makes

it simple to create, manage, and delete virtual apps. In IoT/end-user or Fog contexts, lightweight

container-based virtualization solutions are gaining traction as enablers of more efficient virtualization

technology. In fact, a single virtualized container instance can run on both Fog and IoT/end user nodes,

as well as in the cloud. Container-based service provisioning can enhance edge-fog-IIoT networks by

allowing applications to run on a variety of devices regardless of the underlying hardware. As a result,

containers are becoming a critical component of the enabling technologies for edge-fog-IIoT network

integration and interoperability. However, improved solutions that simplify and improve container

management are required in order to leverage the potential of the various devices.

 52

According to (Pitstick and Ratzlaff, 2022), containers have the advantage of being isolated and

portable execution units, allowing developers to construct and test them on one platform and then

migrate them to another. Because of their size, weight, and power limits, edge devices aren't always

the greatest choice for development and testing. One possible continuous integration/continuous

delivery (CI/CD) strategy is to develop and test containers on the cloud or on powerful servers, then

deploy their images to the edge. The number of computers is expanded, and work is coordinated

between them, to achieve the same capability as is available on servers with edge devices. Maintaining

a consistent environment gets increasingly difficult and time-consuming as the number of devices

grows. Containerization enables deployment from a single file that can be readily shared among

devices.

5.2.3 Security

Although enterprises have complete solutions for edge computing application scenarios such as

intelligent security, industrial Internet of things, and intelligent connected vehicles, there are still some

major issues that impact the adoption of edge computing, one of which is edge computing security.

(Zeyu et al., 2020) conducted a survey on the security issues related to edge computing and the result

was categorised into five areas like access control, key management, privacy protection, attack

mitigation, and anomaly detection, by analyzing the security challenges of edge computing in the

context of new models, new application scenarios, and new technology environments. The

programmability of edge devices is a difficulty, according to (Shi et al., 2016). There is now a

significant gap in flexibility between the programmability of cloud services and the programmability

of edge devices, which must be bridged. Security and privacy, data abstraction, service administration,

and optimization issues are among the other issues highlighted.

(Li et al., 2017) takes a different approach, focusing on network openness, multi-service operations

and new business models, robustness and resilience, and security and privacy as important edge

computing concerns. Edge nodes are scattered throughout the network. They have limited resources,

a complex environment, and a heterogeneous network, making it impossible to completely implement

many traditional security techniques. As a result, attackers can easily access edge nodes. Edge nodes

will have a greater understanding of the environment than cloud servers and will be able to access

more sensitive information about users because they will be directly connected to a range of IoT and

wearable devices. Edge computing security is critical and difficult because to the susceptibility and

complexity of the edge node itself, as well as the sensitivity of the data it can access. Edge computing

is limited by the comparatively low processing capacity of edge nodes, the highly complicated edge

 53

network environment, and the extremely high mobility of terminal devices in the edge environment,

all of which prevent it from providing complete security services on its own.

(Zhang et al., 2021) proposed a virtualization-based architecture to increase edge computing security.

To virtualize the edge network, an edge node partition approach is presented first. Second, a security

mechanism is proposed to assess the security of edge nodes. Finally, a data transmission mapping

algorithm is modelled. The results demonstrated the efficiency of the suggested architecture in

maintaining edge security. In a nutshell, edge computing security and privacy are crucial elements that

must be established in a vital manner to enable security against malicious and harmful nodes/attacks

that risk fog system functionality and data and end-user privacy.

According to (Boyes et al., 2018), to avoid harm and minimize threat to employees, assets, and the

environment, industrial systems should prioritize safety and security. Safety and security are

increasingly linked in the industry, with connection bringing both opportunity and risk, and bad

security being a hazard to safety. International functional safety standards acknowledge this. The use

of security concepts in traditional IACS systems is based on international standards. By enabling new

connectivity from systems to enterprise or cloud-based systems, the IIoT undermines these established

norms, raising the risk of safety and security breaches. There are currently no consistent techniques to

assessing the combined safety and security risks associated with the deployment of IIoT technologies.

(Sisinni et al., 2018) has conducted a comprehensive overview of IIoT, focusing on the architecture

design and explaining the protocol ecosystem that is emerging from standardization activities. Aside

from the QoS requirements that characterize industrial communications, the high sensitivity of the

controlled information poses security concerns that have yet to be addressed. In addition, most IIoT

applications must work with limited resources and operate for long periods of time to ensure

availability and reliability. (Aazam, Zeadally and Harras, 2018) said in the IIoT ecosystem,

interoperability features may enhance security and privacy vulnerabilities, resulting in not only attacks

but also information misuse. Because multiple systems will be merging their resources in an

interoperable IIoT scenario, the data, information, and commands are more likely to be tampered with.

(Karmakar et al., 2019) suggested all industrial systems must be extremely concerned about the safety

and security of IIoT devices to protect assets and workers. (Gebremichael et al., 2020) provided a

comprehensive overview of security and privacy in the IIoT in relation to recommendations from well-

known standardization bodies, so that researchers and practitioners could easily see where various

security protocols at various layers fit into the larger picture. A thorough examination of numerous

 54

security methods and solutions has been offered, with a focus on identifying security flaws and

vulnerabilities.

According to (Pitstick and Ratzlaff, 2022), containerization has certain security advantages, but it also

has some security drawbacks and issues. Containers all run on the same kernel, thus a rogue process

in one may create a kernel panic and bring the host machine down. Furthermore, because users are not

namespaced, if a running application leaves the container, it will inherit the same privileges on the host

machine. For ease of use or convenience, many containers are constructed with the "root" user,

although this design might lead to extra risks. Containers rely on the container runtime engine (e.g.,

Docker runtime), which might become a single point of failure if it is hacked. Since there are more

attack vectors available in many edge contexts, securing applications running on edge devices is

critical. Containers provide an additional degree of isolation from the host operating system that can

improve security. Developers can determine which files and ports are shared with the host and other

containers.

 55

6 Sustainability

The focus of the research has been more related to the structural similarities and differences between

the technologies, and not directly about sustainability. Sustainability offers a different point of

comparison. This has not been a key part of the study area, but a quick check on the databases has been

done. Sustainable industrial development is included in sustainable development goal 9, about

industry, innovation, and infrastructure, which is part of the 2030 Agenda for Sustainable Development

(UN, 2022), which has two goals: one is to promote inclusive and sustainable industrialization, and

the other is to upgrade all industries for sustainability. Economic growth, social equity, and

environmental conservation are the three essential pillars of sustainability.

On the one hand, rising resource demand and an increasing number of users have presented new

problems to contemporary Infrastructure as a Service (IaaS) cloud datacenters, such as client Quality-

of-Service (QoS) and infrastructure scalability. Datacenters, on the other hand, have high energy

demands and are predicted to consume more than 2.4 percent of global electricity, with a global

economic effect of $30 billion (Cuadrado-Cordero, Orgerie and Menaud, 2017). Several studies have

recently examined the performance of containers and virtual machines (VMs) as virtualization

technologies from various angles. All of these studies are focused on the performance of a set number

of services that run on both platforms. (Cuadrado-Cordero, Orgerie and Menaud, 2017) did a

comparative study based on the number of services that can operate on the same server while

maintaining a particular Quality-of-Service (QoS) and Energy Efficiency (EE) utilizing various

virtualization technologies. The performance of VM (KVM)s versus containers (Docker) were

examined. The results shows that in both QoS and EE, Docker surpasses KVM. When using a

maximum latency of 3,000 milliseconds, Docker allows to operate up to 21% more services than

KVM. Docker provides this service while using 11.33 percent less energy than KVM. At the datacenter

level, the same computation may be performed with fewer servers and less energy per server, resulting

in a total energy reduction of 28%.

For service consolidation and power/energy savings, today's cloud data centers are fully virtualized.

Although virtualization has the potential to lower real-time and total energy usage, the energy

characteristics of hypervisors supporting various workloads have yet to be properly evaluated or

understood. (Jiang et al., 2019) investigated the power and energy characteristics of four mainstream

hypervisors and a container engine, namely VMware ESXi, Microsoft Hyper-V, KVM, XenServer,

and Docker, on six different platforms (three mainstream 2U rack servers, one emerging ARM64

 56

server, one desktop server, and one laptop) with power measurements taken over extended periods.

They investigated the power and energy characteristics of several hypervisors by simulating actual

multi-tenant cloud infrastructures using computation-intensive, memory-intensive, and mixed web

server-database workloads. Extensive testing with four workload levels (very low, light, fair, and very

heavy) revealed that the hypervisors have varying power and energy characteristics. The following are

the results of investigation. (1) Hypervisors consume various amounts of power and energy when

running the same task on the same hardware. (2) Despite the fact that mainstream hypervisors have

varied energy efficiency associated with different task kinds and workload levels, no single hypervisor

surpasses the others in terms of power or energy usage across all platforms. (3) Although container

virtualization is considered lightweight virtualization in terms of setup and maintenance, it is not

significantly more energy efficient than traditional virtualization technologies. (4) Despite its low

power consumption, the ARM64 server completes calculation jobs with a long execution time and

excessive energy consumption. Furthermore, for mixed workloads, ARM64 servers have a medium

energy usage per database operation. The findings given in this research can help system designers

and data center operators put workloads that are power-aware and schedule virtual machines more

efficiently.

Energy and performance data must be obtained to offer a meaningful assessment of the application

behavior under different system configurations, which is not adequately handled in present

technologies, in order to drive software operation toward energy savings. (Silva-de-Souza et al., 2020)

proposed containergy, which is a novel performance evaluation and profiling tool that employs

software containers to do application run-time assessment and provide energy and performance

profiling statistics with minimal overhead (below 2 %). It focuses on energy efficiency for workloads

of the future. Experiments with new workloads including video transcoding and machine-learning

picture categorization are discussed. The findings of the profile are evaluated in terms of performance

and energy savings from a QoS standpoint. A 300 percent increase in energy usage is identified for the

same task and QoS criteria on video transcoding workloads due to incorrect configuration space

choices (worst/best settings). This demonstrates how inefficient software can become, especially in

terms of energy consumption. The choice of machine-learning technique and model has a considerable

impact on energy efficiency, according to the ML image classification case study.

The enormous number of interactions and data transmissions among multiple layers in the IoT-edge-

cloud ecosystem might put a strain on the underlying network infrastructure. As a result, software-

defined edge computing has emerged as a feasible alternative for latency-sensitive workloads.

 57

Furthermore, in resource-constrained edge systems, energy consumption has been identified as a

critical concern. Existing methods for handling IoT workloads with an optimal trade-off between

energy efficiency and latency are not fully compatible in the software-defined edge environment. As

a result, (Singh, Aujla and Bali, 2021) presented a lightweight and energy-efficient container-as-a-

service (CaaS) strategy for provisioning workloads created by latency-sensitive IoT applications based

on software-define edge computing. Additionally, an energy-efficient ensemble for container

allocation, consolidation, and migration is designed for load balancing. The proposed energy-efficient

resource allocation and optimization technique is supported by the experimental results. The outcomes

are computed as CPU serve time, network serve time, overall delay, and energy consumption. The

collected findings showed that the proposed is superior to the current variations.

 58

7 Conclusion, Limitations and Future Work

The results will be summarized and discussed in this section. Also limitations and possible future

research will be highlighted.

7.1 Conclusion

Based on the research and analysis, the four main focus areas of these technologies were deployment,

run time, performance and security. Many performance comparisons between virtual machines and

containers, particularly Docker containers, have been documented in the literature. The research

findings has showed that the advantages of Docker over function blocks and virtual machines has

claimed to be superior in the majority of comparisons. Containerization has grown in popularity

because of the benefits given by container technologies, such as performance, isolation, scalability,

portability, dependence, fault-tolerance, and load balancing. Containers offer improvements over VMs

in terms of throughput, power consumption, latency, execution time, CPU utilization, and memory

usage.

In recent years, application containerization has become increasingly popular. Containers make it

easier to run control software in parallel on devices like PLCs and, to a lesser extent, sensing and

actuating field devices. Containers are being utilized by businesses to modernize legacy apps, optimize

infrastructure, and accelerate the release of new products. Containers improve application development

by enabling faster and more consistent release cycles. As a consequence, the application is packed,

tested, and deployed into production in a container. Because the application is currently being

evaluated in a runtime environment, there is no need for additional testing. The benefits of being able

to track, rollback, and examine changes are well known, and it is a popular and widely used feature in

software development. Docker expands on this concept by allowing to run the entire program,

including all of its dependencies, in a single environment. Docker also has a lot of benefits for

developers, and it can be expected that it will continue to grow in popularity in the digital industries.

Today, edge, fog, and IIoT networks are quickly adopting container-based lightweight virtualization

solutions. Major cloud service providers such as Microsoft Azure, Amazon Web Services, and Google

Compute Platform are prioritizing the supply of computing infrastructures, applications, and services

via containers. Containers are regarded as the first realistic virtualization technology for Fog-IoT

networks, due to the limited CPU resources required for deployment compared to other virtualization

technologies available today. However, their continued expansion in edge, fog, and IIoT networks is

 59

dependent on a number of pre-requisite factors, including the development of more efficient container

schedulers.

Containers only live as long as the processes run inside them. The container stops and exits when its

task (or process) stops, fails, or crashes. The fact that containers cannot run other operating systems

natively may appear to be a drawback, but it is not, because that is not the purpose of containers.

Containerisation seperates different parts of the OS, sharing the kernel services while allowing libraries

to be varied. Despite all these above said benefits, Docker is unlikely to ever completely replace the

need of virtual machines. Two most obvious concerns connected to the performance cost and stability

of employing container technology is still evolving. Security and real time execution is also a

highlighted concern in the research area. Many solutions were suggested but none of them completely

eliminate the said issues. Since the benefits of using containers are considered to be more than virtual

machines, containers are definitely a basis for future automation industries.

Virtualization and cloud technologies are often seen as promising solutions to many of the problems

that future automation systems will face. They can be used at all levels of an industrial automation

system, but because to the connection delay and execution jitter created by virtualization, time-critical

control tasks performed by PLCs and field devices are particularly challenging. To take advantage of

virtualization technology for PLCs is to incorporate it into the software that runs on the field-based

embedded device. The main barrier to using virtualization in PLCs and other controllers is ensuring

timeliness with current virtualization technologies. Because hypervisor-based virtualization has a

limited granularity for encapsulating functionality, legacy functionality is still integrated at the

application level rather than employing virtualization approaches.

Docker outperforms the VM-based edge computing platform in terms of deployment speed, flexibility,

and performance. It makes Docker a more appealing technology than edge computing technologies

based on virtualization. Control software handles the complex task of controlling the behavior of

manufacturing equipment. Edge devices, despite having fewer computational capacity than fog

devices, can perform complicated real-time activities like equipment management, process

monitoring, and alarm activation that would be impossible on the cloud due to non-deterministic

performance and excessive network latency. Containers are becoming a critical component of the

enabling technologies for edge-fog-IIoT network integration and interoperability. Cloud-based

services and edge computing are becoming more prevalent in industrial automation. As a result,

computer technologies are increasingly infiltrating industrial settings. Industrial automation is subject

to domain-specific constraints such as time sensitivity, safety and security. Manufacturing

 60

organizations are attempting to construct distributed and intelligent industrial automation systems to

meet new requirements by combining emerging technologies in the Industry 4.0 era in order to remain

competitive in the global market.

The sustainability study showed that, assuming a minimum acceptable QoS, it is possible to deploy a

greater number of virtualized environments using containers than VMs for a given application. The

potential energy savings of employing containers are increased in this way, because fewer servers are

required to run the same services. Docker containers can save money for enterprises by reducing

development time and being more lean and resource-efficient than running virtual machines all of the

time. This research adds to the current literature by comparing the performance of both technologies

in a consolidated environment with varying amounts of services and establishing a link between QoS

and EE. IIOT incorporates machine learning and big data technology, as well as PLC to improve

automation technology through self-diagnosis and rectification capabilities. These technologies,

according to IIOT experts, will considerably improve quality control, sustainability, and green

practices, as well as supply chain management and efficiency.

7.2 Limitations

Some of the limitations of this study can be addressed by expanding it. First, the databases chosen may

be one of the article's limitations, as there may be articles outside of these databases that are relevant

to the study's scope, and the study's findings are confined to a small number of publications. Since

there is a time limit because the data was collected on a specific date, and new writers or articles is not

included in the chosen portfolio of publications. The author's perspective in developing this research,

including the decision on articles, the concept identified and even the observations, is limited.

Furthermore, because the focus was on conference papers and academic journals published in English,

articles published in other languages were eliminated. Finally, since the publications are identified

using keywords, it is possible that articles that match the research's focus were missed because they

lacked the appropriate keywords in their titles or abstracts. Majority of the chosen papers talked about

the difference between containers and virtual machines, which wasn’t the focus area. Only few papers

mentioned about the correspondence between IEC 61499 and Docker, which is a drawback in the

research area. Also with regards to edge computing and IIoT, correspondence of containers with these

technologies were discussed, but few of them specifically mentioned about Docker. As a result, further

research could look at different keywords to supplement the conclusions of this paper.

 61

7.3 Future works

In future research, current limitations mentioned above needs to be overlooked. More number of

articles with different keywords may yield a different result. The study showed that container

outperforms VMs and function blocks in the area of deployment, runtime and performance, but two

most obvious concerns connected to the performance cost and stability of employing container

technology must be overlooked in future. The recent trend toward virtualization might be able to close

the gap between massively distributed CPS and real-time systems. This is due to the fact that platform

independence, scalability, and deployment are supported by virtualization. The time constraints of

containerization for real-time applications, which distinguish between on-node time and network

propagation delay, including outlier detection, are not, however, addressed in any research, which is

something to be looked in the future study to determine whether new technologies are suitable for real-

time industrial automation operations. Concerns regarding security was also highlighted in the study,

how the said security issues is addressed, what are the measures taken to reduce the risk of security

breaches, is also needs to be investigated further.

The latest PLC technology aids in the monitoring and control of multi-user/distributed server systems.

It gives a complete and accurate view of operations, satisfying the needs of a variety of stakeholders

such as maintenance, engineering, operations, and production IT. These technologies allow to take use

of visualization, mobility, and other emerging technologies, addressing a variety of process difficulties,

discrete applications, and providing essential visibility when needed. For many businesses, new

industrial automation technology is the key to their success. The worldwide automation industry has

been progressing and improving functionality. The threat of security breaches has increased interest in

open-source software that is maintained by a vibrant community eager to fix errors. The available

research on virtualization for PLCs, on the other hand, is primarily focused on hypervisor-based

virtualization solutions. It would be interesting to study the use of two virtualizations while running

Docker on top of VMs as a future work. The focus of the discussion could be how additional

virtualization layers affect overall system performance, resource utilization, and network status.

Because this virtualization method is not available in a comprehensive solution, combining these two

virtualizations may yield better results.

Superior energy efficiency, better design and operator visualization, and safety standards are heading

the automation industry towards a future of unparalleled productivity. The sustainability study showed

that although container virtualization is considered lightweight virtualization in terms of setup and

 62

maintenance, it is not significantly more energy efficient than traditional virtualization technologies.

The real-time energy audit that can't be produced by conventional energy monitoring systems is the

ultimate objective of the smart factory. Many of the fundamental problems that prevent a factory from

making significant energy conservation efforts can be resolved by IoT-enabled energy monitoring.

That not only results in cost savings, but also prepares the ground for real Industry 4.0 adoption. IoT

is something that needs to take a closer look in future studies in terms of energy efficiency in

automation industries.

Most future PLCs will be virtualized software functions that run on a server, either on-premise or in

the cloud, as part of a complete, primarily software-based solution, rather than a piece of ruggedized

hardware. Beyond academic research, future IEC 61499 implementation will require industry testbeds

for evaluating its capabilities, design patterns and type libraries for efficient application development,

and simple design guidelines and tools in industrial practices. The entire IEC 61499 community,

including researchers and professionals, must work significantly harder in the Industry 4.0 age to

promote and deploy the standard and associated ecosystems for distributed intelligent automation of

industrial CPS. The integration of control and automation applications with real-time operating

systems is not explicitly described by IEC 61499, how does the IEC 61499 standard handle real-time

operating systems is to be studied in future.

The key to achieving IEC 61499-based distributed intelligent industrial automation in the Industry 4.0

era will be integration of distributed intelligence, cloud computing, and autonomic computing

frameworks with service oriented architecture (SOA) into the design modeling of industrial CPS.

Integration of artificial intelligence (AI) with IEC 61499-based systems for automation and control

and are containers better or worse than IEC61499 for AI deployment in a factory, could be a future

research topic. For example, applying AI frameworks and methodologies into systems design

modeling and advanced data analytics to enable learning capabilities and intelligent behaviors of next

generation automation and control systems.

While container technologies are becoming more widely used, the community still has many doubts

about them. Further study into best practices, basic features, standards, and tools is required to solve

the inadequacies of present container-based platforms and solutions. Recent studies showed that

container technology will not be the end of the scientific community's efforts. New technologies are

already on the horizon; microvms in the form of unikernels, which resemble enhanced containers but

offer superior security and performance, are rapidly merging. Unikernels provide superior separation

and run on a basic operating system that is specifically customized to the application. Compared to

 63

container-based infrastructure, unikernels are quicker, safer, and more cost-effective. What would be

needed of these, not to be better than VM, or better than Container, but better than PLC, and how might

we test for that, these are some of the aspects which needs to be looked upon. Future study in this topic

will be heavily influenced by the field's promising surroundings.

ACKNOWLEDGEMENT

I would like to express my gratitude to my supervisor Dr. Richard Senington, senior lecturer at the

School of Engineering Science, for all his support and encouragement. I would also like to thank Prof.

Jorgen Hansson, senior lecturer, for giving guidance in research methods and strategies. Lastly, thanks

to my friends for supporting with their knowledge and helpful discussions.

 64

8 References

Aazam, M., Zeadally, S. and Harras, K.A. (2018) ‘Deploying Fog Computing in Industrial Internet of
Things and Industry 4.0’, IEEE Transactions on Industrial Informatics, 14(10), pp. 4674–4682.
doi:10.1109/TII.2018.2855198.

Adufu, T., Choi, J. and Kim, Y. (2015) ‘Is container-based technology a winner for high performance
scientific applications?’, in 2015 17th Asia-Pacific Network Operations and Management Symposium
(APNOMS). 2015 17th Asia-Pacific Network Operations and Management Symposium (APNOMS),
Busan, South Korea: IEEE, pp. 507–510. doi:10.1109/APNOMS.2015.7275379.

Azarmipour, M. et al. (2019) ‘PLC 4.0: A Control System for Industry 4.0’, in IECON 2019 - 45th
Annual Conference of the IEEE Industrial Electronics Society. IECON 2019 - 45th Annual Conference
of the IEEE Industrial Electronics Society, Lisbon, Portugal: IEEE, pp. 5513–5518.
doi:10.1109/IECON.2019.8927026.

Bentaleb, O. et al. (2022) ‘Containerization technologies: taxonomies, applications and challenges’,
The Journal of Supercomputing, 78(1), pp. 1144–1181. doi:10.1007/s11227-021-03914-1.

Betancourt, V.P., Liu, B. and Becker, J. (2020) ‘Model-based Development of a Dynamic Container-
Based Edge Computing System’, in 2020 IEEE International Symposium on Systems Engineering
(ISSE). 2020 IEEE International Symposium on Systems Engineering (ISSE), Vienna, Austria: IEEE,
pp. 1–5. doi:10.1109/ISSE49799.2020.9272014.

Boyes, H. et al. (2018) ‘The industrial internet of things (IIoT): An analysis framework’, Computers
in Industry, 101, pp. 1–12. doi:10.1016/j.compind.2018.04.015.

Brady, K. et al. (2020) ‘Docker Container Security in Cloud Computing’, in 2020 10th Annual
Computing and Communication Workshop and Conference (CCWC). 2020 10th Annual Computing
and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA: IEEE, pp. 0975–
0980. doi:10.1109/CCWC47524.2020.9031195.

Chenaru, O. et al. (2015) ‘Open cloud solution for integrating advanced process control in plant
operation’, in 2015 23rd Mediterranean Conference on Control and Automation (MED). 2015 23th
Mediterranean Conference on Control and Automation (MED), Torremolinos, Malaga, Spain: IEEE,
pp. 973–978. doi:10.1109/MED.2015.7158884.

Chung, M.T. et al. (2016) ‘Using Docker in high performance computing applications’, in 2016 IEEE
Sixth International Conference on Communications and Electronics (ICCE). 2016 IEEE Sixth
International Conference on Communications and Electronics (ICCE), Ha-Long City, Quang Ninh
Province, Vietnam: IEEE, pp. 52–57. doi:10.1109/CCE.2016.7562612.

Conway, J. (2020) ‘IEC 61499: standard for portability and Industry 4.0’, Industrial Ethernet Book, 4
December. Available at: https://iebmedia.com/technology/iiot/industrial-automation-standard-for-
portability-and-industry-4-0/ (Accessed: 19 May 2022).

Creswell, J.W. (2009) Research design: qualitative, quantitative, and mixed methods approaches. 3rd
ed. Thousand Oaks, Calif: Sage Publications.

 65

Cuadrado-Cordero, I., Orgerie, A.-C. and Menaud, J.-M. (2017) ‘Comparative experimental analysis
of the quality-of-service and energy-efficiency of VMs and containers’ consolidation for cloud
applications’, in 2017 25th International Conference on Software, Telecommunications and Computer
Networks (SoftCOM). 2017 25th International Conference on Software, Telecommunications and
Computer Networks (SoftCOM), Split: IEEE, pp. 1–6. doi:10.23919/SOFTCOM.2017.8115516.

Dai, W., Dubinin, V.N. and Vyatkin, V. (2014) ‘Migration From PLC to IEC 61499 Using Semantic
Web Technologies’, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(3), pp. 277–
291. doi:10.1109/TSMCC.2013.2264671.

De Donno, M., Tange, K. and Dragoni, N. (2019) ‘Foundations and Evolution of Modern Computing
Paradigms: Cloud, IoT, Edge, and Fog’, IEEE Access, 7, pp. 150936–150948.
doi:10.1109/ACCESS.2019.2947652.

Digi Key Electronics (2017) ‘IIoT and PLC: Coexistence, Not Confrontation’, Digi Key Electronics,
19 April. Available at: https://www.digikey.nl/nl/articles/iiot-and-plc-coexistence-not-confrontation
(Accessed: 4 December 2022).

‘Docker Docs’ (2022). Docker Documentation. Available at: https://docs.docker.com/ (Accessed: 3
September 2022).

‘FBD Docs’ (2018). Available at: https://www.plcacademy.com/function-block-diagram-
programming (Accessed: 3 September 2022).

Felter, W. et al. (2015) ‘An updated performance comparison of virtual machines and Linux
containers’, in 2015 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). 2015 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), Philadelphia, PA, USA: IEEE, pp. 171–172. doi:10.1109/ISPASS.2015.7095802.

Garcia, C.A. et al. (2018) ‘Flexible Container Platform Architecture for Industrial Robot Control’, in
2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation
(ETFA). 2018 IEEE 23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), Turin: IEEE, pp. 1056–1059. doi:10.1109/ETFA.2018.8502496.

Gebremichael, T. et al. (2020) ‘Security and Privacy in the Industrial Internet of Things: Current
Standards and Future Challenges’, IEEE Access, 8, pp. 152351–152366.
doi:10.1109/ACCESS.2020.3016937.

Goldschmidt, T. et al. (2018) ‘Container-based architecture for flexible industrial control applications’,
Journal of Systems Architecture, 84, pp. 28–36. doi:10.1016/j.sysarc.2018.03.002.

Grant, M.J. and Booth, A. (2009) ‘A typology of reviews: an analysis of 14 review types and associated
methodologies: A typology of reviews, Maria J. Grant & Andrew Booth’, Health Information &
Libraries Journal, 26(2), pp. 91–108. doi:10.1111/j.1471-1842.2009.00848.x.

Hasa (2017) ‘What is Research Design in Qualitative Research’, Pediaa.Com, 21 February. Available
at: https://pediaa.com/what-is-research-design-in-qualitative-research/ (Accessed: 6 June 2022).

Holm, M., Adamson, G. and Wang, L. (2012) ‘IEC 61499 – Enabling Control of Distributed Systems
beyond IEC 61131-3’, Proceedings of the SPS12 Conference 2012, pp. 37–44. Available at:
http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-7093 (Accessed: 4 April 2022).

 66

International Electrotechnical Commission and Technical Committee 65 (2012) Function blocks.
Blocs fonctionnels. Part 1, Partie 1, Part 1, Partie 1,. Geneva: International Electrotechnical
Commission. Available at: https://www.vde-verlag.de/iec-normen/219342/iec-61499-1-2012.html.

Ismail, B.I. et al. (2015) ‘Evaluation of Docker as Edge computing platform’, in 2015 IEEE
Conference on Open Systems (ICOS). 2015 IEEE Conference on Open Systems (ICOS), Bandar
Melaka: IEEE, pp. 130–135. doi:10.1109/ICOS.2015.7377291.

James H. Christensen (2022) ‘A Standard for Software Reuse in Embedded, Distributed Control
Systems’, in. Available at: https://holobloc.com/papers/iec61499/overview.htm (Accessed: 13 April
2022).

Jena, S. (2021) ‘Difference Between Edge Computing and Fog Computing’. Available at:
https://www.geeksforgeeks.org/difference-between-edge-computing-and-fog-computing/ (Accessed:
19 April 2022).

Jiang, C. et al. (2019) ‘Energy efficiency comparison of hypervisors’, Sustainable Computing:
Informatics and Systems, 22, pp. 311–321. doi:10.1016/j.suscom.2017.09.005.

Karmakar, A. et al. (2019) ‘Industrial Internet of Things: A Review’, in 2019 International Conference
on Opto-Electronics and Applied Optics (Optronix). 2019 International Conference on Opto-
Electronics and Applied Optics (Optronix), Kolkata, India: IEEE, pp. 1–6.
doi:10.1109/OPTRONIX.2019.8862436.

Keith Larson (2020) ‘Containerization meets process automation’, Control Global [Preprint].
Available at: https://www.controlglobal.com/articles/2020/containerization-meets-process-
automation/ (Accessed: 7 April 2022).

Kozhirbayev, Z. and Sinnott, R.O. (2017) ‘A performance comparison of container-based technologies
for the Cloud’, Future Generation Computer Systems, 68, pp. 175–182.
doi:10.1016/j.future.2016.08.025.

Li Hsien Yoong, Roop, P.S. and Salcic, Z. (2009) ‘Efficient implementation of IEC 61499 function
blocks’, in 2009 IEEE International Conference on Industrial Technology. 2009 IEEE International
Conference on Industrial Technology - (ICIT), Churchill, Victoria, Australia: IEEE, pp. 1–6.
doi:10.1109/ICIT.2009.4939707.

Li, Z. et al. (2017) ‘Performance Overhead Comparison between Hypervisor and Container Based
Virtualization’, in 2017 IEEE 31st International Conference on Advanced Information Networking
and Applications (AINA). 2017 IEEE 31st International Conference on Advanced Information
Networking and Applications (AINA), Taipei, Taiwan: IEEE, pp. 955–962.
doi:10.1109/AINA.2017.79.

Liu, P. et al. (2020) ‘Optimization of Edge-PLC-Based Fault Diagnosis With Random Forest in
Industrial Internet of Things’, IEEE Internet of Things Journal, 7(10), pp. 9664–9674.
doi:10.1109/JIOT.2020.2994200.

Liu, X. et al. (2019) ‘Research on Large Screen Visualization Based on Docker’, Journal of Physics:
Conference Series, 1169, p. 012052. doi:10.1088/1742-6596/1169/1/012052.

 67

Lyu, G. and Brennan, R.W. (2021) ‘Towards IEC 61499-Based Distributed Intelligent Automation: A
Literature Review’, IEEE Transactions on Industrial Informatics, 17(4), pp. 2295–2306.
doi:10.1109/TII.2020.3016990.

Lyu, T., Dwi Atmojo, U. and Vyatkin, V. (2021) ‘Towards cloud-based virtual commissioning of
distributed automation applications with IEC 61499 and containerization technology’, in IECON 2021
– 47th Annual Conference of the IEEE Industrial Electronics Society. IECON 2021 - 47th Annual
Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada: IEEE, pp. 1–7.
doi:10.1109/IECON48115.2021.9589945.

Machi, L. A., & McEvoy, B. T. (2016) ‘The Literature Review: Six Steps to Success’, SAGE
Publications [Preprint].

Martinez Lastra, J.L., Godinho, L. and Lobov, A. (2005) ‘Closed Loop Control Using an IEC 61499
Application Generator for Scan-Based Controllers’, in 2005 IEEE Conference on Emerging
Technologies and Factory Automation. 2005 IEEE Conference on Emerging Technologies and
Factory Automation, Catania, Italy: IEEE, pp. 323–330. doi:10.1109/ETFA.2005.1612541.

Mellado, J. and Núñez, F. (2022) ‘Design of an IoT-PLC: A containerized programmable logical
controller for the industry 4.0’, Journal of Industrial Information Integration, 25, p. 100250.
doi:10.1016/j.jii.2021.100250.

Morabito, R. (2016) ‘A performance evaluation of container technologies on Internet of Things
devices’, in 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE INFOCOM 2016 - IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), San Francisco, CA, USA: IEEE, pp. 999–1000. doi:10.1109/INFCOMW.2016.7562228.

Morabito, R. (2017) ‘Virtualization on Internet of Things Edge Devices With Container Technologies:
A Performance Evaluation’, IEEE Access, 5, pp. 8835–8850. doi:10.1109/ACCESS.2017.2704444.

Morabito, R., Kjallman, J. and Komu, M. (2015) ‘Hypervisors vs. Lightweight Virtualization: A
Performance Comparison’, in 2015 IEEE International Conference on Cloud Engineering. 2015 IEEE
International Conference on Cloud Engineering (IC2E), Tempe, AZ, USA: IEEE, pp. 386–393.
doi:10.1109/IC2E.2015.74.

Nikolakis, N. et al. (2020) ‘On a containerized approach for the dynamic planning and control of a
cyber - physical production system’, Robotics and Computer-Integrated Manufacturing, 64, p.
101919. doi:10.1016/j.rcim.2019.101919.

Oates, B.J. (2006) Researching information systems and computing. London ; Thousand Oaks, Calif:
SAGE Publications.

Peng, Y., Liu, P. and Fu, T. (2020) ‘Performance analysis of edge-PLCs enabled industrial Internet of
things’, Peer-to-Peer Networking and Applications, 13(5), pp. 1830–1838. doi:10.1007/s12083-020-
00934-1.

Pérez de Prado, R. et al. (2020) ‘Smart Containers Schedulers for Microservices Provision in Cloud-
Fog-IoT Networks. Challenges and Opportunities’, Sensors, 20(6), p. 1714. doi:10.3390/s20061714.

Petersen, K. et al. (2008) ‘Systematic Mapping Studies in Software Engineering’, in. Proceedings of
the 12th International Conference on Evaluation and Assessment in Software Engineering.

 68

Pitstick, K. and Ratzlaff, J. (2022) ‘Containerization at the Edge’, Carnegie Mellon University’s
Software Engineering Institute Blog, 21 March. Available at:
https://insights.sei.cmu.edu/blog/containerization-at-the-edge/ (Accessed: 19 May 2022).

Rufino, J. et al. (2017) ‘Orchestration of containerized microservices for IIoT using Docker’, in 2017
IEEE International Conference on Industrial Technology (ICIT). 2017 IEEE International Conference
on Industrial Technology (ICIT), Toronto, ON: IEEE, pp. 1532–1536.
doi:10.1109/ICIT.2017.7915594.

Salah, T. et al. (2017) ‘Performance comparison between container-based and VM-based services’, in
2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN). 2017 20th Conference
on Innovations in Clouds, Internet and Networks (ICIN), Paris: IEEE, pp. 185–190.
doi:10.1109/ICIN.2017.7899408.

Santos, J. et al. (2020) ‘Towards delay-aware container-based Service Function Chaining in Fog
Computing’, in NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium.
NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary:
IEEE, pp. 1–9. doi:10.1109/NOMS47738.2020.9110376.

Senington, R., Pataki, B. and Wang, X.V. (2018) ‘Using docker for factory system software
management: Experience report’, Procedia CIRP, 72, pp. 659–664. doi:10.1016/j.procir.2018.03.173.

Shi, W. et al. (2016a) ‘Edge Computing: Vision and Challenges’, IEEE Internet of Things Journal,
3(5), pp. 637–646. doi:10.1109/JIOT.2016.2579198.

Shi, W. et al. (2016b) ‘Edge Computing: Vision and Challenges’, IEEE Internet of Things Journal,
3(5), pp. 637–646. doi:10.1109/JIOT.2016.2579198.

Silva-de-Souza, W. et al. (2020) ‘Containergy—A Container-Based Energy and Performance Profiling
Tool for Next Generation Workloads’, Energies, 13(9), p. 2162. doi:10.3390/en13092162.

Singh, A., Aujla, G.S. and Bali, R.S. (2021) ‘Container-based load balancing for energy efficiency in
software-defined edge computing environment’, Sustainable Computing: Informatics and Systems, 30,
p. 100463. doi:10.1016/j.suscom.2020.100463.

Siqueira, F. and Davis, J.G. (2022) ‘Service Computing for Industry 4.0: State of the Art, Challenges,
and Research Opportunities’, ACM Computing Surveys, 54(9), pp. 1–38. doi:10.1145/3478680.

Sisinni, E. et al. (2018) ‘Industrial Internet of Things: Challenges, Opportunities, and Directions’,
IEEE Transactions on Industrial Informatics, 14(11), pp. 4724–4734. doi:10.1109/TII.2018.2852491.

Snyder, H. (2019) ‘Literature review as a research methodology: An overview and guidelines’, Journal
of Business Research, 104, pp. 333–339. doi:10.1016/j.jbusres.2019.07.039.

Sollfrank, M. et al. (2021) ‘Evaluating Docker for Lightweight Virtualization of Distributed and Time-
Sensitive Applications in Industrial Automation’, IEEE Transactions on Industrial Informatics, 17(5),
pp. 3566–3576. doi:10.1109/TII.2020.3022843.

Strasser, T. et al. (2011) ‘Design and Execution Issues in IEC 61499 Distributed Automation and
Control Systems’, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 41(1), pp. 41–51. doi:10.1109/TSMCC.2010.2067210.

 69

Tanveer, A. et al. (2019) ‘Designing Actively Secure, Highly Available Industrial Automation
Applications’, in 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). 2019
IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland: IEEE, pp.
374–379. doi:10.1109/INDIN41052.2019.8972262.

Tanveer, A., Sinha, R. and MacDonell, S.G. (2018) ‘On Design-time Security in IEC 61499 Systems:
Conceptualisation, Implementation, and Feasibility’, in 2018 IEEE 16th International Conference on
Industrial Informatics (INDIN). 2018 IEEE 16th International Conference on Industrial Informatics
(INDIN), Porto: IEEE, pp. 778–785. doi:10.1109/INDIN.2018.8472093.

UN (2022) ‘Sustainable Development’. Available at: https://sdgs.un.org/goals (Accessed: 6 July
2022).

Wiesmayr, B. et al. (2021) ‘A Model-based Execution Framework for Interpreting Control Software’,
in 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA). 2021 IEEE 26th International Conference on Emerging Technologies and Factory
Automation (ETFA), Vasteras, Sweden: IEEE, pp. 1–8. doi:10.1109/ETFA45728.2021.9613716.

Xavier, M.G. et al. (2013) ‘Performance Evaluation of Container-Based Virtualization for High
Performance Computing Environments’, in 2013 21st Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing. 2013 21st Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP 2013), Belfast: IEEE, pp. 233–240.
doi:10.1109/PDP.2013.41.

Xiao, Y. and Watson, M. (2019) ‘Guidance on Conducting a Systematic Literature Review’, Journal
of Planning Education and Research, 39(1), pp. 93–112. doi:10.1177/0739456X17723971.

Zeyu, H. et al. (2020) ‘Survey on Edge Computing Security’, in 2020 International Conference on Big
Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). 2020 International
Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Fuzhou,
China: IEEE, pp. 96–105. doi:10.1109/ICBAIE49996.2020.00027.

Zhang, P. et al. (2021) ‘STEC-IoT: A Security Tactic by Virtualizing Edge Computing on IoT’, IEEE
Internet of Things Journal, 8(4), pp. 2459–2467. doi:10.1109/JIOT.2020.3017742.

Zhang, Q. et al. (2018) ‘A Comparative Study of Containers and Virtual Machines in Big Data
Environment’, in 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). 2018
IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA: IEEE,
pp. 178–185. doi:10.1109/CLOUD.2018.00030.

Zhou, N. and Li, D. (2022) ‘Hybrid Synchronous–Asynchronous Execution of Reconfigurable PLC
Programs in Edge Computing’, IEEE Transactions on Industrial Informatics, 18(3), pp. 1663–1673.
doi:10.1109/TII.2021.3092741.

Zoitl, A. and Vyatkin, V. (2009) ‘IEC 61499 architecture for distributed automation: The `"glass half
full" view’, IEEE Industrial Electronics Magazine, 3(4), pp. 7–23. doi:10.1109/MIE.2009.934789.

 70

9 Appendix

Appendix A: Article Categories

Concept Article Number

Deployment
1,2,4,6,7,11,12,14,18,20,24,25,26,27,28,29,30,

31,32,33,36,38,42,43,53

Run Time 2,4,7,8,9,10,11,13,17,18,20,23,29,32,38,39,41,43,45,46,49

Performance 1,2,3,4,6,7,11,13,16,28,29,30,31,40,42,43,51,52,55

Security 8,10,16,25,34,36,37,39,43,44,47,49,50

Flexibility 1,2,12,13,15,16,17,18,26,41,48

Scalability 1,2,10,18,20,24,31,33,40

Portability 9,14,19,27,31

Efficiency 9,14,16,23,36,41

 reconfigurable 5,14,18,27,33

challenges 8,16,22,27

 opportunities 8,16,22

 interoperability 14,16,27

Reusability 5,9

Utilisation 1,2

 data sharing and collaboration 8,41

intelligent automation 21,27

 reduce network latency 26,43

distribute 28,41

better reliability 8,24

Stability 7

Accessability 6

 few computational resource 4

 improves user experience 11

 redundancy 14

 adaptability 15

 robutness 15

 improve software quality 15

 less resource consuming 17

 71

automatic migration 17

low development times 19

 reduce maintanance effort 19

 decrease complexity 19

 agility 21

 low operational cost 26

 transformation methods 27

 compilation 28

availability 33

optimization 35

 defects 35

computing support 46

compatibility 48

low overhead 52

evolution 54

 quality of service 55

Appendix B: Article Categories Refined

Concept Article Number
No. of

Articles
Deployment (design, innovation,
Implementation,development, availabilty,
utilisation, distributed, control, latency,
reusability, portability,configurable, scalable,
flexible)

1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,22,24,25,26,27,28,29,30,31,32

,33,36,38,40,41,42,43,48,53 38

Run Time (compilation, Execution, Migration,
virtualisation)

2,4,7,8,9,10,11,13,17,18,20,23,24,29,32,
35,38,39,41,43,45,46,48,49 24

Performance (Effectiveness, Intelligence,
Reliable, Efficiency, Redundancy, collaboration,
user experience, quality, agility,interoperability)

1,2,3,4,6,7,8,9,11,13,14,15,16,21,23,27,
28,29,30,31,36,40,41,42,43,51,52,54,55 29

Security (Privacy, secure, vulnerable, malware,
attack, accessible, challenges)

6,8,10,16,22,25,27,34,36,37,39,43,44,
47,49,50 16

