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Abstract 

Industrial automation is critical in today's industry. The majority of new scientific and technological 

advancements are either enabling technologies or industrial automation application areas. In the past, 

the two main forms of control systems were distributed control systems (DCS) and programmable 

logic controllers (PLCs). PLCs have been referred as the "brain" of production systems because they 

provide the capacity to meet interoperability, reconfigurability, and portability criteria. Today's 

industrial automation systems rely heavily on control software to ensure that the automation process 

runs smoothly and efficiently. Furthermore, requirements like flexibility, adaptability, and robustness 

add to the control software's complexity. As a result, new approaches to building control software are 

required. The International Electrotechnical Commission attempted to meet these new and impending 

demands with the new IEC 61499 family of standards for distributed automation systems. The IEC 

61499 standard specifies a high-level system design language for distributed data and control. With 

the advancement of these technologies like edge/fog computing and IIoT, how the control software in 

future smart factory managed is discussed here. This study aims to do a systematic literature review 

on PLC, software containers, edge/fog computing and IIoT for future industrial use. The objective is 

to identify the correspondence between the functional block (IEC 61499) and the container technology 

such as Docker. The impact of edge computing and the internet of things in industrial automation is 

also analysed. Since the aim is to do a comparative study, a qualitative explorative study is done, with 

the purpose to gather rich insight about the field. The analysis of the study mainly focused on four 

major areas such as deployment, run time, performance and security of these technologies. The result 

shows that containerisation or container based solutions is the basis for future automation as it 

outperforms virtual machines in terms of deployment, run time, performance and security.  

Keywords: Programmable Logic Controller (PLC), Functional Block, Container Technology, Edge 

Computing, Fog Computing, Industrial Internet of Things (IIoT).  
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1 Introduction 

Programmable Logic Controllers (PLCs) are certainly an alternative for a wide range of industrial 

automation applications. PLCs as one of its primary building elements, must become more adaptable 

and self-aware of the functionality running on them in order to provide the increased production 

flexibility envisioned for future automation systems. As a result, they transition from standard 

automation components to smart, reconfigurable cyber-physical systems. In a variety of application 

areas, the Internet-of-Things and cyber-physical systems are gaining traction. In this thesis, a 

systematic literature review is conducted based on PLC, software containers and edge computing. A 

comparison between the functional block (IEC 61499) and the container technology such as Docker is 

studied. Edge computing and the internet of things' impact on industrial automation is analysed. Based 

on these studies, how the control software in future smart factories is managed with these technologies 

is also discussed. 

1.1 Problem Description 

PLC is the first element directly related to the control infrastructure because sensors and actuators are 

commodity hardware accessible from a variety of manufacturers. There is an element of parallel 

development between PLC and computer systems in terms of programming and also being historically 

the core of automation. PLC is an industrial computer designed to regulate industrial processes in an 

industrial environment. A PLC's primary duty is to control a system's functioning using logic that has 

been put into it. Businesses all across the world utilize PLCs to automate their most important 

processes. PLC is a special computer device used in industrial control systems that can accept data and 

deliver operational instructions through its inputs and outputs. In order to build a functional 

relationship between inputs (mainly sensors) and outputs (mostly actuators), PLC is utilized in 

practically every element of industrial and non-industrial automation.  

The PLC programming has evolved slowly, but now there is much more significant change coming 

for the impending Industry 4.0 era to incorporate technologies such as wireless instrumentation, cloud-

based management systems, and autonomous field elements. PLCs were created to address the issue 

of automating and manufacturing control systems. Any changes to the controller design, however, will 

have a negative impact on the installed base due to the conservative character of the domain. There are 

several techniques to taking control structures to the next level currently available, but none of them 

address flexible function deployment while maintaining legacy support. An architecture for a multi-
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purpose controller is offered that is influenced by the virtualization trend in cloud systems, which is 

moving away from heavyweight virtual machines and toward lightweight container solutions like 

Docker. The solution includes support for a variety of PLC execution engines, as well as the emulation 

of legacy engines. The design is assessed by running performance tests that look at the influence of 

container technologies on PLC engines' real-time capabilities. Many studies has already been done 

based on virtualisation, PLC and edge computing. There are still research gaps identified on the 

advancement of PLC in terms of deployment, run time, performance and security. The previous PLC-

based software testing technique generates intermediate code from function block diagram (FBD) 

networks and uses the intermediate code for testing purposes. The impact of running real-time 

programs within containers need to be analysed, as container-based virtualization approaches were 

originally built for server-based systems rather than embedded systems. Containers seem to be 

evolving in a similar way as function blocks. Is there any similarities between them, if yes, why do we 

need two similar competing approaches. These are to be studied and how the functional blocks and 

containers impact edge compting and IIoT for future industrial use also need to be discussed. 

1.2 Goals and Objectives 

This thesis aims to do a comparative study of different technologies in informatics with PLC. The 

research questions are: 

 Is the container-based solution for industrial control a basis for future automation system 

architectures? 

 How will control software in the future smart factory be written and managed, in light of advances 

in the technologies of PLC, IIoT, and Edge/Fog Computing? 

The main objectives of the study is to do a: 

 Comparison between functional blocks and container technology.  

 Analyse the impact of edge computing and the internet of things in industrial automation. 
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Figure 1: Research Process 

Figure 1 shows the research process planned to achieve the goal. The study has a qualitative research 

approach. A "systematic review" is a sort of study that use rigorous and transparent methodologies in 

order to summarize all relevant evidence with little bias. By analyzing relevant literature and 

identifying gaps to research, a deeper knowledge of the breadth and depth of the existing body of work 

can be achieved. A criterion is used to assess the validity and quality of previous work, revealing flaws, 

inconsistencies, and contradictions (Xiao and Watson, 2019). 
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2 Theoretical Framework 

In this chapter an overview of current technologies related to research like PLC, Functional Block, 

Containers, Edge Computing and Industial Internet of Things is given. 

2.1 Programmable Logic Controllers (PLC) 

A PLC is a type of industrial computer that is commonly used in control systems like chemical 

processing, nuclear power plants, and traffic control. It is a portable industrial computer used to control 

manufacturing processes such as assembly lines, machineries, robotic devices, or any activity requiring 

high dependability, ease of programming, and process fault diagnosis. Small modular devices with a 

few tens of inputs and outputs (I/O) in a housing built into the processor to enormous rack-mounted 

modular devices with thousands of I/O that are regularly networked with other PLC and SCADA 

systems are all examples of PLCs. The automotive industry was the first to use PLCs to replace hard-

wired relay logic circuits with flexible, resilient, and easily programmable controllers. They've been 

frequently used as high-reliability automation controllers in severe situations since then. PLCs can 

handle a wide range of automation tasks. These are often industrial processes in manufacturing where 

the cost of building and maintaining the automation system is high in comparison to the total cost of 

the automation, and when changes to the system are expected during the system's operating life. 

PLCs have long been used in the automation process to control a wide variety of applications. These 

systems will be used for a wide range of data conversion, signal processing, and communication 

interface applications. The basic PLC module is adaptable and customized to meet the needs of a wide 

range of manufacturers and applications. For decades, the PLC's general architecture has remained the 

same. The controller hardware can be considered a normal embedded system, and the controller 

software comprises of an operating system and standardized communication stacks, upon which the 

controller firmware generates its domain-specific functionality. This design is modified for the 

Industry 4.0 era to accept new technologies such as wireless instrumentation, cloud-based management 

systems, and autonomous field elements, while retaining a consistent and predictable behavior. Both 

operational technologies (OT) and information technologies (IT) must be met by a modern PLC (IT). 

An Industry 4.0 PLC, in particular, must meet common real-time limitations from the OT sector, as 

well as being interoperable and extremely flexible for interface with IT systems. As a result, a modern 

PLC is by definition a component that facilitates OT-IT integration. A fundamental functionality of a 

PLC that should be ensured in each new development is the ability to meet stringent timeliness limits, 

which are common in the OT sector (Mellado and Núñez, 2022). The application domain determines 
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the timeliness limitations, with typical cycle times ranging from microseconds to milli seconds. In 

addition, an Industry 4.0 PLC must be interoperable and ready to interface with systems from the IT 

domain, where tight timeliness requirements and deterministic communications are not required. As a 

result, a modern PLC is by definition an aid to operation and information technology integration. Based 

on the study of different current technologies, there are enormous developments that have been brought 

with PLC. 

PLCs are utilized in a variety of industries, including the steel industry, automobile industry, chemical 

industry, and energy sector. PLC applications are frequently highly customized, the cost of a packaged 

PLC is minimal when compared to the cost of a custom-built controller design. Customized control 

systems, on the other hand, are cost-effective in the case of mass-produced goods. This is owing to the 

reduced cost of the components, which can be chosen optimally instead of a "generic" solution, and 

where non-recurring engineering costs are distributed over hundreds or millions of units. One of the 

most significant differences between a PLC and a PC is how programs are created and executed. A 

PLC typically executes scan-based programs, whereas PC software is typically event-driven. Different 

execution strategies correspond to different programming philosophies. Structured Text (ST), Function 

Block Diagram (FBD), Ladder Diagram (LD), Instruction List (IL), and Sequential Function Chart 

(SFC) are among the PLC programming languages. FBD is a popular PLC programming language. 

FBD is a simple and effective way to depict data flow between control blocks.  

2.2 Functional Blocks 

The Function Block Diagram (FBD) is a graphical representation of a programmable logic controller 

design that may illustrate the function between input and output variables. A function is represented 

as a collection of basic blocks. Connection lines connect input and output variables to blocks. 

Functions are code blocks that should ideally be compact and have a single purpose.  

 

Figure 2: An overview of Functional Block Diagram (‘FBD Docs’, 2018) 
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A functional block produces a system's output as the result of a combined event specified by the 

system's inputs and various states. Functional blocks relating to distinct subsystems are joined to 

generate a functional block diagram that depicts the combined system's functional properties. Figure 

2 shows an overview of a Functional Block Diagram. A box is used to represent the function block. A 

symbol or writing is frequently placed in the middle of the box. This symbol indicates the function 

block's real functionality. The function block can have any number of inputs and outputs depending 

on the function. The output of one function block can be connected to the input of another. As a result, 

a Function Block Diagram is created. 

Compared to PLC which executes scan-based programs, IEC 61499 Function Blocks are event-driven, 

which means they don't do anything unless an event is provided to one of its event inputs. The concept 

of event-driven function blocks was first proposed in the international standard IEC 61499. It was first 

released as an IEC standard in 2005, to addresses the needs for adaptability, reconfigurability, and 

flexibility in production systems and automation utilizing a distributed control system approach 

(International Electrotechnical Commission and Technical Committee 65, 2012). IEC 61499 can be 

used in industrial automation environment where software applications can run on a variety of 

hardware platforms. The IEC 61499 standard is most commonly used in PLC-based control systems, 

although it is also applicable to and can be used in other industrial control systems such as robotic 

control.  

According to (Li Hsien Yoong, Roop and Salcic, 2009), a function block encapsulates local data, state 

changes, and algorithms within a well-defined event-data interface, abstracting a functional unit of 

software. This ability to encapsulate a self-contained unit of software helps application reuse and 

distributed design. By connecting function blocks in a network, entire systems can be defined, 

regardless of implementation platform. IEC 61499 includes an event-driven paradigm based on 

function blocks that addresses the issue of portability, configurability, and interoperability across 

vendors while maintaining software and hardware independence (Keith Larson, 2020).  
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Figure 3: IEC61499 - Distributed intelligent devices & machines (James H. Christensen, 2022) 

Function blocks can be developed and deployed in distributed systems, as shown in fig 3, that will 

meet the requirements of : 

 Portability: Other software tools' software components and system configurations can be 

accepted and correctly interpreted by software tools.  

 Interoperability: Embedded devices can collaborate to fulfill the tasks required by distributed 

applications. 

 Configurability: Software tools from a variety of suppliers can be used to customize any device 

and its software components. 

2.3 Containers 

A container is a standard software unit that encapsulates code and all its dependencies so that the 

program can be moved from one computing environment to another quickly and reliably (Docker 

Docs, 2022). A Docker container image is a small, standalone software package that contains 

everything needed to run a program, including code, runtime, system tools, system libraries, and 

settings. Containers are light because they don't require the added load of a hypervisor; instead, they 

share the host machine's kernel but are limited in how much of the machine's resources they can view 

and/or use (Senington, Pataki and Wang, 2018). 



  

           16    

 

Figure 4: Comparison of container-based and hypervisor-based approaches (Kozhirbayev and 
Sinnott, 2017) 

Figure 4 depicts the differences between the two technologies. With container-based solutions, guest 

processes get abstractions right away because they function through the virtualization layer at the 

operating system (OS) level. In hypervisor-based techniques, however, each guest OS is typically 

represented by a single virtual machine. In container-based systems, one OS kernel is often shared 

among virtual instances. As a result, the security of this technique is thought to be poorer than that of 

hypervisors (Kozhirbayev and Sinnott, 2017). Containers appear to the developers as autonomous 

operating systems that can run independently of hardware and software. A containerized architecture 

allows software and its dependencies to be packaged in an isolated unit known as a container that can 

run reliably in any environment. Container orchestration automates a lot of the labor that goes into 

running containerized workloads and services. This covers provisioning, deployment, scaling (up and 

down), networking, load balancing, and other tasks that software teams must perform to manage a 

container's lifespan.  

 

Figure 5: Docker Today (Docker Docs, 2022) 
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Docker can package an application together with its dependencies into a virtual container that can run 

on any Linux, Windows, or macOS machine. This allows the application to run in a variety of 

environments, including on-premises, in the public cloud, and in the private cloud. Docker uses the 

Linux kernel's resource isolation capabilities (such as cgroups and kernel namespaces) and a union-

capable file system (such as OverlayFS) to allow containers to run within a single Linux instance, 

removing the overhead of creating and maintaining virtual machines. In addition to leveraging 

abstracted virtualization interfaces via libvirt, LXC (Linux Container), and system- nspawn, Docker 

provides its own component (named "libcontainer") to leverage virtualization facilities supplied 

directly by the Linux kernel.  

Containers are being widely used for their convenience in encapsulating, deploying, and isolating 

programs, lightweight operations, and resource sharing efficiency and flexibility. Rather than installing 

the operating system and all essential applications in a virtual machine, a Docker image may be quickly 

generated with a Dockerfile, which specifies the initial tasks when the docker image starts to operate 

(Zhang et al., 2018). Furthermore, container saves space by allowing multiple containers to share the 

same image. In other words, by adding another layer to an existing image, a new image can be formed 

on top of it. Containers give more flexibility and variety than standard virtual machines, allowing for 

better resource use. Since the hardware resources, such as the CPU and RAM, will be instantly returned 

to the operating system. Because a container lacks a virtualization layer, it has a lower performance 

overhead for applications. As a result, a large number of new applications are being programmed into 

containers. 

2.4 IIoT, Edge and Fog Computing 

Edge Computing in the Industrial Environment, explains how moving to an edge-compatible control 

infrastructure has aided changes in industrial control designs, suppliers, and users, resulting in a more 

adaptable and configurable environment. The shift in information technology (IT)/operational 

technology (OT) towards event-driven architectures like containers, offers a unique opportunity to 

connect PLC with cloud-based smart management solutions. Edge computing connects changes on the 

factory floor to enterprise resource planning and management systems that automate company 

activities and give insights quickly and efficiently. Integrating IoT data processing and other functions 

directly into an industrial automation module, such as PLC, may make more sense in many cases. 

When cloud computing is used in conjunction with IoT applications, communication latency and vast 

amounts of sensing data make it difficult to use IoT in smart manufacturing. Edge computing is a new 

concept that aims to alleviate the problem by allowing data to be handled locally and responses to be 
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delivered quickly. IoT automation in production control is enabled via edge computing. Lets have a 

look in detail what are IIoT, edge and fog computing. 

2.4.1 Edge and Fog Computing 

Edge computing refers to the technologies that enable processing to take place at the network's edge, 

on downstream data for cloud services and upstream data for IoT services. Any computer and network 

resources in the path between data sources and cloud data centers are referred to as "edge" in this 

context. Edge computing is based on the idea that computing should take place close to data sources 

(Shi et al., 2016). Edge computing is more focused on the things side, whereas fog computing is more 

focused on the infrastructure side. Fog computing is a cloud computing extension. It's a layer that sits 

between the cloud and the edge. Fog nodes collect massive volumes of data sent to the cloud by edge 

computers and analyze what's essential. The fog nodes then send the important data to the cloud to be 

stored, while keeping the less important data on their own for future analysis. Fog computing saves a 

lot of space in the cloud and allows vital data to be transferred fast. Edge computing, like cloud 

computing, will have a significant impact on the society. 

 

Figure 6: Edge computing paradigm (Shi et al., 2016) 

Figure 6 shows the two-way computing streams in edge computing. The things in the edge computing 

paradigm are not just data consumers, but also data providers. Things at the edge can use the cloud to 

not just seek services and content, but also to conduct computing tasks. Computing offloading, data 

storage, caching, and processing can all be done at the edge, as well as distributing request and delivery 
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services from the cloud to the user. With those jobs on the network, the edge itself must be well-

designed to meet service requirements such as dependability, security, and privacy protection 

efficiently.  

Table 1: Difference between Edge and Fog Computing 

Edge Computing Fog Computing 

Less scalable.  High scalable. 

There are billions of nodes. There are millions of nodes. 

The nodes are placed distant from the 
cloud. 

The computing nodes in this system are 
located closer to the cloud (remote 
database where data is stored). 

Edge computing is a subdivision of fog 
computing. 

Fog computing is a subdivision of cloud 
computing.  

The amount of bandwidth required is 
little. Because the data is generated by the 
edge nodes themselves. 

The amount of bandwidth required is 
considerable. The data generated by edge 
nodes is sent to the cloud. 

Operational cost is higher. Operational cost is comparatively lower. 

High levels of privacy. Data breaches are 
quite rare.  

Data breaches are more likely to occur. 

The incorporation of IoT devices or the 
client's network is known as edge devices. 

 Fog is a cloud layer that has been 
expanded. 

Nodes have a low power consumption.  

The power consumption of nodes filters 
vital data from the vast volume of data 
collected from the device and keeps it in a 
high-performance filter. 

Edge computing enables devices to 
achieve faster outcomes by processing 
data received from multiple sources at the 
same time.  

By transferring the filtered data to the 
cloud, fog computing assists in filtering 
critical information from the enormous 
amount of data collected by the device. 

 

Edge computing is a technique that enables the network edge, or the area between the data generator 

and the cloud center, to quickly do the necessary computational operations (Liu et al., 2020). The 

workload that is focused in the central cloud can be decreased by conducting the necessary computing 

operations locally to the machine that creates the data. Furthermore, processing and analyzing data 
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without network interactions is more cost effective for simple jobs that do not require communication 

with a central cloud center, such as simple facility operations. 

 

Figure 7: Edge and Fog Computing (Jena, 2021) 

(Shi et al., 2016) proposed the notion of computing stream to address the programmability of edge 

computing, which is defined as a series of functions/computing applied to data along the data 

propagation channel. The functions/computing might be the complete or partial functionality of an 

application, and the computing could take place anywhere along the path as long as the application 

specifies where it should be done. The computing stream is a software-defined computing flow that 

allows data to be handled in a distributed and efficient manner among data generators, edge nodes, and 

the cloud. A lot of computing can be done at the edge instead of in the center cloud, as defined by edge 

computing. In this situation, the computing stream can assist the user in determining which 

functions/computing should be performed, as well as how the data will be transmitted once the 

computing has occurred at the edge. Latency, energy cost, and hardware/software-specific constraints 

could all be used as function/computing distribution metrics.  

According to (Bentaleb et al., 2022) fog computing extends typical cloud computing architecture to 

the network edge, allowing for greater server scalability. Both of them have opened a new era of IoT 

application design, deployment, and distribution via FoT nodes. While fog nodes give capabilities for 

managing storage and data processing in devices, resource allocation, monitoring, and security are all 

factors to consider. To save network bandwidth, edge computing tends to push computing applications, 
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data processing, and services away from centralized cloud data center designs to the underlying 

network's edges. 

Fog computing can help service providers overcome the limits of traditional centralized cloud 

infrastructures by putting their applications over geographically scattered clouds, bringing real-time 

processing, storage operations, and data analytics closer to end users (Santos et al., 2020). Fog 

computing is the ultimate progression of Edge computing principles, rather than just another 

implementation of Edge computing. Fog computing isn't just for the network's edge; it also 

encompasses the Edge computing notion, creating a structured intermediate layer that bridges the gap 

between IoT and Cloud computing. Fog nodes, in reality, can be found anywhere between end devices 

and the Cloud, thus they aren't always physically connected to them (De Donno, Tange and Dragoni, 

2019). Furthermore, Fog computing not only focuses on the "things" side, but it also offers Cloud 

services. Fog computing, in this vision, is not merely an extension of the Cloud to the network's edge, 

nor is it a replacement for the Cloud; rather, it is a new entity that works between the Cloud and the 

Internet of Things to fully support and improve their interaction, integrating IoT, Edge, and Cloud 

computing. 

Fog computing can be utilized to provide advanced services like intelligent and adaptive control, defect 

detection, and condition analysis, among others. (Nikolakis et al., 2020) proposed the scheduling 

strategy based on Docker containers, which help to improve fog node utilization and reduce job delays. 

Fog computing is defined as the expansion of cloud computing to network edge nodes. Its goal is to 

preserve the benefits of cloud computing by increasing the efficiency, security, and sustainability of 

an integrated system while lowering the amount of data sent to the cloud for processing. A fog 

network's distributed architecture decreases the amount of bandwidth required for back-and-forth 

communication between field devices and a cloud-based central administration and orchestration 

node(s). Fog nodes supply devices with processing, storage, and network resources. As a result, it is 

possible to accomplish distributed control of independently operating devices while also providing 

local data storage. However, because those resources are finite, good administration and usage are 

critical for enabling enhanced industrial flexibility. In this context, virtualization and current software 

techniques, which also address the connectivity to legacy systems, are being used to improve upon 

more monolithic control and production paradigms. 

According to (Zeyu et al., 2020), edge computing decreases the time it takes for data to be processed 

by bringing computer and storage resources closer to users. On the one hand, edge nodes can handle 

some jobs that do not require the resources of a cloud server. They can, on the other hand, preprocess 
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the tasks and data that must be delivered to the cloud server in order to reduce the server's bandwidth 

usage. Edge computing may also improve the security and controllability of sensitive data as well as 

user privacy by lowering the likelihood of user data being transmitted via the main network and 

employing encryption and anonymization technologies on the edge. Edge computing has grown fast 

in recent years as a result of these benefits. 

2.4.2 Industrial Internet of Things (IIoT) 

According to (Sisinni et al., 2018), the emergence of digital and smart manufacturing in the industrial 

world, attempts to integrate operational technology (OT) with information technology (IT) domains. 

The IIoT entails connecting all industrial assets, such as machines and control systems, to information 

systems and business processes. As a result, the vast amount of data obtained can be used to feed 

analytic solutions, resulting in more efficient industrial operations. Smart manufacturing, on the other 

hand, is clearly focused on the production stage of the product life cycle, with the purpose of 

responding rapidly and dynamically to demand changes. As a result, the IIoT has an impact across the 

whole industrial value chain and is a prerequisite for smart production. 

 

Figure 8: Comparison Between Consumer IoT and IIoT (Sisinni et al., 2018) 

Figure 8 shows a comparison between Consumer IoT and Industrial IoT. Machine-to-machine 

communication is common in the IIoT, and it can span a wide range of market sectors and activities. 

Legacy monitoring applications (e.g., process monitoring in manufacturing plants) and creative ways 

for self-organizing systems are among the IIoT possibilities (e.g., autonomic industrial plant that 

requires little, if any, human intervention). IoT is more flexible in terms of connectivity and criticality, 

allowing for ad hoc and mobile network structures as well as less rigorous timing and reliability 
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requirements. IIoT, on the other hand, usually uses fixed and infrastructure-based network solutions 

that are well-suited to communication and coexistence requirements. 

According to (Siqueira and Davis, 2022), IoT devices are growing cheaper and more powerful as 

hardware technology progresses, creating vast volumes of data. IIoT systems, which use IoT and other 

emerging computer technologies to fully automate, monitor, and integrate manufacturing processes, 

are becoming more common in industrial settings. These systems, on the other hand, are intrinsically 

complex in terms of design, management, and operation, and their complexity can only be properly 

managed with the assistance of adequate computer support. The addition of a service interface to these 

devices can make it easier to integrate them with other edge devices as well as external systems running 

on cloud and fog platforms. IIoT helps to maximize overall production value and boost productivity 

in smart factories, which are data-driven and self-organized. 

Fixed and infrastructure-based network solutions are commonly used in the IIoT, and they are well-

designed to meet communication and coexistence requirements. Machine to machine communications 

are used in the IIoT, and they meet strict timeliness and reliability criteria. Monitoring/supervision, 

closed-loop control, and interlocking and control are the three subcategories of process monitoring and 

control applications in the sphere of process automation. Closed-loop control and interlocking, as well 

as control applications, require bounded delay at the millisecond level (10100 ms) and a transmission 

reliability of 99.99 percent. While monitoring and supervision applications are less sensitive to packet 

loss and jitter and can tolerate transmission delay at the second level (Sisinni et al., 2018). 

Manufacturers, utilities businesses, agriculture producers, and healthcare providers are all using IIoT 

to improve productivity and efficiency through smart and remote management. IIoT also offers 

chances to improve worker efficiency, safety, and working environment. The rapid development of 

IIoT technologies has resulted in the need for interoperability. For example, a fully working digital 

ecosystem in the future will necessitate frictionless data sharing between machines and other physical 

systems from various manufacturers.  

According to (Digi Key Electronics, 2017), IIoT promises to boost efficiency and profitability by 

redesigning machinery, reorganizing processes, and leveraging the power of big data. Some believe 

that established designs and components, such as PLCs, will be phased out. Another viewpoint is that 

the growth in data collecting will spur the development of even more compact devices, such as micro 

or nano PLCs, that can be installed practically anywhere in the factory. 
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3 Research Methodology 

In this chapter, the overall research process is presented. In the first part the research design, research 

strategy, are introduced and in the second part the data collection techniques is presented. 

3.1 Research Design 

The general plan of the research project is known as the research design. It specifies the study type, 

subtype, research problem, hypothesis, variables (dependent and independent), experimental design, 

data collection techniques, and so on. The type of information the researcher wishes to find may also 

influence the design of study. As a result, there is a distinction between research designs utilized in 

quantitative and qualitative studies. There are three types of research methods: qualitative, quantitative, 

and mixed methods. This research is qualitative in nature. According to (Creswell, 2009), qualitative 

research is a method for investigating and comprehending the meaning of a social or human situation 

as stated by individuals or a group of individuals. Qualitative research is distinguished by the fact that 

it is conducted in a natural setting and it frequently takes a holistic approach in order to generate a 

comprehensive picture of the situation (Creswell, 2009).  

 

Figure 9: Types of Qualitative Research Design (Hasa, 2017) 

A qualitative technique is used to thoroughly examine a problem and produce theories or hypotheses. 

It's also used to figure out what's behind something's fundamental causes, beliefs, and motivations, as 



  

           25    

well as to spot trends in people's opinions and thoughts. Because it includes observations and 

descriptions rather than merely statistical data, this is considered a subjective method. Qualitative 

research is investigative or exploratory in nature. Since the aim is to do a comparative study of different 

technologies, a qualitative exploratory study will be best suited. 

Researchers employ qualitative research to investigate human habits and behavior. Figure 9 shows the 

types of qualitative research design. This thesis focus on the historical study design. Historical studies 

look at what happened in the past to help us understand what is happening now and what might happen 

in the future (Hasa, 2017). Selecting a suitable topic after reading related literature, generating research 

questions, locating an inventory of sources such as accomplishments, publications, private libraries, 

and so on, checking their legitimacy and dependability, and collecting data are all part of the process. 

In this method, data analysis will entail the synthesis of all information as well as the reconciliation of 

conflicting data. 

3.2 Research Strategy 

An entire approach to answer the research problem, such as surveys, experiments, case studies, and 

ethnography, is referred to as a research strategy (Oates, 2006). The qualitative systematic method is 

the method for integrating or comparing the findings from qualitative studies (Grant and Booth, 2009). 

It looks for ‘themes’ or ‘constructs’ that lie in or across individual qualitative studies. A systematic 

review is a research technique and procedure for locating, critically evaluating, gathering, and 

analyzing data from relevant studies. Bias can be reduced by utilizing explicit and systematic processes 

when assessing papers and all relevant material, resulting in accurate findings from which conclusions 

and judgments can be taken (Snyder, 2019). The research strategy for this study is a systematic 

literature review. Literature reviews can be basic or sophisticated, and they can employ a number of 

strategies for locating, evaluating, and presenting data. Since the goal is to do a comparative study 

about the different technologies in informatics, a systematic literature review would be appropriate to 

learn more about the topic because it examines current primary papers in detail, describing their 

methodology and findings. Systematic review aims to bring together all available information on a 

certain topic. Because of the broad scope of this sort of review, it frequently includes numerous study 

types instead than focusing on a single favored study design. As a result, they can provide a 

considerably more comprehensive picture of the prevalence of research on a topic than a systematic 

review limited to randomized controlled trials.  
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According to (Grant and Booth, 2009), published materials that provide an evaluation of previous or 

current literature is what a literature review is. Based on literature assessments that may contain 

research findings, review articles can cover a wide range of topic matter at varied levels of 

completeness and comprehensiveness. Because this is a fairly broad description, it's tough to 

generalize. A literature review, on the other hand, typically evaluates published literature, meaning 

that the materials included have some degree of permanency and, in some cases, have been subjected 

to a peer-review process. In general, a literature review entails some process for identifying materials 

for possible inclusion—whether or not a formal literature search is required—for selecting included 

materials, synthesizing them in textual, tabular, or graphical form, and performing some analysis of 

their contribution or impact. 

3.3 Data Collection Methods 

Data collection is the process of gathering and analyzing information from a variety of sources in order 

to find answers to real questions and gain new insights that would not otherwise be evident. Searching, 

collecting, assessing, reading, critically evaluating, and writing a critical review are the seven tasks 

that make up a literature review (Oates, 2006). The qualitative research method is based on non-

quantifiable factors such as emotions, opinions, and sentiments. There are no numbers or calculations 

involved in this procedure. Open-ended feedback, such as a survey form send to clients, is a great 

example of a qualitative data collection strategy. But in this thesis the data collection strategy used is 

to find out previously published articles which align with the current research topic. The most common 

place to find published literature collections is in electronic databases. Because no single database 

contains the entire body of published literature, a comprehensive literature search should employ 

numerous databases. A backward search must be done to locate relevant material cited by the 

publications in order to obtain a complete list of literature (Xiao and Watson, 2019). A method for 

obtaining different search phrases is given prior to the search procedure, in which the entire study topic 

is expressed in a phrase, then the words are broken into independent concepts, with a collection of 

alternative terms for each concept. Following that, during the database search, the concepts are merged 

in various combinations. Major themes and concepts will be looked for in the literature analysis, and 

the literature will be organized thematically or by essential topics. Based on the principles, the findings 

will be grouped and mapped in a matrix. 
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4 Literature Review 

In this section the search process and data analysis methods is explained in detail. 

4.1 Literature Search Process 

Figure 10 depicts the three key processes in the literature search approach used in this study. Concepts 

and themes are defined based on a research phrase, followed by an article search in databases and 

analysis of the findings. 

 

Figure 10: Literature search approach 

4.1.1 Concepts and Themes 

The first step for a structured literature review is to know how and what to search. Define the keywords 

and phrases for the search. Considering the phrase, “Comparative study of different technologies in 

informatics with PLC”, the phrase is split into four different concepts: Comparative study, Different 

technologies, Informatics and PLC as shown in Table 2.  

Table 2: Splitting research topic into different concepts. 

Concept 1 Concept 2 Concept 3 Concept 4 

Comparative study Different technologies Informatics PLC 

 

Now a list of alternative names for each notion that may be used to express that concept is made by 

the use of a dictionary and thesaurus, as well as the assistance of others. 
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Table 3: Alternative terms for research concepts. 

Concept 1 Concept 2 Concept 3 Concept 4 

Comparative Analysis Several techniques Information science Ltd 

Comparative Testing More techniques Information technology Plc-s 

Comparative Assessment Several technologies Computing Holdings 

Equivalent study Variety of techniques Information theory Investments 

Comparison by classes Various technologies Computational subsidiary 

Similar study  Computerised  

Analysis by comparison  Information services  

 

Considering the research questions and objectives, keywords like Functional Blocks, Containers, IIot, 

Fog and Edge computing were used for the search. The database chosen were IEEE Xplorer, ACM 

Digital library, Science Direct and Scopus, since they cover more articles. These databases were 

chosen because they provide extensive coverage of the research fields of computer science and 

software engineering. Furthermore, the journals and conference proceedings in these databases usually 

have a high impact factor. In the database search, the numerous search terms from each notion were 

combined in a variety of ways. The literature was found by searching databases for titles, abstracts, 

and keywords. In the database search the different search terms, shown in Table 2, from each concept 

were combined in many various ways, with and without symbols and Boolean operators. The search 

strings could for example look like this: ”Different technolog*” AND “PLC”, “PLC” AND “various 

technologies or several techniques” AND “information science”, “Comparative analysis and 

information technology and control software”, “Analysis by comparison” AND “more techniques in 

Information science or technology”, “Functions” AND “Containers” AND “Edge computing” AND 

“Fog computing”. As the search goes on, the search terms were jotted down. This helped in being 

methodical, keeps from repeating searches, and can assist in spotting combinations or terms that have 

not yet been used. The search phrases were combined till the search result became saturated. 

4.1.2 Database Search 

The focus was on peer-reviewed articles having full-text access in English from journals, conferences, 

and workshops published through 2005 in order to locate all relevant studies. Studies that did not 

expressly relate to the control software, IIoT adoption, or edge computing technologies from an 

industry perspective were removed. Editorial papers, panel summaries, posters, and instructional 
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summaries were also removed. The keyword “PLC” didn’t give much expected result as the acronym 

lead to more biological terms and articles related to health care and industries. 

 

Figure 11: Database search process 

Figure 11 shows the database search process. A total of 2564 papers were obtained from the selected 

databases by using the search criteria. Irrelevant publications were removed by deleting duplicated 

papers, papers with numerous versions, and articles that did not focus on PLC, edge computing and 

IIoT for the smart industry field, leaving 1149 publications. After reading the titles and abstracts to 

check that the contents of articles are relevant to the study, there were 293 papers left for full-text 

screening. After all was done, 55 articles were confimed for the study as shown in figure 12.  

 

Figure 12: Literature Review Articles 
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Figure 13 shows the timeline of the chosen articles for the literature review. The articles were published 

between 2005 and 2022, with the majority 34 of 55 coming from the years 2018-2021. The majority 

are journal articles (26) and conference proceedings (29). Articles 8, 16, 40, 42 and 50 are the most 

cited articles, with 3166, 672, 533, 490 and 480 citations respectively being the review's oldest articles. 

Five papers, namely 13, 22, 32, 33 and 41, have not been cited by others, which could be explained by 

the fact that they were recently published articles.  

 

Figure 13: Number of Articles and the corresponding year of publications 

 

4.1.3 Data Analysis Method 

The categorization scheme proposed by (Petersen et al., 2008) was used to classify the selected primary 

studies. As a result, the primary studies were divided into three categories: research topic, contribution 

kind, and research type. Excel spreadsheets were used to store and organize the important data acquired 

from reading each of the 55 publications properly. Table 4 shows the major data that were gathered 

from the 55 research. Then analyzed how to synthesize data by summarizing and examining the 

retrieved data for relationships and patterns. 

Table 4: Data Extracted from study. 

Extracted Data Description 

Bibliographic Information Author, title, year and source of publication 

Type of Study Journal and Conference paper 

Topic of Study Main topic, concept and object of study 

Research method used in 
study 

Systematic Literature review 

Contribution type Methods, models and formal study 
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It's crucial to determine how the articles will be used to undertake proper analysis after conducting the 

literature review and selecting a final sample. That is, once a final sample has been chosen, a systematic 

method of extracting relevant information from each article is to be applied. Data is abstracted in the 

form of descriptive information, such as authors, publication years, topic, or study type, or in the form 

of impacts and findings. It can also take the shape of conceptualizations of a certain topic or theoretical 

point of view. The study is exploratory in nature, so a qualitative research analysis method is chosen. 

Case studies, action research, and ethnography are the most common types of data or evidence 

generated (Oates, 2006). A frequent methodology is content analysis, which is defined as a process for 

detecting, analyzing, and reporting patterns in the form of themes inside a text. 

The results were analyzed in a three-step process inspired by (Machi & McEvoy, 2016), who suggest 

organizing the core maps and outlines related to the themes, creating a historical log out of scanning 

processes, arranging maps, core ideas, keywords, and notes to build up evidence categories, and 

applying a warrant scheme to each theme group. 

 

Figure 14: Data Analysis Process 

Step1: To begin, all of the articles in the search protocol were grouped in a matrix in which the 

important concepts, or categories, as well as the major ideas and data quality, were highlighted in 

relation to the subject and research objectives. 

Step2: The articles were then mapped into the different categories that had been listed in the previous 

phase (Appendix A). The groupings were improved and categories were created in this step in a 

creative process using color codes in excel as shown in figure 15, until each category fit nicely within 

the overall.  
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Figure 15: Creative Analysis Process using colour codes in excel 

Step3: In the final phase, the categories and subcategories were sorted, rearranged, and renamed. 

Categories that were out of scope according to the research question were removed, and the remaining 

categories were refined once more, to four: deployment, run time, performance and security (Appendix 

B). Figure 16 and 17 below shows the graphical representation of the final analysis done based on 

concepts and objectives. 

    

  Figure 16: Analysis of articles based on concepts   Figure 17: Analysis of articles based on objectives 
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5 Results 

In this section results will be depicted based on the analysis done on concepts and objectives.  

5.1 IEC 61499 Function Block and Docker Container 

In this section, the result will be presented, out from the main categories found in the analysis, namely 

deployment, run time, performance and security. 

5.1.1 Deployment 

Considering IEC 61499 Function Block and Docker Container, both are similar in the way of 

encapsulating everything in a single unit. The function block (FB) which integrates data and algorithms 

in one abstract control unit, is the foundation of IEC 61499 control systems (International 

Electrotechnical Commission and Technical Committee 65, 2012). (Zoitl and Vyatkin, 2009) said in 

IEC 61499, an FB is a separate software entity that may be implemented, tested, and used without the 

involvement of other FBs. As a result, IEC 61499 greatly facilitates the production and reuse of tested 

components resulting in higher-quality industrial automation software.  

According to (Dai, Dubinin and Vyatkin, 2014), the IEC 61499 standard is widely regarded as the 

foundation for enabling dispersed control and incorporating intelligence into industrial automation. 

The majority of systems still use PLCs that are programmed in traditional ladder logic, structured text, 

or sequential function chart (SFC) languages. Lower design effort paired with higher flexibility, 

reconfigurability, and maintainability are some of the potential benefits of using IEC 61499 technology 

to create complex automation systems. A function block is the most fundamental component of an IEC 

61499 application which is an industrial system design language for distributed information and 

control systems at a high level. (Lyu and Brennan, 2021) examined the study on IEC 61499 over the 

last decade which included a discussion and analysis of major challenges related to system redesign, 

design, and implementation. As a consequence of the study, three major types of challenges with the 

transition to IEC 61499 were found, including industrial problems on business development, technical 

obstacles related to the standard, and societal concerns as shown in table 5. Manufacturing 

organizations are attempting to construct distributed and intelligent industrial automation systems to 

meet new requirements by combining emerging technologies in the Industry 4.0 era in order to remain 

competitive in the global market. The IEC 61499 standard is designed to help modeling industrial 
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automation and control systems so that they may respond quickly to changes while maintaining stable 

operations in dynamic situations and making efficient use of dispersed resources. 

Table 5: Main Challenges for Industrial adoption of IEC 61499 

Challenges Explanation 

Industrial Concerns  Little demand for a completely new design approach 

 Huge cost incurred by introducing new technologies 

Technical Issues  Few proved methods to redesign existing systems 

 Same execution semantics but different system behaviours 

Societal aspects  New qualification requirements for control engineers 

 New industrial training for applying and using IEC 61499 

 

In recent years, the container approach has gained traction as a viable alternative to traditional virtual 

machines. A container is lighter than a virtual machine which contains only executables and their 

dependencies, and multiple containers on the same machine share the same operating system (OS), 

whereas a VM has its own operating system, which it does not share with other VMs. Containers 

require fewer resources than virtual machines because they all share the functions of a single operating 

system kernel, according to ('Docker Docs', 2013). Docker is an open platform for building, deploying, 

and operating apps. Docker allows to decouple apps from the infrastructure, allowing to swiftly release 

software. The infrastructure can be managed the same way as how to control the applications with 

Docker. Inspired by the trend in virtualization, industrial researchers have begun to use a container 

platforms to provide flexible architectures for multi-purpose industrial control, as seen in this study 

(Garcia et al., 2018). Control application virtualization is implemented using lightweight container-

based systems like Docker and IEC 61499 to achieve this purpose. IEC-61499 standard is a key 

integrating tool in industry 4.0 scenarios. It is regarded as a key component of a CPPS's automation 

architecture. 

Figure 18 depicts a comparison between the traditional software deployment approach and the Docker 

technology-based deployment model.The major difference between them, as shown in the diagram, is 

that each application in the traditional deployment style shares the same library, but each application 
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program in the Docker deployment mode has its own separate library. The problem of environmental 

dependency conflicts is thus resolved. Traditional deployment strategies will produce environmental 

conflicts if two apps are deployed on a single server. This problem may be solved by purchasing a new 

server, however this will incur additional costs. This shows using Docker technology to solve this 

problem is a viable option. 

 

Figure 18: Container vs traditional deployment model (Liu et al., 2019) 

According to (Morabito, 2016), containerization is not new in the virtualization world, but with the 

introduction of Docker, it has gained more relevance and real-world use. Docker provides an 

underlying container engine as well as a complete API for quickly creating, managing, and deleting 

containerized applications. Multiple containers can run in devices with low processing resources due 

to the tiny overhead incurred. Because of their lightweight and versatile qualities, containers have been 

employed in a range of applications, from Cloud Computing to Internet of Things (IoT) scenarios. 

 

Figure 19: Architecture-based container in computing system (Bentaleb et al., 2022) 
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An overview of a container-based architecture paradigm of computing systems is shown in Figure 19. 

This architecture shows how container technologies can be used for intense application processing. It 

offers key layers that give an architecture based on container environments, as well as their 

management systems that demonstrate parallelization functionalities, to enable large-scale high-speed 

distributed processing of intense scientific applications. Because of the benefits given by container 

technologies, such as performance, isolation, scalability, portability, dependence, fault-tolerance, and 

load balancing, containerization has grown in popularity. Infrastructure services, load distribution 

between container instances, and application efficiency are just a few of the benefits. 

According to (Lyu, Dwi Atmojo and Vyatkin, 2021), although containerization technology is not yet 

commonly employed in industrial control systems, its potential benefits are numerous, including faster 

control application development and deployment, deployment of diverse runtime environments, load 

balancing, and legacy device upgrades. A cloud-based, web-based, and container-based architecture 

was presented by them for virtual commissioning of control software. Considering the potential 

benefits and features of containerization, a cloud computing platform and Docker container technology 

was used to deploy IEC 61499 runtime environments and IEC 61499 based control applications. 

Finally, a web platform was created to connect developers, multiple runtime environments, and virtual 

entities through interfaces. 

(Salah et al., 2017) said Docker containers are often used to assist the deployment of microservice 

architecture-based services. Docker containers are small, lightweight, and scalable. Such 

characteristics entice developers to create containerized services (or microservices). Containers excels 

more than VMs in terms of throughput, power consumption, latency, execution time, CPU utilization, 

and memory usage. According to (Bentaleb et al., 2022), containerization is a popular method of 

running applications. Containerization essentially entails the ability to design, test, and deploy 

applications within containers. Due to their ability to share resources with the host machines, they have 

a faster start-up time than one of the virtual machines (Vms). These capabilities can help them make 

better use of resources, such as CPU, memory, and storage disks, and use fewer of them. 

Containerization is a good solution for microservices-based systems because it allows an application 

to be broken down into smaller components, each of which serves a specialized purpose. This 

decomposition allows the operation to be parallelized using computational resources, making the 

program expandable and simple to maintain. 
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5.1.2 Run time 

In traditional PLCs, all programs are cyclic scan-based tasks, even if its not necessary to run 

sequentially and periodically for all tasks. But IEC 61499 is event driven function block which are 

invoked only when an event arrives at one of their event inputs. During rest of the operation time the 

FB remains idle which significantly improve the efficiency and reduce computing power consumption 

and communication bandwidth. The standard programming language used for traditional PLC are 

structured text, ladder diagram, instruction list and sequential function chart. But in IEC 61499, any 

high-level programming languages such as Java or C is used for writing internal FB logic. 

According to (Chenaru et al., 2015) even if the function blocks are linked to control devices (either 

through sensors or actuators or through filtering of sensor signals), they can be installed on any 

computing resource that can run the IEC 61499 runtime. For example, FBDK2, a popular Java-based 

function block development kit and runtime, can be installed on any machine that supports the Java 

virtual machine. Encapsulation of functionality, graphical component-based design, event-driven 

execution, and distribution of automation programs for execution across a wide range of automation 

and control devices, as well as edge computing devices, are all possible with the standard. The concept 

of event-driven function blocks was first established in the international standard IEC 61499 

(International Electrotechnical Commission and Technical Committee 65, 2012) and it addresses the 

demands for adaptability, reconfigurability, and flexibility in production systems and their automation 

utilizing a distributed control system paradigm. The IEC 61499 standard is most commonly used in 

PLC-based control systems, although it is also applicable to and can be used in other industrial control 

systems such as robotic or CNC (computer numeric control). According to (Holm, Adamson and 

Wang, 2012), control code or machining data can be encapsulated in event-driven function blocks, 

which can then be utilized to build and execute process plans. A device or machine becomes more 

intelligent and autonomous, aiding decision-making at run-time, by using event-driven function blocks 

in a distributed control system, as defined by the IEC 61499 standard. Resources are the basic 

components in the IEC 61499 design, providing the services required to combine all the applications 

into a functioning distributed system. The resource allows the function block network within it to run 

and be controlled independently. Within the resource, loading, setup, and start/stop processes can be 

performed without affecting other resources on the same device or network. Aside from function block 

networks, the resource also has scheduling functions, as well as communication and process interfaces. 

Therefore, process monitoring, dynamic resource scheduling, and execution control are all possible 

with a control system based on event driven function blocks. 
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(Li Hsien Yoong, Roop and Salcic, 2009) proposed a formal synchronous model for function block 

execution, as well as a related function block compiler, which can produce extremely fast and compact 

code for function block applications, far outperforming all other available solutions. They believed 

this capacity to generate efficient code, as well as the ability to obviate the need for a run-time 

environment will help the industry use IEC 61499 function blocks more widely. But no supporting 

articles till now was available to prove this. (Martinez Lastra, Godinho and Lobov, 2005) said the 

event-based execution approach only runs programs when at least one event is triggered. In other 

terms, an event is something that occurs at a specific location and time and is triggered by a previous 

occurrence. Each task or program must be linked to at least one event that will cause the program to 

run. One advantage of this technique is that programs are only performed when they are required, 

avoiding resource consumption and lowering overall performance.  

(Strasser et al., 2011) commented about the challenges of the design and execution concerns with the 

IEC 61499 elements FB, resource, and device, which have resulted in various interpretations and 

implementations in the past. To address the issues that have arisen as a result of differing 

interpretations, a move toward a more rigid specification of IEC 61499 execution semantics through 

the development of execution models for devices, resources, and FBs is proposed. The standard IEC 

61499 specifies that events are used to control the execution of event-driven function blocks in the 

network. Even with complex networks, the engineer can clearly determine the execution order by using 

events while constructing the function block network (Holm, Adamson and Wang, 2012). 

According to (Wiesmayr et al., 2021), a platform-independent IEC 61499 applications can be 

distributed among many runtimes or deployed to a single runtime. IEC 61499 models can be simulated 

in real time on a PC, allowing for early feedback and review before the software is deployed to 

automation devices. A distributed application can operate on several vendors' runtimes because IEC 

61499 is designed for compatibility and portability. Directly evaluating the platform-independent IEC 

61499 application is not currently supported, however it may help with development and portability.  

According to (Conway, 2020), early field evaluations of tools based on the IEC 61499 standard 

indicate engineering gains of three to four times over traditional engineering programming 

methodologies. The switch to IEC 61499-based automation systems is more than a technical shift. It 

has the ability to significantly alter the design of processes and machines. The foregoing technical 

capabilities will drive application software portability and interoperability across multi-vendor 

platforms, enabling an app-store model for industrial automation. Industry will benefit from a step-
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change in efficiency, flexibility, and speed due to lower engineering costs and simplified 

implementation of complicated Industry 4.0 use cases. 

The existing and potential execution models, from a theoretical standpoint, demand further 

examination. The present classification frameworks aid in distinguishing essential distinctions 

between runtime environments, but they fall short of accurately describing the standard's various 

execution models. Because the standard's execution semantics are open to interpretation, it's much 

more crucial to distinguish between implementations. The IEC 61499 may provide adequate models 

for this application, given the availability of lightweight, multitasking embedded systems that require 

real-time performance. In this regard, deterministic real-time scheduling of multitasking IEC 61499 

systems demand additional research. Most runtime environments concentrate on execution semantics, 

but the IEC 61499 frameworks for deployment, distribution, configuration, and reconfiguration are 

also important selling advantages. 

IEC 61499 seems to have a stronger run time, whereas Docker has a simple control application and 

more capability carried in the “standalone executable bundle”. By leveraging Docker's methodologies 

for swiftly shipping, testing, and deploying code, the time between developing code and executing it 

in production can be dramatically reduced. Using Docker container-based systems, the light-weight 

feature of container-based virtualization compared to hypervisor-based virtualization reduces the 

overall execution times of high-performance computing applications due to approximately zero start-

up time when launching containers. Container-based services are reported to always outperform VM-

based services in terms of execution time, latency, throughput, power consumption, CPU utilization 

and memory usage.  

(Sollfrank et al., 2021) studied the impacts of Docker containerization on a soft real-time application. 

The tests revealed that Docker-based virtualization can match the soft real-time needs of automation 

applications. Another study was to measure a program's average CPU time with or without an 

underlying container. The results showed the additional time delay on the node more than doubles the 

processing time. (Senington, Pataki and Wang, 2018) in their research mentioned about the number of 

challenges and unanswered questions with the Docker that need to be solved. The most obvious 

concerns are connected to the performance cost of employing container technology. A second 

difficulty with Docker is its stability, both in terms of runtime and the technology and protocols 

themselves, which are still evolving. 
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Docker is made to run a single app per container and is loosely connected from one Docker Container 

to the next. When comparing Docker to a virtual machine operating on a hypervisor, the hypervisor 

consumes around 10% to 15% of the host resources, whereas Docker uses the host resources to the 

bare minimum. (Adufu, Choi and Kim, 2015) showed that when compared to hypervisor-based 

virtualization, the light-weight feature of container-based virtualization reduces total execution times 

of high performance computing (HPC) scientific applications due to the near-zero start-up time when 

launching containers using Docker container-based systems. Despite the fact that main memory 

(RAM) is the most used resource in a Docker container-based system, Docker efficiently maintains 

memory resources, resulting in a stable environment for high performance computing (HPC) 

applications. As a result, Container-based systems are better suited for HPC applications that demand 

real-time resource launching. Because of the benefits they provide, such as lightweight nature, 

portability, and deployment automation, containerization virtualization technologies like Docker are 

progressively becoming an effective and flexible development tool in industrial automation. 

(Rufino et al., 2017) said Docker is an open platform that allows developers and system administrators 

to create, share, and run distributed applications. Container-based microservices are transforming the 

way developers create software applications right now. Instead of the typical code-heavy monolithic 

application, an application is deconstructed into a group of small, self-contained containers that are 

deployed across a large number of servers. Because of their minimal overhead and excellent 

portability, containers have become the de facto alternative to traditional VMs (Santos et al., 2020). 

Containers are used as higher-granular building blocks than function blocks, allowing strategies for 

controlling control software to be implemented across many standards and not be dependent on a 

specific execution engine. 

The container concept is at the heart of current computing infrastructure because it avoids various 

issues associated with complex execution environment dependencies that are frequently in conflict 

with other aspects of application operations (Bentaleb et al., 2022). IT businesses such as Google, 

Microsoft, Netflix, and others are now using container technology in their production environments 

because it is feasible to build scalable architecture made of a high number of services (micro-services) 

with containers. The results of this investigation are promising in that the overhead of containerization 

is extremely low and fairly constant, and it appears to increase the stability of the real-time application 

when additional, non-real-time workloads are run in parallel on the system, as well as within 

containers. 
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The state-of-the-art in industrial automation and virtualization techniques explores time aspects. This 

literature study has not found the temporal restrictions of containerization for real-time applications, 

distinguishing between on-node time and network propagation delay, as well as outlier identification. 

New technologies must be evaluated to see if they are appropriate for (soft) real-time activities in 

industrial automation. The evaluation of distributed communication nodes for control tasks using 

container virtualization like Docker is currently a work in progress. 

5.1.3 Performance 

Performance is measured in a typical PLC in terms of response time, which is constrained by the 

doubled scan time. Apart from traditional PLC, IEC 61499 adds the possibility to model and distribute 

automation applications independently of the underlying automation hardware, providing the user 

greater independence in the choice of suppliers. In addition, IEC 61499 adds an event-driven paradigm 

that facilitates the convergence of operation technology and information technology systems and a 

software component approach to automation. Overall, IEC 61499 allows for much more efficient 

engineering and new solution options for modular machines and systems. The IEC 61499 compliant 

controller's reaction time is more difficult to predict because it varies greatly depending on the input 

source. Many criticisms about IEC 61499's poor performance stem from an inaccurate association with 

Java technology, which was employed in early IEC 61499 implementations like the functional block 

runtime environment.  

(Felter et al., 2015) found in their studies that Docker equals or beats VM performance in every case 

tested when both are adjusted for performance. The findings reveal that both VM and Docker have 

very little impact on CPU and memory performance. Recent operating container-based virtualization 

implementations provide a lightweight virtualization layer with near-native performance. (Xavier et 

al., 2013) suggest that container-based virtualization can be a strong solution for high performance 

computing environments in this context, and proposed a performance and isolation evaluation of recent 

container-based implementations. The study found that all container-based systems have near-native 

CPU, memory, storage, and network performance. The biggest difference between them is in how they 

handle resource management, which results in poor isolation and security. 

(Zhang et al., 2018) said for a variety of reasons, researchers and practitioners are becoming 

increasingly interested in container technology. Containers are typically tens of megabytes in size, 

whereas virtual machines might be several gigabytes. A container also uses less hardware resources to 

run the same application because it does not require an operating system. (Morabito, Kjallman and 
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Komu, 2015) has done a performance analysis of hypervisor-based, container, and alternative solutions 

using several benchmark tools. The goal is to determine the amount of overhead provided by these 

platforms, as well as the gap between them and a non-virtualized environment. The result showed that 

containers implement process isolation at the operating system level, eliminating the overhead. These 

containers run on the same shared operating system kernel as the underlying host machine, and each 

container can run one or more processes. Therefore, containers have a negligible overhead. Taking 

into account all of the differences between LXC and Docker, containers function well, however the 

diversity and ease of management come at a cost in terms of security. 

(Kozhirbayev and Sinnott, 2017) presented a comprehensive performance evaluation of popular micro-

hosting virtualization techniques, with a focus on Docker and LXC, as well as comparisons to native 

platforms. The results showed, neither Docker nor LXC suffered significant overheads in memory or 

CPU use, while I/O and operating system interactions did. As a result, applications with higher input–

output needs have more drawbacks than applications with lower input–output demands. As a result of 

these overheads, input–output delay is increased. This can inturn harm the performance by the CPU 

cycles required for utility operations. 

The Docker container, or lightweight technology, is becoming a popular cloud computing platform. 

(Chung et al., 2016) used Docker containers and virtual machines to investigate data accessibility and 

computation performance in HPC applications. They showed that virtual machines and Docker 

containers have both beneficial and negative aspects. As a result, the utilization objective as well as 

the program type operating on them must be considered. While VMs have a point when it comes to 

isolation, Docker containers have a lot of advantages when it comes to cutting overhead due to the 

architecture's ability to share the OS kernel. The result shows that using virtual machines and Docker 

containers provides numerous benefits in terms of mobility, ease, and scalability. However, the size of 

the problem, the types of applications, and the system restrictions must be considered. Docker is more 

suited to data-intensive applications than virtual machines. 

According to (Ismail et al., 2015) Docker containers do not virtualize hardware and are therefore 

significantly lighter and faster. A Docker container is 26 times faster than a virtual machine. The 

overhead of a hypervisor is enormous, and it grows exponentially when multiple VMs are running on 

the same computer. Docker containers may run on anything from a small device to a huge server, 

making it an appealing computation platform for edge servers with lesser resource capacity than 

Docker container. Docker becomes more agile, portable, and transportable as a result. Despite all these 

advantages (Salah et al., 2017) proved that VM-based web services beat container-based web services 
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across all performance measures in the deployment situations using web services in Amazon cloud 

environment. The performance difference, in particular, has been found to be considerable. The 

fundamental cause for the unexpected performance degradation of container-based applications when 

deployed on Amazon cloud is that Amazon cloud executes containers on top of EC2 (Elastic Compute 

Cloud) VMs rather than directly on bare-metal physical hosts. This is in contrast to the commonly 

accepted technique of deploying containers on bare-metal systems. 

5.1.4 Security 

PLCs can become easy targets for cyber-adversaries because they are resource-constrained and 

sometimes built with legacy, less-capable security mechanisms. Security threats can have a major 

impact on system availability, which is critical for Industrial automation and control system (IACS). 

(Tanveer et al., 2019) suggested an approach for improving the security of PLC applications. The 

solution allows designers to annotate essential areas of an application during design time, based on the 

well-known IEC 61499 function blocks standard for designing IACS software. These areas of the 

program are automatically secured after deployment, utilizing appropriate security measures to detect 

and prevent threats. This strategy is better suited for active security defense against unknown 

vulnerabilities. Experiments indicate that successful logging of error can prevent attacks at the 

application level, as well as assist the program into safe mode.  

There is no solution available that provides confidentiality and integrity services to IEC 61499-based 

applications, exposing communication between control devices makes them vulnerable to attackers. 

Existing secure communication methods, such as OPC Unified Architecture or Secure Socket Layer, 

require greater processing power in small embedded devices, which isn't always available. (Tanveer, 

Sinha and MacDonell, 2018) presented a method for annotating IEC 61499 distributed FB data 

networks with security requirements at design time. Then, at compile time, pre-configured security 

mechanisms are included to establish a security layer, ensuring secure connections between distributed 

slices of the program. A security layer known as Confidentiality Layer for Function Blocks (CL4FB) 

is proposed that focuses solely on confidentiality and provides a range of encryption/decryption and 

secure key exchange features. This layer serves as a secure communications library, supporting a range 

of security algorithms with differing performance overheads and security levels.  

(Azarmipour et al., 2019) introduced a new architecture for the control device that can be a solution 

for providing seamless integration without jeopardizing security, safety, and other factors. It serves as 

a bridge between industrial automation applications and IT technologies, as well as a virtual platform 
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for tests and simulations that run concurrently with the control method. This architecture is known as 

PLC 4.0. The new architecture makes use of virtualization technologies to keep physical and virtual 

environments separate while guaranteeing security and allowing for independent execution. As a 

result, upgrading, resetting, or changing a partition can be done safely without disrupting the operations 

of other containers. Furthermore, it allows for dynamic resource reallocation in response to changing 

requirements. Real-time communication between partitions and programs, as well as system security, 

are two crucial components of this system. External (e.g., cloud) and internal (e.g., another partition) 

access to the various partitions are dealt with by security. This can be defined and limited to permitted 

individuals. 

(Morabito, 2017) in his research has highlighted worries regarding the level of security that programs 

developed within containers. To address these concerns, Docker releases incorporate various security 

changes. Docker gives thorough suggestions for creating safer Docker environments on a regular basis. 

A cooperation between Docker and the Centre for Internet Security has resulted in the publication of 

the Docker Security Benchmark, a developer's tool that can check for a wide variety of known security 

problems within virtualized apps. Container developers are currently vulnerable to malware, and there 

are no tools available to effectively measure this risk. Existing tools are time consuming and difficult 

to implement, and if done incorrectly, can pose new dangers. (Brady et al., 2020)’s research addresses 

these concerns by developing user-friendly tools for detecting vulnerabilities and harmful code. Virus 

scans and dynamic analysis are both successful in detecting harmful behaviour in Docker containers, 

according to the findings. Developers can construct better secure applications by automating static and 

runtime tests. 

5.2 Edge/ Fog Computing and IIoT 

In this section the second objective of the study area is presented based on analysis done, namely 

deployment, run time, performance and security. 

5.2.1 Deployment and Run Time 

Edge computing systems based on software services are gaining popularity in a variety of fields. It is 

feasible to react to service outages and boost system availability by utilizing container and 

orchestration technologies. Developing, configuring, and deploying such complex edge computing 

systems is a difficult, time-consuming, and error-prone task. In such edge computing systems, 

(Betancourt, Liu and Becker, 2020) presented a model-based engineering process for describing and 
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deploying dynamic services. With the model-based approach, a better understanding of the 

investigated edge system is gained, and the modelled knowledge may be reused to produce appropriate 

configurations for the service reallocation scenario. This decreases the developer's efforts in managing 

the complex configuration process, as well as human mistakes, ensuring exact execution and 

deployment in accordance with the design. 

In the context of a CPPS, (Nikolakis et al., 2020) examined an end-to-end implementation of a software 

framework, connecting high-level planning functionalities and low-level execution control. This is 

accomplished by dynamically deploying IEC 61499 compliant FBs that represent manufacturing 

operations and run them in Docker containers. Horizontal scalability is enabled by containerisation 

technologies, while control and vertical integration are enabled by industry standards. Manufacturing 

processes are managed at a high level on a centralized node, while data processing and execution 

control are handled at the network edge. A variation of IEC 61499 function blocks is used to produce 

runtime events at the edge and in smart connected devices. At the edge devices, software containers 

control the deployment and low-level orchestration of FBs. Since the existing method relies on 

asynchronous IEC 61499 events, (Nikolakis et al., 2020) suggested a new method for both 

synchronous and asynchronous events. (Zhou and Li, 2022) proposed and implemented an IEC 61499 

based runtime framework termed Hybrid Execution Runtime Environment capable of enabling hybrid 

synchronous and asynchronous execution models for FB based programs. The focus is on dealing with 

the inherent heterogeneity of edge computing automation jobs in terms of behaviors and real-time 

restrictions.  

According to (Conway, 2020), the IEC 61499 standard specifies a high-level system design language 

for distributed data and control. The benefits of IEC 61499 are function encapsulation, graphical 

component-based design, event-driven execution, and distribution of automation applications for 

execution across automation and control, as well as edge computing devices. The IEC 61499 standard 

lays the groundwork for industrial automation application portability, resulting in benefits such as 

IT/OT system convergence, improved return-on-investment on software applications that can run on 

any hardware platform, and engineering design efficiency that reduces new product time-to-market 

dramatically. Technology has now progressed far enough to allow the standard to reach its full 

potential. That is, IEC 61499 can now be used as a foundation for the creation of a genuinely open 

industrial automation system in which software applications can run on a variety of hardware 

platforms.  
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(Lyu, Dwi Atmojo and Vyatkin, 2021) presented a web-based online collaborative virtual 

commissioning (VC) platform for IEC 61499-based control applications using web technologies and 

containerization. Containerization technology was employed to build IEC 61499 runtime images 

because of the various benefits of containerization, such as great flexibility and mobility. Results 

showed that IEC 61499 runtime images are compatible with cloud and edge computing platforms. 

(Senington, Pataki and Wang, 2018)  believe that Docker or a related container technology will be 

beneficial in the smart factory environment, allowing for the deployment and control of control 

software on distributed computing hardware, in accordance with existing research on Docker's usage 

for edge computing. This allows for more flexibility in factories in general by allowing for quick 

modifications to control software as needed by the process and modifications planned 

centrally/remotely from the machines and then deployed, which would subsequently help the trend 

toward mass customization in the manufacturing business. 

In cloud computing, due to privacy issues and the prohibitive cost of data transfer, stakeholders' data 

is rarely exchanged with one another. As a result, the chances of numerous stakeholders collaboration 

is limited. (Shi et al., 2016) presented a collaborative edge computing, which connect end users and 

clouds, despite their physical location and network structure, which allows the traditional cloud 

computing paradigm to continue the support and also connecting long-distance networks for data 

sharing and collaboration due to data proximity. (Ismail et al., 2015) conducted a technical review and 

experimentation on Docker, a container-based technology, as a platform for edge computing. Four 

fundamental criteria was analyzed such as 1) deployment and termination, 2) resource and service 

management, 3) fault tolerance, and 4) caching. Based on the test conducted, Docker outperforms the 

VM-based edge computing platform in terms of deployment speed, flexibility, and performance. It 

makes Docker a more appealing technology than edge computing technologies based on virtualization. 

(Betancourt, Liu and Becker, 2020) presented a model-based development framework for dynamic 

edge computing systems that works in conjunction with Docker containers and a service orchestrator 

to aid in the development of dynamic service-based systems. The findings show that reallocation 

algorithms and regulations can be used to describe a container-based edge computing system. By 

generating configurations, this aids the developer during the system's implementation and deployment. 

Errors can be prevented and development time can also be reduced in this manner.  
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Figure 20: Proposed architecture (Rufino et al., 2017) 

(Rufino et al., 2017) proposed a method for merging Docker and microservices techniques with a 

distributed, modular, and easily scalable architecture, as shown in figure 20, that meets essential needs 

for IIoT application execution. Containerization allows for service separation, and various Docker 

tools make it possible to scale containerized services. Modularity and decentralization are achieved by 

breaking down applications into separate microservices and deploying them across multiple system 

components. Furthermore, employing REST-based protocols and/or a distributed database at the 

gateway for communication mediation, interoperability between devices and machines can be 

abstracted. The design is abstracted from technological specifications and complications, making it 

easier to develop new services. Furthermore, combining these two capabilities with thorough testing 

speeds up development and orchestration. The proposed architecture was put to the test in a use case 

scenario in which a time-critical application was deployed with enddevices that rely heavily on cloud 

input data. According to the findings, the enterprise layer has management and control capabilities that 

assure application deployment via orchestration tools. The findings also show that the proposed 

architecture can be used to deploy time-dependent microservices for IIoT. 

According to (Siqueira and Davis, 2022) industrial IoT systems, which use IoT and other emerging 

computer technologies to fully automate, monitor, and integrate manufacturing processes, are 

becoming more common in industrial settings. These systems, on the other hand, are intrinsically 

complex in terms of design, management, and operation, and their complexity can only be properly 

managed with the assistance of adequate computer support. Providing these devices with a service 

interface can make it easier to integrate them with other edge devices and external systems running on 

cloud and fog platforms. Control software handles the complex task of controlling the behavior of 

manufacturing equipment. Such software can execute on the equipment itself, utilizing native software 
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interfaces to manage its behavior, or on a controlling device, such as a PLC, which transmits binary 

commands to the equipment over an industrial network. 

(Goldschmidt et al., 2018) provided an architecture for a multi-purpose industrial controller, which, 

when combined with its flexible function deployment mechanism, forms a cyber-physical system for 

industrial automation. Legacy emulation and flexible function deployment are two major challenges 

in future production systems addressed by the design. The architecture is primarily reliant on container 

notions borrowed from cloud computing. These approaches were applied to embedded systems and 

assessed the impact of such a solution using real-time test benchmarks and extended measurements. 

The results of this investigation were promising in that the overhead of containerization is extremely 

low and rather constant, and it appears to increase the stability of the real-time application when 

additional, non-real-time workloads are run in parallel on the system, as well as within containers. 

(Mellado and Núñez, 2022) proposed an IoT-PLC, an Industry 4.0-oriented PLC based on the Internet 

of Things (IoT) paradigm, that enables for flexible controller deployment, direct integration with 

cloud-based management systems, and efficient communications with wireless instrumentation. Each 

field device is described as a resource (virtual device) for edge and cloud applications in the proposed 

IoT-PLC, allowing for a seamless, consistent, and reliable information flow from field to cloud. 

Containerization allows application transfer across IoT-PLCs, as well as control loop reconfiguration 

and fine tuning of computing resources given to each process within the IoT-PLC, resulting in greater 

resilience and predictability. 

According to (Pitstick and Ratzlaff, 2022), building software systems that prevent problem scenarios 

is an important component of edge reliability. Container isolation refers to the fact that all application 

dependencies are packed within the container, preventing conflicts with software in other containers 

or on the host system. Container apps can be written and tested in the cloud or on other servers with 

great confidence that they will work correctly when deployed to the edge. This separation allows 

developers to upgrade programs without worrying about conflicts with the host or other container 

applications, which is especially useful when conducting container upgrades at the edge. Another 

aspect of software system reliability is its ability to recover and continue operating in the event of a 

failure. Containers enable microservice designs, which means that if a container application fails, only 

a single feature, not the entire system, is affected. For long-term stability, orchestration systems can 

also automatically redeploy containers. Containers can simply be deployed among many edge systems 

to maximize the likelihood of operation continuing even if one of the systems is disconnected or 

destroyed. 
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5.2.2 Performance 

(Karmakar et al., 2019) said that the IIOT incorporates machine learning and big data technology, as 

well as PLC to improve automation technology through self-diagnosis and rectification capabilities. 

The IIoT is the next level of innovation that will impact how the world connects and optimizes 

machines. Some machine learning algorithms are capable of foreseeing failure. Every business aims 

to have as few accidents, environmental mishaps, safety problems, and breakdowns as possible. 

Sensors on any machine may evaluate the machine's health data points and issue warnings as 

necessary, but they cannot predict why or when the system will collapse. Instead of just providing data, 

the goal of predictive maintenance is to create a system that can deliver accurate probability 

predictions. An automated system, for example, can control a company's entire manufacturing unit. 

The system can forecast when a component will break and place an order for it in advance, allowing 

the maintenance staff to replace it on time and maintain the unit's overall efficiency. This results in a 

cost-effective and productive output. In terms of IIOT, transportation is the second largest market. 

Transportation and logistics companies are looking forward to the value chain system being improved 

with the IIOT-based technical communication and monitoring system. These technologies, according 

to IIOT experts, will considerably improve quality control, sustainability, and green practices, as well 

as supply chain management and efficiency. Overall, the IIOT is causing a significant shift in the 

automation business around the world. 

The most important part of system design and maintenance is problem detection of machinery and 

real-time monitoring of the production process, as modern industrial production demands more and 

more stability and efficiency. (Liu et al., 2020) proposed a hierarchical structure in which edge-PLCs 

are used to capture sensed data locally and reduce communication costs. A typical edge-PLC enabled 

IIoT reference architecture, as shown in figure 21, divides applications and systems into three layers. 

The edge layer, which comprises edge-PLCs that conduct control logic and collect data from sensors 

or actuators for factory-level production equipment, is at the bottom of the stack. The platform layer 

is responsible for preparing, transforming, and analyzing data received from the lower edge layer, as 

well as transferring specialized information to the upper layer. The cloud layer is at the top of the stack, 

and it's in charge of data processing and sending commands to the platform and edge layers. The most 

crucial part of system design and maintenance is problem detection of machinery and real-time 

monitoring of the production process, as modern industrial production demands more and more 

stability and efficiency. Because a single defect might be caused by numerous influencing features, 
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they wanted to reduce the number of features required to determine a fault, then find the smallest 

number of edge-PLCs that can cover all key features while minimizing deployment costs.  

 

Figure 21: System architecture of the edge-PLC-enabled IIoT (Liu et al., 2020) 

(Morabito, 2017) conducted a thorough performance analysis to determine the viability of running 

virtualized instances on a variety of low-power nodes, such as single board computer (SBC)s. The 

rising use of such devices in various Edge-IoT scenarios is the driving force behind this research. When 

compared to native executions, using container-virtualization methods on SBCs has a virtually small 

performance impact. This finding is true even when multiple virtualized instances are running at the 

same time. The SBCs' energy efficiency was demonstrated by considering the tradeoff between 

performance and power consumption (energy efficiency) under a variety of workloads. 

According to (Siqueira and Davis, 2022), low latency, location awareness, geographical distribution, 

mobility support, performance consistency, and improved reliability are all advantages of fog 

computing. Edge devices, despite having fewer computational capacity than fog devices, can perform 

complicated real-time activities like equipment management, process monitoring, and alarm activation 

that would be impossible on the cloud due to non-deterministic performance and excessive network 

latency. Containerisation software provides a number of advantages, including streamlined 

deployment procedures, increased device monitoring, automatic failure recovery, and greater security 
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and resilience, to name a few. Although this technology has matured to the point that it is widely used 

on high-end servers such as those found in cloud infrastructures, there is minimal support for 

containerization on embedded devices found on edge platforms.  

PLCs have become increasingly important in industrial control systems (ICSs) as the Industrial Internet 

of Things (IIoT) has advanced, allowing local data processing, decentralized control, and fault 

detection. These so-called edge-PLCs receive raw data from sensors installed in production equipment. 

Allocating blocks in a fixed-size memory to distinct sensors in order to meet irregular data flows and 

maximize system performance is a difficulty. To do this, (Peng, Liu and Fu, 2020) suggested 

partitioning the memory space of an edge-PLC memory into numerous memory allocation instances 

and performing performance analysis by modeling the problem as several independent single server 

queues. 

(Sollfrank et al., 2021) said container-based virtualization enables platform-independent development 

as well as secure and separated applications. Containerization can also be utilized for the creation and 

testing of network architecture nonfunctional requirements. The Docker container is simple to move 

from one location to another after configuring the program in it. This is a useful feature for Edge 

computing, since it allows an application or service to be moved closer to the user with less data 

transfer overhead. Overall, Docker outperforms the VM-based edge computing platform in terms of 

deployment speed, flexibility, and performance. It makes Docker a more appealing technology based 

on virtualization. 

According to (Pérez de Prado et al., 2020) containers contain all of the software required to operate 

them, such as code, system tools, libraries, runtime, and so on, and Docker provides a lightweight and 

stable framework for swiftly generating and executing jobs. Docker's features are built on Docker 

Engine, which is a lightweight containerization architecture that integrates all the software tools for 

setting up and managing Docker containers. In addition, Docker Engine comes with an API that makes 

it simple to create, manage, and delete virtual apps. In IoT/end-user or Fog contexts, lightweight 

container-based virtualization solutions are gaining traction as enablers of more efficient virtualization 

technology. In fact, a single virtualized container instance can run on both Fog and IoT/end user nodes, 

as well as in the cloud. Container-based service provisioning can enhance edge-fog-IIoT networks by 

allowing applications to run on a variety of devices regardless of the underlying hardware. As a result, 

containers are becoming a critical component of the enabling technologies for edge-fog-IIoT network 

integration and interoperability. However, improved solutions that simplify and improve container 

management are required in order to leverage the potential of the various devices. 
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According to (Pitstick and Ratzlaff, 2022), containers have the advantage of being isolated and 

portable execution units, allowing developers to construct and test them on one platform and then 

migrate them to another. Because of their size, weight, and power limits, edge devices aren't always 

the greatest choice for development and testing. One possible continuous integration/continuous 

delivery (CI/CD) strategy is to develop and test containers on the cloud or on powerful servers, then 

deploy their images to the edge. The number of computers is expanded, and work is coordinated 

between them, to achieve the same capability as is available on servers with edge devices. Maintaining 

a consistent environment gets increasingly difficult and time-consuming as the number of devices 

grows. Containerization enables deployment from a single file that can be readily shared among 

devices. 

5.2.3 Security 

Although enterprises have complete solutions for edge computing application scenarios such as 

intelligent security, industrial Internet of things, and intelligent connected vehicles, there are still some 

major issues that impact the adoption of edge computing, one of which is edge computing security. 

(Zeyu et al., 2020) conducted a survey on the security issues related to edge computing and the result 

was categorised into five areas like access control, key management, privacy protection, attack 

mitigation, and anomaly detection, by analyzing the security challenges of edge computing in the 

context of new models, new application scenarios, and new technology environments. The 

programmability of edge devices is a difficulty, according to (Shi et al., 2016). There is now a 

significant gap in flexibility between the programmability of cloud services and the programmability 

of  edge devices, which must be bridged. Security and privacy, data abstraction, service administration, 

and optimization issues are among the other issues highlighted.  

(Li et al., 2017) takes a different approach, focusing on network openness, multi-service operations 

and new business models, robustness and resilience, and security and privacy as important edge 

computing concerns. Edge nodes are scattered throughout the network. They have limited resources, 

a complex environment, and a heterogeneous network, making it impossible to completely implement 

many traditional security techniques. As a result, attackers can easily access edge nodes. Edge nodes 

will have a greater understanding of the environment than cloud servers and will be able to access 

more sensitive information about users because they will be directly connected to a range of IoT and 

wearable devices. Edge computing security is critical and difficult because to the susceptibility and 

complexity of the edge node itself, as well as the sensitivity of the data it can access. Edge computing 

is limited by the comparatively low processing capacity of edge nodes, the highly complicated edge 
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network environment, and the extremely high mobility of terminal devices in the edge environment, 

all of which prevent it from providing complete security services on its own. 

(Zhang et al., 2021) proposed a virtualization-based architecture to increase edge computing security. 

To virtualize the edge network, an edge node partition approach is presented first. Second, a security 

mechanism is proposed to assess the security of edge nodes. Finally, a data transmission mapping 

algorithm is modelled. The results demonstrated the efficiency of the suggested architecture in 

maintaining edge security. In a nutshell, edge computing security and privacy are crucial elements that 

must be established in a vital manner to enable security against malicious and harmful nodes/attacks 

that risk fog system functionality and data and end-user privacy. 

According to (Boyes et al., 2018), to avoid harm and minimize threat to employees, assets, and the 

environment, industrial systems should prioritize safety and security. Safety and security are 

increasingly linked in the industry, with connection bringing both opportunity and risk, and bad 

security being a hazard to safety. International functional safety standards acknowledge this. The use 

of security concepts in traditional IACS systems is based on international standards. By enabling new 

connectivity from systems to enterprise or cloud-based systems, the IIoT undermines these established 

norms, raising the risk of safety and security breaches. There are currently no consistent techniques to 

assessing the combined safety and security risks associated with the deployment of IIoT technologies. 

(Sisinni et al., 2018) has conducted a comprehensive overview of IIoT, focusing on the architecture 

design and explaining the protocol ecosystem that is emerging from standardization activities. Aside 

from the QoS requirements that characterize industrial communications, the high sensitivity of the 

controlled information poses security concerns that have yet to be addressed. In addition, most IIoT 

applications must work with limited resources and operate for long periods of time to ensure 

availability and reliability. (Aazam, Zeadally and Harras, 2018) said in the IIoT ecosystem, 

interoperability features may enhance security and privacy vulnerabilities, resulting in not only attacks 

but also information misuse. Because multiple systems will be merging their resources in an 

interoperable IIoT scenario, the data, information, and commands are more likely to be tampered with. 

(Karmakar et al., 2019) suggested all industrial systems must be extremely concerned about the safety 

and security of IIoT devices to protect assets and workers. (Gebremichael et al., 2020) provided a 

comprehensive overview of security and privacy in the IIoT in relation to recommendations from well-

known standardization bodies, so that researchers and practitioners could easily see where various 

security protocols at various layers fit into the larger picture. A thorough examination of numerous 
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security methods and solutions has been offered, with a focus on identifying security flaws and 

vulnerabilities. 

According to (Pitstick and Ratzlaff, 2022), containerization has certain security advantages, but it also 

has some security drawbacks and issues. Containers all run on the same kernel, thus a rogue process 

in one may create a kernel panic and bring the host machine down. Furthermore, because users are not 

namespaced, if a running application leaves the container, it will inherit the same privileges on the host 

machine. For ease of use or convenience, many containers are constructed with the "root" user, 

although this design might lead to extra risks. Containers rely on the container runtime engine (e.g., 

Docker runtime), which might become a single point of failure if it is hacked. Since there are more 

attack vectors available in many edge contexts, securing applications running on edge devices is 

critical. Containers provide an additional degree of isolation from the host operating system that can 

improve security. Developers can determine which files and ports are shared with the host and other 

containers.  
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6 Sustainability 

The focus of the research has been more related to the structural similarities and differences between 

the technologies, and not directly about sustainability. Sustainability offers  a different point of 

comparison. This has not been a key part of the study area, but a quick check on the databases has been 

done. Sustainable industrial development is included in sustainable development goal 9, about 

industry, innovation, and infrastructure, which is part of the 2030 Agenda for Sustainable Development 

(UN, 2022), which has two goals: one is to promote inclusive and sustainable industrialization, and 

the other is to upgrade all industries for sustainability. Economic growth, social equity, and 

environmental conservation are the three essential pillars of sustainability.  

On the one hand, rising resource demand and an increasing number of users have presented new 

problems to contemporary Infrastructure as a Service (IaaS) cloud datacenters, such as client Quality-

of-Service (QoS) and infrastructure scalability. Datacenters, on the other hand, have high energy 

demands and are predicted to consume more than 2.4 percent of global electricity, with a global 

economic effect of $30 billion (Cuadrado-Cordero, Orgerie and Menaud, 2017). Several studies have 

recently examined the performance of containers and virtual machines (VMs) as virtualization 

technologies from various angles. All of these studies are focused on the performance of a set number 

of services that run on both platforms. (Cuadrado-Cordero, Orgerie and Menaud, 2017) did a 

comparative study based on the number of services that can operate on the same server while 

maintaining a particular Quality-of-Service (QoS) and Energy Efficiency (EE) utilizing various 

virtualization technologies. The performance of VM (KVM)s versus containers (Docker) were 

examined. The results shows that in both QoS and EE, Docker surpasses KVM. When using a 

maximum latency of 3,000 milliseconds, Docker allows to operate up to 21% more services than 

KVM. Docker provides this service while using 11.33 percent less energy than KVM. At the datacenter 

level, the same computation may be performed with fewer servers and less energy per server, resulting 

in a total energy reduction of 28%.  

For service consolidation and power/energy savings, today's cloud data centers are fully virtualized. 

Although virtualization has the potential to lower real-time and total energy usage, the energy 

characteristics of hypervisors supporting various workloads have yet to be properly evaluated or 

understood. (Jiang et al., 2019) investigated the power and energy characteristics of four mainstream 

hypervisors and a container engine, namely VMware ESXi, Microsoft Hyper-V, KVM, XenServer, 

and Docker, on six different platforms (three mainstream 2U rack servers, one emerging ARM64 
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server, one desktop server, and one laptop) with power measurements taken over extended periods. 

They investigated the power and energy characteristics of several hypervisors by simulating actual 

multi-tenant cloud infrastructures using computation-intensive, memory-intensive, and mixed web 

server-database workloads. Extensive testing with four workload levels (very low, light, fair, and very 

heavy) revealed that the hypervisors have varying power and energy characteristics. The following are 

the results of investigation. (1) Hypervisors consume various amounts of power and energy when 

running the same task on the same hardware. (2) Despite the fact that mainstream hypervisors have 

varied energy efficiency associated with different task kinds and workload levels, no single hypervisor 

surpasses the others in terms of power or energy usage across all platforms. (3) Although container 

virtualization is considered lightweight virtualization in terms of setup and maintenance, it is not 

significantly more energy efficient than traditional virtualization technologies. (4) Despite its low 

power consumption, the ARM64 server completes calculation jobs with a long execution time and 

excessive energy consumption. Furthermore, for mixed workloads, ARM64 servers have a medium 

energy usage per database operation. The findings given in this research can help system designers 

and data center operators put workloads that are power-aware and schedule virtual machines more 

efficiently. 

Energy and performance data must be obtained to offer a meaningful assessment of the application 

behavior under different system configurations, which is not adequately handled in present 

technologies, in order to drive software operation toward energy savings. (Silva-de-Souza et al., 2020)  

proposed containergy, which is a novel performance evaluation and profiling tool that employs 

software containers to do application run-time assessment and provide energy and performance 

profiling statistics with minimal overhead (below 2 %). It focuses on energy efficiency for workloads 

of the future. Experiments with new workloads including video transcoding and machine-learning 

picture categorization are discussed. The findings of the profile are evaluated in terms of performance 

and energy savings from a QoS standpoint. A 300 percent increase in energy usage is identified for the 

same task and QoS criteria on video transcoding workloads due to incorrect configuration space 

choices (worst/best settings). This demonstrates how inefficient software can become, especially in 

terms of energy consumption. The choice of machine-learning technique and model has a considerable 

impact on energy efficiency, according to the ML image classification case study. 

The enormous number of interactions and data transmissions among multiple layers in the IoT-edge-

cloud ecosystem might put a strain on the underlying network infrastructure. As a result, software-

defined edge computing has emerged as a feasible alternative for latency-sensitive workloads. 
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Furthermore, in resource-constrained edge systems, energy consumption has been identified as a 

critical concern. Existing methods for handling IoT workloads with an optimal trade-off between 

energy efficiency and latency are not fully compatible in the software-defined edge environment. As 

a result, (Singh, Aujla and Bali, 2021) presented a lightweight and energy-efficient container-as-a-

service (CaaS) strategy for provisioning workloads created by latency-sensitive IoT applications based 

on software-define edge computing. Additionally, an energy-efficient ensemble for container 

allocation, consolidation, and migration is designed for load balancing. The proposed energy-efficient 

resource allocation and optimization technique is supported by the experimental results. The outcomes 

are computed as CPU serve time, network serve time, overall delay, and energy consumption. The 

collected findings showed that the proposed is superior to the current variations. 
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7 Conclusion, Limitations and Future Work 

The results will be summarized and discussed in this section. Also limitations and possible future 

research will be highlighted. 

7.1 Conclusion 

Based on the research and analysis, the four main focus areas of these technologies were deployment, 

run time, performance and security. Many performance comparisons between virtual machines and 

containers, particularly Docker containers, have been documented in the literature. The research 

findings has showed that the advantages of  Docker over function blocks and virtual machines has 

claimed to be superior in the majority of comparisons. Containerization has grown in popularity 

because of the benefits given by container technologies, such as performance, isolation, scalability, 

portability, dependence, fault-tolerance, and load balancing. Containers offer improvements over VMs 

in terms of throughput, power consumption, latency, execution time, CPU utilization, and memory 

usage.  

In recent years, application containerization has become increasingly popular. Containers make it 

easier to run control software in parallel on devices like PLCs and, to a lesser extent, sensing and 

actuating field devices. Containers are being utilized by businesses to modernize legacy apps, optimize 

infrastructure, and accelerate the release of new products. Containers improve application development 

by enabling faster and more consistent release cycles. As a consequence, the application is packed, 

tested, and deployed into production in a container. Because the application is currently being 

evaluated in a runtime environment, there is no need for additional testing. The benefits of being able 

to track, rollback, and examine changes are well known, and it is a popular and widely used feature in 

software development. Docker expands on this concept by allowing to run the entire program, 

including all of its dependencies, in a single environment. Docker also has a lot of benefits for 

developers, and it can be expected that it will continue to grow in popularity in the digital industries.  

Today, edge, fog, and IIoT networks are quickly adopting container-based lightweight virtualization 

solutions. Major cloud service providers such as Microsoft Azure, Amazon Web Services, and Google 

Compute Platform are prioritizing the supply of computing infrastructures, applications, and services 

via containers. Containers are regarded as the first realistic virtualization technology for Fog-IoT 

networks, due to the limited CPU resources required for deployment compared to other virtualization 

technologies available today. However, their continued expansion in edge, fog, and IIoT networks is 



  

           59    

dependent on a number of pre-requisite factors, including the development of more efficient container 

schedulers.  

Containers only live as long as the processes run inside them. The container stops and exits when its 

task (or process) stops, fails, or crashes. The fact that containers cannot run other operating systems 

natively may appear to be a drawback, but it is not, because that is not the purpose of containers. 

Containerisation seperates different parts of the OS, sharing the kernel services while allowing libraries 

to be varied. Despite all these above said benefits, Docker is unlikely to ever completely replace the 

need of virtual machines. Two most obvious concerns connected to the performance cost and stability 

of employing container technology is still evolving. Security and real time execution is also a 

highlighted concern in the research area. Many solutions were suggested but none of them completely 

eliminate the said issues. Since the benefits of using containers are considered to be more than virtual 

machines, containers are definitely a basis for future automation industries. 

Virtualization and cloud technologies are often seen as promising solutions to many of the problems 

that future automation systems will face. They can be used at all levels of an industrial automation 

system, but because to the connection delay and execution jitter created by virtualization, time-critical 

control tasks performed by PLCs and field devices are particularly challenging. To take advantage of 

virtualization technology for PLCs is to incorporate it into the software that runs on the field-based 

embedded device. The main barrier to using virtualization in PLCs and other controllers is ensuring 

timeliness with current virtualization technologies. Because hypervisor-based virtualization has a 

limited granularity for encapsulating functionality, legacy functionality is still integrated at the 

application level rather than employing virtualization approaches.  

Docker outperforms the VM-based edge computing platform in terms of deployment speed, flexibility, 

and performance. It makes Docker a more appealing technology than edge computing technologies 

based on virtualization. Control software handles the complex task of controlling the behavior of 

manufacturing equipment. Edge devices, despite having fewer computational capacity than fog 

devices, can perform complicated real-time activities like equipment management, process 

monitoring, and alarm activation that would be impossible on the cloud due to non-deterministic 

performance and excessive network latency. Containers are becoming a critical component of the 

enabling technologies for edge-fog-IIoT network integration and interoperability. Cloud-based 

services and edge computing are becoming more prevalent in industrial automation. As a result, 

computer technologies are increasingly infiltrating industrial settings. Industrial automation is subject 

to domain-specific constraints such as time sensitivity, safety and security. Manufacturing 
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organizations are attempting to construct distributed and intelligent industrial automation systems to 

meet new requirements by combining emerging technologies in the Industry 4.0 era in order to remain 

competitive in the global market.  

The sustainability study showed that, assuming a minimum acceptable QoS, it is possible to deploy a 

greater number of virtualized environments using containers than VMs for a given application. The 

potential energy savings of employing containers are increased in this way, because fewer servers are 

required to run the same services. Docker containers can save money for enterprises by reducing 

development time and being more lean and resource-efficient than running virtual machines all of the 

time. This research adds to the current literature by comparing the performance of both technologies 

in a consolidated environment with varying amounts of services and establishing a link between QoS 

and EE. IIOT incorporates machine learning and big data technology, as well as PLC to improve 

automation technology through self-diagnosis and rectification capabilities. These technologies, 

according to IIOT experts, will considerably improve quality control, sustainability, and green 

practices, as well as supply chain management and efficiency. 

7.2 Limitations 

Some of the limitations of this study can be addressed by expanding it. First, the databases chosen may 

be one of the article's limitations, as there may be articles outside of these databases that are relevant 

to the study's scope, and the study's findings are confined to a small number of publications. Since 

there is a time limit because the data was collected on a specific date, and new writers or articles is not 

included in the chosen portfolio of publications. The author's perspective in developing this research, 

including the decision on articles, the concept identified and even the observations, is limited. 

Furthermore, because the focus was on conference papers and academic journals published in English, 

articles published in other languages were eliminated. Finally, since the publications are identified 

using keywords, it is possible that articles that match the research's focus were missed because they 

lacked the appropriate keywords in their titles or abstracts. Majority of the chosen papers talked about 

the difference between containers and virtual machines, which wasn’t the focus area. Only few papers 

mentioned about the correspondence between IEC 61499 and Docker, which is a drawback in the 

research area. Also with regards to edge computing and IIoT, correspondence of containers with these 

technologies were discussed, but few of them specifically mentioned about Docker. As a result, further 

research could look at different keywords to supplement the conclusions of this paper. 
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7.3 Future works 

In future research, current limitations mentioned above needs to be overlooked. More number of 

articles with different keywords may yield a different result. The study showed that container 

outperforms VMs and function blocks in the area of deployment, runtime and performance, but two 

most obvious concerns connected to the performance cost and stability of employing container 

technology must be overlooked in future. The recent trend toward virtualization might be able to close 

the gap between massively distributed CPS and real-time systems. This is due to the fact that platform 

independence, scalability, and deployment are supported by virtualization. The time constraints of 

containerization for real-time applications, which distinguish between on-node time and network 

propagation delay, including outlier detection, are not, however, addressed in any research, which is 

something to be looked in the future study to determine whether new technologies are suitable for real-

time industrial automation operations. Concerns regarding security was also highlighted in the study, 

how the said security issues is addressed, what are the measures taken to reduce the risk of security 

breaches, is also needs to be investigated further. 

The latest PLC technology aids in the monitoring and control of multi-user/distributed server systems. 

It gives a complete and accurate view of operations, satisfying the needs of a variety of stakeholders 

such as maintenance, engineering, operations, and production IT. These technologies allow to take use 

of visualization, mobility, and other emerging technologies, addressing a variety of process difficulties, 

discrete applications, and providing essential visibility when needed. For many businesses, new 

industrial automation technology is the key to their success. The worldwide automation industry has 

been progressing and improving functionality. The threat of security breaches has increased interest in 

open-source software that is maintained by a vibrant community eager to fix errors. The available 

research on virtualization for PLCs, on the other hand, is primarily focused on hypervisor-based 

virtualization solutions. It would be interesting to study the use of two virtualizations while running 

Docker on top of VMs as a future work. The focus of the discussion could be how additional 

virtualization layers affect overall system performance, resource utilization, and network status. 

Because this virtualization method is not available in a comprehensive solution, combining these two 

virtualizations may yield better results. 

Superior energy efficiency, better design and operator visualization, and safety standards are heading 

the automation industry towards a future of unparalleled productivity. The sustainability study showed 

that although container virtualization is considered lightweight virtualization in terms of setup and 
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maintenance, it is not significantly more energy efficient than traditional virtualization technologies. 

The real-time energy audit that can't be produced by conventional energy monitoring systems is the 

ultimate objective of the smart factory. Many of the fundamental problems that prevent a factory from 

making significant energy conservation efforts can be resolved by IoT-enabled energy monitoring. 

That not only results in cost savings, but also prepares the ground for real Industry 4.0 adoption. IoT 

is something that needs to take a closer look in future studies in terms of energy efficiency in 

automation industries. 

Most future PLCs will be virtualized software functions that run on a server, either on-premise or in 

the cloud, as part of a complete, primarily software-based solution, rather than a piece of ruggedized 

hardware. Beyond academic research, future IEC 61499 implementation will require industry testbeds 

for evaluating its capabilities, design patterns and type libraries for efficient application development, 

and simple design guidelines and tools in industrial practices. The entire IEC 61499 community, 

including researchers and professionals, must work significantly harder in the Industry 4.0 age to 

promote and deploy the standard and associated ecosystems for distributed intelligent automation of 

industrial CPS. The integration of control and automation applications with real-time operating 

systems is not explicitly described by IEC 61499, how does the IEC 61499 standard handle real-time 

operating systems is to be studied in future.  

The key to achieving IEC 61499-based distributed intelligent industrial automation in the Industry 4.0 

era will be integration of distributed intelligence, cloud computing, and autonomic computing 

frameworks with service oriented architecture (SOA) into the design modeling of industrial CPS. 

Integration of artificial intelligence (AI) with IEC 61499-based systems for automation and control 

and are containers better or worse than IEC61499 for AI deployment in a factory, could be a future 

research topic. For example, applying AI frameworks and methodologies into systems design 

modeling and advanced data analytics to enable learning capabilities and intelligent behaviors of next 

generation automation and control systems. 

While container technologies are becoming more widely used, the community still has many doubts 

about them. Further study into best practices, basic features, standards, and tools is required to solve 

the inadequacies of present container-based platforms and solutions. Recent studies showed that 

container technology will not be the end of the scientific community's efforts. New technologies are 

already on the horizon; microvms in the form of unikernels, which resemble enhanced containers but 

offer superior security and performance, are rapidly merging. Unikernels provide superior separation 

and run on a basic operating system that is specifically customized to the application. Compared to 
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container-based infrastructure, unikernels are quicker, safer, and more cost-effective. What would be 

needed of these, not to be better than VM, or better than Container, but better than PLC, and how might 

we test for that, these are some of the aspects which needs to be looked upon. Future study in this topic 

will be heavily influenced by the field's promising surroundings.  
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9 Appendix 

Appendix A: Article Categories 

Concept Article Number 

Deployment 
1,2,4,6,7,11,12,14,18,20,24,25,26,27,28,29,30, 

31,32,33,36,38,42,43,53 

Run Time 2,4,7,8,9,10,11,13,17,18,20,23,29,32,38,39,41,43,45,46,49 

Performance 1,2,3,4,6,7,11,13,16,28,29,30,31,40,42,43,51,52,55 

Security 8,10,16,25,34,36,37,39,43,44,47,49,50 

Flexibility 1,2,12,13,15,16,17,18,26,41,48 

Scalability 1,2,10,18,20,24,31,33,40 

Portability 9,14,19,27,31 

Efficiency 9,14,16,23,36,41 

 reconfigurable 5,14,18,27,33 

challenges 8,16,22,27 

 opportunities 8,16,22 

 interoperability 14,16,27 

Reusability 5,9 

Utilisation 1,2 

 data sharing and collaboration 8,41 

intelligent automation 21,27 

 reduce network latency 26,43 

distribute 28,41 

better reliability 8,24 

Stability 7 

Accessability 6 

 few computational resource 4 

 improves user experience 11 

 redundancy 14 

 adaptability 15 

 robutness 15 

 improve software quality 15 

 less resource consuming  17 
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automatic migration 17 

low development times 19 

 reduce maintanance effort 19 

 decrease complexity 19 

 agility 21 

 low operational cost 26 

 transformation methods 27 

 compilation 28 

availability 33 

optimization 35 

 defects 35 

computing support 46 

compatibility 48 

low overhead 52 

evolution 54 

 quality of service 55 

Appendix B: Article Categories Refined 

Concept Article Number 
No. of 

Articles 
Deployment (design, innovation, 
Implementation,development, availabilty, 
utilisation, distributed, control, latency, 
reusability, portability,configurable, scalable, 
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1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,22,24,25,26,27,28,29,30,31,32

,33,36,38,40,41,42,43,48,53 38 

Run Time (compilation, Execution, Migration, 
virtualisation) 
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Performance (Effectiveness, Intelligence, 
Reliable, Efficiency, Redundancy, collaboration, 
user experience, quality, agility,interoperability) 

1,2,3,4,6,7,8,9,11,13,14,15,16,21,23,27,
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Security (Privacy, secure, vulnerable, malware, 
attack, accessible, challenges) 
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