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“Nothing has such power to broaden the mind as the ability to investigate systemati-
cally and truly all that comes under thy observation in life.”

– Marcus Aurelius
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ABSTRACT

The rapid advances in information and communication technology enable a shift from
diverse systems empoweredmainly by either hardware or software to cyber-physical sys-
tems (CPSs) that drive critical infrastructures (CIs), such as energy and manufacturing
systems. However, alongside the expected enhancements in efficiency and reliability,
the induced connectivity exposes these CIs to cyberattacks such as the Stuxnet andWan-
naCry ransomware cyber incidents. Therefore, the need to improve cybersecurity ex-
pectations of CIs through vulnerability assessments cannot be overstated. Yet, CI cyber-
security has intrinsic challenges due to the convergence of information technology (IT)
and operational technology (OT) as well as the cross-layer dependencies inherent to CPS
based CIs. Different IT and OT security terminologies also lead to ambiguities induced
by knowledge gaps in CI cybersecurity. Moreover, current vulnerability-assessment pro-
cesses inCIs aremostly subjective andhuman-centered. The imprecise nature ofmanual
vulnerability assessment operations and the massive volume of data cause an unbear-
able burden for security analysts. Latest advances in cybersecurity solutions based on
machine-learning promise to shift such burden to digital alternatives. Nevertheless, the
heterogeneity, diversity and information gaps in existing vulnerability data repositories
hamper accurate assessments anticipated by these ML-based approaches. To address
these issues, this thesis presents a comprehensive approach that unleashes the power of
ML advances while still involving human operators in assessing cybersecurity vulnera-
bilities within deployed CI networks.

Specifically, this thesis proposes data-driven cybersecurity indicators to bridge vulnera-
bility management gaps induced by ad-hoc and subjective auditing processes as well as
to increase the level of automation in vulnerability analysis. The proposed methodology
follows design science research principles to support the development and validation of
scientifically-sound artifacts. More specifically, the proposed data-driven cybersecurity
architecture orchestrates a range of modules that include: (i) a vulnerability data model
that captures a variety of publicly accessible cybersecurity-related data sources; (ii) an
ensemble-based ML pipeline method that self-adjusts to the best learning models for
given cybersecurity tasks; and (iii) a knowledge taxonomy and its instantiated power
grid and manufacturing models that capture CI common semantics of cyber-physical
functional dependencies across CI networks in critical societal domains.

This research contributes data-driven vulnerability analysis approaches that bridge the
knowledge gaps among different security functions, such as vulnerability management
through related reports analysis. This thesis also correlates vulnerability analysis find-
ings to coordinate mitigation responses in complex CIs. More specifically, the vulner-
ability data model expands the vulnerability knowledge scope and curates meaningful
contexts for vulnerability analysis processes. The proposedMLmethods fill information
gaps in vulnerability repositories using curated data while further streamlining vulner-
ability assessment processes. Moreover, the CI security taxonomy provides disciplined
and coherent support to specify and group semantically-related components and coor-
dination mechanisms to harness the notorious complexity of CI networks such as those
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prevalent in power grids and manufacturing infrastructures. These approaches learn
through interactive processes to proactively detect and analyze vulnerabilities while fa-
cilitating actionable insights for security actors to make informed decisions.

keywords: critical infrastructure cybersecurity, vulnerability assessment, vulnerability
quantification, computational intelligence in cybersecurity, cyber-physical system
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SAMMANFATTNING

De snabba framstegen inom informations- och kommunikationsteknologi möjliggör ett
skifte från olika separata system, huvudsakligen drivna av antingen hård- eller mjuk-
vara, till stora cyberfysiska system (CPS) somdriver kritiska infrastrukturer såsomenergi-
och tillverkningssystem. Men vid sidan av förväntade förbättringar, i form av ökad ef-
fektivitet och tillförlitlighet, så ökas även exponeringen för cyberattacker som en följd
av den ökade uppkopplingen. Cyberincidenter som t ex Stuxnet och WannaCry ran-
somware illustrerar detta. Behovet av att förbättra cybersäkerheten hos kritiska infras-
trukturer, genom analys och bedömning av deras sårbarheter, kan därför inte överskat-
tas. Cybersäkerhet hos kritiska infrastrukturer har dock inneboende utmaningar, dels
på grund av att informationsteknologi (IT) och operativ teknologi (OT) konvergerar, och
dels på grund av beroenden mellan olika lager hos systemet. Olika terminologi för säk-
erhet inom IT och OT bidrar också till otydlighet och kunskapsgap när det gäller cyber-
säkerhet hos kritiska infrastrukturer. Nuvarande processer för att utföra sårbarhets-
bedömningar i den här typen av system är dessutom mestadels subjektiva och män-
niskocentrerade. Den oprecisa karaktären hos manuella sårbarhetsbedömningar och
den enormamängden data att analysera lägger en omöjlig börda på säkerhetsanalytiker.
De senaste framstegen inommaskininlärning (ML) förML-baserade cybersäkerhetslös-
ningar är lovande och kan komma att flytta den stora bördan till digitala lösningar. Ut-
maningar i form av heterogenitet, diversitet och otillräcklig information i de datalager
med tillgänglig information om sårbarheter sätter dock upp hinder för att göra de ko-
rrekta bedömningar som förväntas av ML-baserade tillvägagångssätt. Därför presen-
teras i denna avhandling ett heltäckande tillvägagångssätt för att utnyttja de framsteg
som gjorts inom ML samtidigt som mänskliga operatörer involveras i bedömningen av
cybersäkerhetssårbarheter inom nätverk för distribuerade kritiska infrastrukturer.

Avhandlingen presenterar datadrivna indikatorer för cybersäkerhet. Syftet är dels att
överbrygga de luckor i sårbarhetshanteringen som kommer av ad-hoc och subjektiva
processer, och dels att öka automatiseringen av sårbarhetsanalys. Metodiken i arbetet
följer design science principerna för utveckling och validering av vetenskapligt sunda
artefakter. Mer specifikt innehåller den datadrivna cybersäkerhetsarkitektur som föres-
lås här en radmoduler som inkluderar: (i) en datamodell över sårbarheter som täcker in
en mängd olika och allmänt tillgängliga cybersäkerhetsrelaterade datakällor; (ii) en en-
semblebaserad ML-pipelinemetod som anpassar sig till de bästa inlärningsmodellerna
för givna cybersäkerhetsuppgifter; och (iii) en taxonomi, med instansierade modeller
för kraftnät och för tillverkning, vilken fångar kritiska infrastrukturers gemensamma
semantik för cyberfysiska funktionella beroenden inom nätverk hos kritiska samhälls-
funktioner.

Forskningen bidrar med datadrivna metoder för sårbarhetsanalys. Metoderna över-
bryggar kunskapsklyftor mellan olika funktioner för säkerhet, såsom sårbarhetshanter-
ing, genom analys av relaterade rapporter. Avhandlingen korrelerar också resultat inom
sårbarhetsanalys för att koordinera åtgärder som syftar till att begränsa sårbarheten hos
komplex, kritisk infrastruktur. Mer specifikt utökar sårbarhetsdatamodellen kunskapen
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om sårbarheterna och skapar meningsfulla sammanhang för processer för sårbarhets-
analys. De föreslagna ML-metoderna fyller igen luckor i information om sårbarheter
med hjälp av kurerad data samtidigt som processerna för sårbarhetsbedömning effek-
tiviseras ytterligare. Dessutom ger taxonomin för säkerhet inom kritiska infrastrukturer
ett klart och sammanhängande stöd för att specificera och gruppera semantiskt relater-
ade komponenter och mekanismer i syfte att hantera komplexiteten hos kritiska infras-
trukturers nätverk såsom de som är vanliga i kraftnät och tillverkningsinfrastruktur.
Metoderna lär sig, genom interaktiva processer, att proaktivt upptäcka och analysera
sårbarheter samtidigt som de underlättar för säkerhetsaktörer att agera på informatio-
nen och fatta välgrundade beslut.
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CHAPTER 1

INTRODUCTION

This chapter starts by providing a motivation for this thesis and describes the problem
being addressed. Subsequently, the aims and research questions of this research are de-
rived. Next, themain claim driving the thesis investigation is revealed, which is followed
by a set of related original contributions. Finally, the outline of this thesis is presented,
along with a summary of each chapter content.

1.1 CRITICAL INFRASTRUCTURE CYBERSECURITY

Critical infrastructures (CIs), such as energy distribution, manufacturing systems, and
transportation roadways, normally combine Information Technology (IT) and Opera-
tional Technology (OT) systems (Cardenas et al., 2009). According to the Critical In-
frastructure Sectors (2022) defined by the United States Cybersecurity & Infrastructure
Security Agency (CISA) and the European Program for Critical Infrastructure Protection
(Lindström and Olsson, 2009) (Krassnig, 2011), these CIs are essential for maintaining
society. For example, the critical manufacturing sector generates products necessary to
the other sectors such as electrical grids.

Meanwhile, the rapid advances in information and communication technology (ICT) en-
able seamless integration of software andhardware. This integration enables a shift from
diverse systems empowered mainly by either hardware or software to systems empow-
ered by cyber-physical systems (CPSs) driving emergent systems including Industry 4.0
evolution (Lee, Bagheri, and Kao, 2015) (Xu et al., 2018a). CIs use complex CPSs that
link a plethora of physical components frommany different vendors to the software sys-
tems that control them, in particular, OT systems such as the supervisory control and
data acquisition (SCADA) systems. These technological advances have led to the dig-
itization of physical objects and their cyberspace connectivity, to alleviate challenging
ultra-dependable critical system services involved inmission-critical applications (Khai-
tan and McCalley, 2015), including energy, manufacturing, transportation, healthcare,
environmental control, and smart cities (Cardenas et al., 2009). These CIs normally
have stringent requirements in terms of timing, reliability and operational resilience
(Bordel et al., 2017).

However, the above trendof IT andOTconvergence exposes relatively isolatedOTequip-
ment to the risks common in IT security protection. Alongside the expected enhance-
ment in efficiency and reliability, the induced connectivity prompted by ICT and its ap-
plication in SCADA systems expose these CIs to cyber-attacks where conventional secu-
rity approaches are limited by the scale of the CIs (He and Yan, 2016). Somewell-known
attacks demonstrate these threats to CIs, specifically targeting industrial control sys-
tems (ICSs) (Cárdenas et al., 2011), like the Stuxnet worm (Falliere, Murchu, and Chien,
2011) and the ”WannaCry” ransomware (Mohurle and Patil, 2017). Stuxnet was first en-
countered in 2009 and did not raise wide discussions until 2010. It is the first sophisti-
cated cyber threat targeting ICSs. In 2017, the ”WannaCry” ransomware attack occurred
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across several manufacturing plants and caused production to stop, incurring substan-
tial business losses. The Ukraine power grid attack in 2015 (Beach-Westmoreland, Sty-
czynski, and Stables, 2016) is another known attack against the power grid system. Liska
(2019) summarizes somemore recent large-scale ransomware. Furthermore, traditional
IT attack methods such as credential theft and Denial of Service (DoS) are proving to be
just as effective on OT networks (Bhamare et al., 2020). Attackers often start on the
IT network and use IT assets as jump servers to move to more critical OT assets. In
July 2020, the news reported a cyber-attack on control systems at water facilities in
Israel. Several ransomware such as EKANS Ransomware and ICS Operations (2020)
encrypt vital data managed by IT (e.g., data historian) and OT (e.g., human-machine
interface, or HMI). These attacks exploit vulnerabilities such as feature bypass and im-
proper neutralization, which lead to the production to halt in several automotive facto-
ries across Europe, which incurred substantial economical losses (Santangelo, Colacino,
and Marchetti, 2021).

CISA summarizes the 2021 Top Routinely Exploited Vulnerabilities (2022) such as the
Log4Shell and Proxyshell with the corresponding reports disclosed in Common Vul-
nerability Enumeration (CVE) (2022). Log4Shell affected the open-source Apache’s
Java-based Log4j logging library, which is widely used in websites, consumer applica-
tions, enterprise services, and OT products. It is evident in CVE-2021-44228 (2021),
CVE-2021-45046 (2021) and CVE-2021-45105 (2021) and may lead to remote code ex-
ecution or server compromise once successfully exploited. Although identification and
mitigation of affected products using Log4j is vital and challenging, software harboring
the Log4j vulnerability may distribute across the system, making it hard to track all the
vulnerable applications, especially the ones provided by third-party vendors. Proxyshell
refers to a collection of vulnerabilities lying in the client access service ofMicrosoft ex-
change server, such as the privilege elevation vulnerability (seen in CVE-2021-34523
(2021)) .

Cybersecurity deals with preventing such threats by identifying related vulnerabilities.
Chang (2012) states that cybersecurity involves humans who defendmachines and other
humans who use machines for attacking purposes. Therefore, cybersecurity definitions
are variable and can be influenced by the employed discipline. This thesis adopts the
following definition:

“Cybersecurity is the organization and collection of resources, processes, and

structures used to protect cyberspace and cyberspace-enabled systems from

occurrences that misalign de jure from de facto property rights.”

— Craigen, Diakun-Thibault, and Purse (2014)

This thesis uses security and cybersecurity in an interchangeable manner. More specifi-
cally, this research focuses on CI network security, in terms of vulnerability assessment
to prevent the evolution of vulnerabilities into serious threats. This trend is evolving as
a critical and global need to augment existing capabilities of vulnerability assessment
instruments. The goal is to withstand the growing and dynamic threat landscape, and to
support operational-security managers and executive planners in their efforts to triage
the vulnerabilities that present the greatest risks to critical services assurance (Knapp
and Langill, 2014).

Vulnerability can be defined in several ways. This thesis considers the perspectives pro-
vided by:
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“Vulnerability is a weakness of an asset or control that can be exploited by a threat.”

— ISO/IEC27000:2009 Standardization

“Vulnerability is the degree a system is affected by a risk source or agent; or the

degree a system can withstand specific loads; or the risk conditional on the

occurrence of a risk source/agent; or the uncertainty about and severity of the

consequences, given the occurrence of a risk source.”

— Society of Risk Analysis

“The possible occurrences of vulnerabilities in an information system, system

security procedures, internal controls, or implementation that could be exploited or

triggered by a threat source.”

— National Institute of Standards and Technologies (NIST) SP 800-160

Based on these definitions, combining multiple attributes, such as the criticality of vul-
nerable components, the severity of emerging vulnerability instances, as well as the
likelihood of exploiting attacks contribute to the computation of the vulnerability index.
The criticality property is weighed with attributes like the applicable product, version
range, and functionality importance of the vulnerable component. The severity property
is measured using standard scoring frameworks such as Common Vulnerability Scoring
System (CVSS) (2022) or sub CVSS metrics like confidentiality impact. The likelihood
property is estimated with attributes like attack vector, attack complexity, exploit devel-
opment status, and remediation development status.

In a CI system, divergent vulnerabilities emerge intermittently in different software,
hardware, and firmware. Various buildups of software, hardware and firmware induce
vulnerabilities at variant levels of CI structures. Different collections of software prod-
ucts, whether proprietary or commercial,may also have dissimilar vulnerabilities (Kröger
and Zio, 2011). Therefore, the vulnerability index of components is affected by the de-
ployment scenario of that component. However, defensive actions against each attempted
attack and patching all related vulnerabilities with equal attention would be time con-
suming and costly. For example, the cyber-threats looming over a power-grid range
from malware infections by some proof-of-concept (PoC) attacks to reconnaissance at-
tempts by state-funded hacking groups which could result in launching cyber-attacks
with severe consequences (Knapp and Langill, 2014). Therefore, vulnerabilities with
higher exploit probabilities ormore severe consequences need to be prioritized with cor-
responding remediation strategies.

Assessing vulnerabilities is supported bydata analytics-baseddecision-makingprocesses
to protect CIs and to focus on imminent risks rising from threat exploitability with vary-
ing degrees of impact severity. Understanding and measuring vulnerability properties
of such networked structures are challenging, yet vital for cybersecurity purposes. A
concrete model should be based on evidence from multiple sources of data (Välja et al.,
2018). However, the published data is massive with a great level of heterogeneity which
needs to be transformed into a common semantic representation (Rahm and Bernstein,
2001) to facilitate machine-readable processes, in order to improve situation awareness
applications. Hence, an approach to classify vulnerabilities across components enables
an online collection of relevant data to assess vulnerability properties in CIs, as well as
to adopt proper defense mechanisms.

Improving the cybersecurity of CIs for both IT and OT networks is vital. However, OT
security, especially the security of CPS-based field devices, is overlooked by cybersecu-
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rity professionals partially due to the “air-gaped”operation isolation of previous OT de-
vices (Murray, Johnstone, and Valli, 2017). CIs have security challenges different from
those found in traditional IT systems due to CI-network complexity and embedded as-
sets heterogeneity (Giraldo et al., 2017)(Zio, 2016)(Cardenas et al., 2009). Zio (2016)
points out the gap in how CIs address cyber threats: “The problem is that the classical
methods of system vulnerability and risk analysis cannot capture the (structural and
dynamic) complexities of CI; the analysis of these systems cannot be carried out with
classicalmethods of system decomposition and logicmodeling”. Vulnerability-instance
response mechanisms in these complex systems are also faced with challenges bridging
the knowledge gap between cybersecurity techniques, ICT expertise, and socio-technical
management procedures that involve human actors in the production lifecycle.

Next, I state the problem and discuss the related research challenges addressed in this
thesis.

1.2 PROBLEM DESCRIPTION

The notion of risk remains elusive, as evidenced by the increasing investigations on se-
curity operations centers (SOCs) where analysts employ various detection, assessment,
and defensemechanisms tomonitor security events (Sundaramurthy et al., 2015) (Feng,
Wu, andLiu, 2017). Jacobs, Arnab, and Irwin (2013) suggest severalways to build a SOC.
Still, on average SOC can quickly generate several GBs of security events per day, which
can create a significant stress on human responders (Bhatt, Manadhata, and Zomlot,
2014).

Figure 1.1: Current subjective vulnerability analysis for critical infrastructure

To manage vulnerability, security operators in SOCs need to monitor their system by
keeping pace with vulnerability repositories, as presented in Figure 1.1. Typically, SOCs
involvemultiple security tools (e.g., network vulnerability scanners) combinedwith anal-
ysis of data contained and produced by CI operations as well as alerts retrieved from
vulnerability repositories such as CVE (Russo et al., 2019). The operators need to follow
CVSS to evaluate the severity of each identified vulnerability (Agyepong et al., 2019). In
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addition, security operators need to further forecast the match between these vulnera-
bilities and the intricate layer networks of CIs to prioritize and guide patching exercises
(Hafiz and Fang, 2016). This process is illustrated in Figure 1.1, which shows the cen-
tral role of security operators in SOCs and their need for support to keep pace with the
evolving vulnerability alert repositories.

Although existing security mechanisms illustrated in Figure 1.1 attempt to standardize
severity schemes to build a common awareness about the criticality level of vulnerabil-
ities across CI networks, there are still crucial research gaps to address. Below, I sum-
marize the four main challenging research issues: (i) heterogeneous and diverse vul-
nerability data sources; (ii) subjective and human-centered process; (iii) dependencies
exacerbate CI vulnerability analysis; (iv) gaps in vulnerability management.

(i) Heterogeneous and diverse vulnerability data sources

A strong community effort has been established to improve sharing, standardization,
and automation of cybersecurity issues in the form of universal vulnerability databases
such as CVE and the accompanying cybersecurity terminologies. The CVE database is
one of themost influential forces in sharing and standardizing vulnerability information
among the cybersecurity community efforts. CVE repository discloses more than 160
000 reported and exploited vulnerabilities between 1999 and October 2021. It provides
standardized but unstructured textual descriptions of vulnerabilities, which are fed into
the US-based National Vulnerability Database (NVD) (2022) for further vulnerabil-
ity assessment such as vulnerable system configurations using Common Platform Enu-
meration (CPE) (2022), weakness categories using Common Weakness Enumeration
(CWE) (2022), and severity scoring using CVSS. Vulnerability-mitigation decisions that
rely onCVE orNVD records as primary data sources can be biased (Christey andMartin,
2013) by ignoring other sources of data (Anwar et al., 2020)(Jo et al., 2020). Some third
party analyzers such asComputer Emergency Response Team (2022) (CERT) andman-
ufacturer websites such asMicrosoft Security Response Center (MSRC) (2022) provide
valuable insights into cybersecurity from the industrial perspective. In addition, NVD,
CISA, andMSRC provide contradicting analysis of reported vulnerabilities (Anwar et al.,
2020). Vulnerability assessment in CIs requires analysis of heterogeneous data sources
to discover correlations between dependent cybersecurity dimensions, such as vulner-
ability, attack, and threat instances. These instances are stored as standalone traces in
separated enumeration lists, which adds to the challenges of data correlation.

(ii) Subjective and human-centered process

The increasingly reported vulnerabilities in public repositories and the potential to ex-
ploit them pose severe challenges to the cybersecurity research community (Croft, Xie,
and Babar, 2022). According to the CVE report, since 1999, more than 170,000 vulner-
abilities have been reported (last checked March 13, 2022). For example, DoS threats
have been triggered around 27,800 times using vulnerability exploits (last checked on
CVE Details (2022) March 13, 2022). However, many vulnerabilities are not reported
in CVE or are newly emerging, which exacerbates the evaluation process. Public vul-
nerability databases rely heavily on manual reporting such as the CVE Numbering Au-
thorities (2022) led process and further analysis, which leaves room for potential er-
rors (Tang, Alazab, and Luo, 2017). Existing vulnerability analysis approaches such as
CVSS calculator (Joh and Malaiya, 2011) require subjective and manual input, based
on qualitative judgments of vulnerability properties such as exploitability, scope and
impacts. Users need to manually select inputs for each vulnerability-metric, which re-
quires expert knowledge. This tedious and time-consuming investigation process can
take hours, days, weeks, or even more to complete when conducted manually (Le, Chen,
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and Babar, 2021). Moreover, possible delays in risk remediation due to manual assess-
ment can increase risk exposure. Therefore, relying on the knowledge of individual ex-
perts only could introduce recurrent costs, subjective evaluations and contradicting out-
comes (Chan et al., 2019). Nevertheless, security operators of CI also need to obey lim-
ited budget restrictions, and consider the limited computing resources of CI networks.

(iii) Dependencies exacerbate CI vulnerability analysis

Current cybersecurity efforts mostly deal with singular vulnerabilities that occur in
isolation. However, groups of vulnerabilities need to be assessed simultaneously as the
result of combining multiple vulnerabilities (Humayed et al., 2017). This is challenging
since CI incorporates complex data from multiple interconnected physical and compu-
tation assets (Ouyang, 2014). Different buildups of software, hardware and firmware
induce vulnerabilities at various levels. However, due to the interconnections among
systems, vulnerabilities emerge constantly at a pace faster than human involvement can
assess their severity (Ashibani andMahmoud, 2017). This prompts a threat-agent to ex-
ploit a sequential chain of vulnerabilities to trigger advanced persistent threats (APTs)
(Chen, Desmet, and Huygens, 2014), whereby exploits on one component may give ac-
cess to another component that can be exploited. Such chained vulnerabilities need to
be identified and assessed, to diagnose system-level vulnerabilities and potential threats
at an earlier stage of possible attacks. Of particular importance are the identification and
analysis of explicit dependencies that cross CIs.

(iv) Gaps in vulnerability management

The disparity of terminology used in cybersecurity and CI domains exacerbates corre-
lation analysis and knowledge extraction pertaining to CI cybersecurity (Barnaghi et al.,
2012) (Mozzaquatro et al., 2018). Dynamic and complex processes within CIs involve
multi-domain enterprise management procedures, which may result in communication
gaps throughout interconnected application-specific sub-systems of the overall produc-
tion fabric (Wu et al., 2018) (Lee, Bagheri, and Kao, 2015). This is exemplified by differ-
ent priorities in IT and OT cybersecurity practices. That is, IT security usually focuses
on the confidentiality, integrity, and availability of critical data, whereas OT security fo-
cuses on the protection of production loss or safety (Conklin, 2016). Limited collabora-
tion between different departments of IT and OT also contributes to the knowledge gaps
in cybersecurity assessment of CIs (Vielberth et al., 2020). Moreover, it is challenging
to extract and manage system configuration information from CIs (Bernstein and Haas,
2008). Normally, operators need to query different PCs/machines following various
vendors’ suggestions. For example, one may obtain embedded software in a Windows
computer by using PowerShell (Shepard, 2015). However, vendors use various seman-
tics and syntactics, which increases the difficulty of information integration. Moreover,
many critical infrastructure companies outsource their IT orOT services to other compa-
nies, which further enlarges the knowledge gap between different sub-systems (Kandias
et al., 2011).

To summarize, the imprecise nature of vulnerability assessment and the huge volume
of scanned data increase the burden for security analyzers. Vulnerability assessment is
both time-consuming and prone to errors when conducted manually.

In addition, advancements in security-focused data-driven solutions shift the burden of
large volume vulnerability management from security experts and to the digital alterna-
tives (Chan et al., 2019). The thorough literature review by Le, Chen, and Babar (2021)
has identified a trend of combining the strengths of artificial intelligence (AI) tools such
as machine learning (ML) techniques and human intelligence to proactively detect and
analyze threats and to provide actionable insights to security analysts for making in-
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formed decision. This raise questions about how to deliver a holistic data-driven security
strategy that helps security management (e.g., operators and executives) evaluate risks
arising from various vulnerability sources and their combination across CI networks.

The next section presents the research aims and objectives, and how they address the
above challenges and stated problems.

1.3 RESEARCH AIM AND OBJECTIVES

Rather than delivering a solution with an all-encompassing data format for security in-
formation and connectors that correlates all popular formats across existing systems,
this thesis contributes to the understanding and development of vulnerability analytic
solutions for complex CIs, particularly in the context of diverse, heterogeneous and com-
plementary sources of cybersecurity incident reports. This is formally described by the
following aim:

Aim: To investigate workflows that bridge the knowledge gaps among different
security functions (e.g., vulnerability management, report analysis, and infras-
tructure networksmonitoring) to correlate vulnerability findings and coordinate
mitigation responses in complex CIs.

The proposed research framework can be used to help companies address the above-
mentioned cybersecurity challenges and facilitate the adoption of data driven techniques
in related vulnerability analysis. Hevner andChatterjee (2010)make the following claim:
“Phenomenon is typically a set of behaviors of some entity that is found interesting by
the researcher or by a group – a research community. Understanding is knowledge
that allows prediction of the behavior of some aspects of the phenomenon.”The results
of this thesis should help cybersecurity stakeholders gain understanding (“descriptive
advance”) of CI cybersecurity phenomena such as vulnerability properties andCI depen-
dencies,managing (“prescriptive advance”) of vulnerability repositories and CI system
configurations, as well as forecasting (“predictive advance”) of vulnerability trends in
CI environment (see sub-section 1.7.2 for further discussions on descriptive, prescriptive
and predictive advances).

The following research objectives are identified to achieve the aim of this thesis:

Objectives:

(A) To expand the scope of knowledge about vulnerability alerts and curate
meaningful context of vulnerability analytical processes.

(B) To assess identified vulnerabilities with enhanced levels of automation that
reduce existing information gaps induced by ad-hoc and subjective audit-
ing processes.

(C) To model vulnerability in CIs in a reproducible manner that supports vul-
nerability assessment and increases the level of security awareness.
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1.4 RESEARCH QUESTIONS

To address the above-mentioned challenges and research problem, four research ques-
tions were formulated to guide the investigation. The proposed research questions sup-
port future security operation systems in complex CIs to augment the competence of
security teams with AI-rooted cybersecurity techniques. These questions emphasize is-
sues that alleviate the burden of dealing with a large volume of cyber-security data and
the drudgery of manually managing their versatile instances as a part of auditing exer-
cises. In addition, the formulated questions are designed to improve situation awareness
and support cooperative security management.

The above-mentioned rationale that drives the investigation is explored via the following
four interrelated research questions (RQs), all of which are centered on the vulnerability
assessment process for CIs, as illustrated in Figure 1.2. These four RQs correlate in a
way that allows one RQ to answer another RQ. Each RQ addresses the previously stated
research objectives.

Research Questions:

RQ (1) What are the challenges in critical infrastructure vulnerability assess-
ment using publicly accessible vulnerability repositories?

RQ (2) How can data be obtained and correlated for vulnerability analysis con-
sidering complex and heterogeneous sources of vulnerability alerts?

RQ (3) How can the missing information gap in the curated and correlated vul-
nerability database be bridged?

RQ (4) How can the vulnerabilities of complex critical infrastructures be mod-
eled and assessed with the support of a curated database and vulnera-
bility assessment algorithms?

This thesis has resulted in six research publications and two that are currently under
review. Each paper answers one or more of the RQ(s), as illustrated in Figure 1.2. These
RQs are explained next to show how they address the challenges mentioned in sub-
section 1.2.

RQ (1) - What are the challenges in critical infrastructure vulnerability assessment using

publicly accessible vulnerability repositories?

This thesis focuses on how to make cybersecurity deductions and decisions in an au-
tomated way using data-driven techniques, while addressing the following problems.
First, data-driven solutions use AI techniques such as ML algorithms. These systems
learn by training and incorporating additional data as they iteratively refine their analy-
sis. Thus, the availability, precision, and conflict-free data sources are paramount, con-
sidering security perspectives. In addition, security experts still have a critical role to
dedicate their intuition, creativity and experience as fact-checkers and champions of
these solutions (Veksler et al., 2018). Therefore, it is important to explore the challenges
of using publicly accessible cybersecurity repositories for CI vulnerability assessment,
especially from a security stakeholder’s perspective.

RQ (2) - How can data be obtained and correlated for vulnerability analysis considering

complex and heterogeneous sources of vulnerability alerts?

Vulnerability analysis uses heterogeneous data sources to discover correlations be-
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Figure 1.2: Connections between research aims, questions and resulted papers

tween dependent cybersecurity dimensions, such as vulnerability, attack, and threat,
which are collected as standalone traces. This information appears in separate reposito-
ries, andmaybepublished in different data formats. Furthermore, these repositories use
proprietary standards involving their own syntax and semantics. Therefore, answering
this question requires integrating multiple vulnerability data sources. When answer-
ing this question, research challenge (i) (heterogeneous and diverse vulnerability data
sources) is considered. Namely, vulnerability data sources are heterogeneous, incom-
plete and redundant. Cross-referencing these data pools followed by a thorough analy-
sis of inter-spectral and intra-spectral features could provide an effective classification
of vulnerabilities (Bullough et al., 2017).

RQ (3) - How can the missing information gap in the curated and correlated vulnerability

database be bridged?

As pointed out in RQ (2), the challenges of vulnerability analysis are due to heteroge-
neous vulnerability data sources as well as their incompleteness. To bridge such infor-
mation gaps as well as to generate intuitive vulnerability patterns, this research question
also addresses research challenge (ii) (subjective and human-centered process), follow-
ing a human-centered process. A large number of published vulnerabilities continue to
grow. Meanwhile, third-party components incorporating various software embedded in
CI fabrics, with possible new vulnerabilities, will continue to be developed. Therefore, it
is crucial to identify vulnerability patterns quickly, frommultivariate time-varying data,
each with thousands of possible observation instances.

RQ (4) - How can the vulnerabilities of complex critical infrastructures be modeled and

assessed with the support of a curated database and vulnerability assessment algo-
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rithms?

This research question is formulated in response to the research challenges (iii) (de-
pendencies exacerbate CI vulnerability), which refers to the need for dependence identi-
fication in CI vulnerability and (iv) (gaps in vulnerability management), which refers to
the communication gap in interpreting security indicators in vulnerabilitymanagement.
When a vulnerability is exploited in a CI asset, the threat agentmight open a backdoor or
gain system authority to compromise other assets in the system. Some unexpected and
unforeseen vulnerabilities could be exploited to trigger severe attacks across the entire
CI fabric. Hence, it is necessary tomodel how chained-vulnerabilities are exploited step-
by-step across the CI fabric and their potential impact to derive a CI-level vulnerability
score. To do so, the basic structure and functions of CI networks need to be abstracted to
exhibit desired properties like functional dependence, which addresses challenge (iii). In
addition, a common framework provides a unified understanding from different views
and prevents potential threats to infiltrate through cross-layer gaps and reduce themag-
nitude of their impact, which addresses challenge (iv).

1.5 THESIS STATEMENT

This thesis answers the proposed research questions. The proposed architecture of data-
driven vulnerability analysis orchestrates a range of modules (see Figure 1.3).

The proposed indicators of data-driven vulnerability require human operators to
comprehensively assess cyber vulnerabilities in deployedCI networks such as power grid
andmanufacturing systems. The goal is to reduce securitymanagement gaps induced by
ad-hoc and subjective auditing processes as well as to increase the level of automation
in vulnerability analysis. More specifically, this proposed approach suggests constant
monitoring and maximum use of information to elicit vulnerabilities and their sever-
ities before damage is done. Information about vulnerabilities is reported in natural
language expressions across numerous, and multifaceted repositories, as well as hun-
dreds of manufacturer websites and thousands of security blogs posted every day (Lun
et al., 2016). Data-driven security employs ML techniques to “understand”and take ad-
vantage of this increasingly massive corpus of information and to unfold their hidden
correlations (Andrade et al., 2019). In doing so, data-driven security empowers SOC
operators at various organizational hierarchy levels with the ability to detect changes
in their scope of activity and analyze these changes with as much context as possible to
distinguish and eliminate new threats.

Moreover, Figure 1.3 also highlights four important artifacts of this thesis, as a result of
achieving the stated objectives in section 1.3:

Artifact I - Vulnerability data model

This artifact includes a conceptual common data model (CDM) for cybersecurity data
source integration, which defines a source data mapping schema and the related data
warehouse structure, as well as a query generation method to support vulnerability in-
stances retrieval with CPE tags. The proposed model is instantiated into a cross-linked
database from 12 widely used vulnerability-alert repositories and standardized enumer-
ations. This artifact is described further with details such as correlation algorithm cross-
link processes in Chapter 6.
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Figure 1.3: Proposed data-driven vulnerability analysis for critical infrastructure

Artifact II - ML-based vulnerability analysis method

This artifact transfers retrieved vulnerability instances from Artifact I into a set of
rule-based classifiers to correlate vulnerability patterns to fill in the information gaps,
and to compute a corresponding vulnerability index. This artifact is described inChapter
7 and is further composed of the following approaches:

• Artifact II-A: A ML approach that automatically assigns CVSS-metric based labels
to textual vulnerability reports. This approach can be customized to accommodate
a preferred CVSS version to allow a common computational semantic that improves
consistency in vulnerability assessment. This approach produces better performance
than similar published CVSS computing methods.

• Artifact II-B: A ML approach that pinpoints the CWE weaknesses as root causes of
disclosed vulnerabilities at a higher abstraction level.

• Artifact II-C: An approach that utilizes an Ensemble algorithm to achieve better
performance at classifying benign connections compared to linear ML models. This
overarchingmethod features an optimization opportunity to discover the best model
for different vulnerability analysis tasks.

Artifact III - CI vulnerability taxonomy and dependence rules

This artifact addresses CI semantics, such as components’ topological connections,
functional processes and security properties, through a taxonomy (Artifact III-A). On
top of the taxonomy, cyber and cyber-physical functional dependence rules (Artifact
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III-B) are defined to support cascademodeling and the evaluation of vulnerability com-
bination to deliver a holistic asset-level or even system-level vulnerability assessments
that are meaningful across the hierarchy of organization roles. This artifact is instanti-
ated into power grid andmanufacturing networks asArtifact III-C for validation, with
more details provided in Chapter 8 and Chapter 9.

Figure 1.4: Connections between research questions

Artifact IV - Vulnerability analysis streamlining method

This artifact synthesizes a vulnerability index based on the severity generated in Ar-
tifact II and dependence index produced in Artifact III to support prioritization of
mitigation mechanisms such as patching exercises, with more details in Chapter 9.

Furthermore, the research questions discussed in Section 1.4 can be mapped to the pro-
posed cybersecurity architecture in Figure 1.3, following the illustration in Figure 1.4.
Cybersecurity orchestration is the central coordinator agent that facilitates communi-
cation and exchange of information between the proposed modules and orchestrates
their activities.

More specifically, in Step 1 and Step 2, RQ (1) and RQ (4) related workflows contribute a
domain-specific language to elicit cyber (IT), cyber-physical (OT) and physical compo-
nents and their relationships in infrastructure repositories, which serves as a knowledge
base of CI models to support vulnerability analysis performed in subsequent steps of the
framework. In Step 3 and Step 4, RQ (1) and RQ (2) workflows contribute an approach
whereby heterogeneous data is collected periodically from cybersecurity repositories,
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which are then correlated to standard enumerations of cybersecurity related categoriza-
tions, and are further integrated into a common localized database. Another contribu-
tion is the correlation techniques from retrieved data from this database to discover vul-
nerability instances and their severity. In Step 5 and Step 6, RQ (3) workflows contribute
text-classification models that are leveraged to produce relevant patterns of threat, vul-
nerability and weakness to support risk management exercises, based on data retrieved
from the constructed localized database. In Step 7 and Step 8, RQ (4) workflows em-
power security operators with indicators that prioritize vulnerability assessment based
on vulnerability severity as well as component criticality. This process allows vulnerabil-
ity management at the operational, management and executive level to evaluate and re-
flect on machine-generated indexes to feedback the central cybersecurity orchestration
module. The outcomes from these steps lead to indicators that support the know-how
of cybersecurity decision-makers (see Figure 1.5).

Figure 1.5: Work flows in the proposed framework

1.6 CONTRIBUTIONS

The main contribution of this thesis is the elaboration of novel data-driven vulnerabil-
ity analysis solutions for complex CIs. This section discusses five perspectives around
this main contribution: identifying problems and challenges; expanding vulnerability
knowledge scope; bridging the information gap; benchmarking CI vulnerability; and
streamlining vulnerability analysis.

1.6.1 IDENTIFYING PROBLEMS AND CHALLENGES

We reveal the current use of various cybersecurity standards, particularly interpretation
use-cases of these enumerations and their correlations with other data sources. We also
conducted an in-depth analysis of historical vulnerability records in NVD features such
as weakness types, severity and exploit threat. We carried out a survey of CI cyberse-
curity participants’ sentiments on open-source cybersecurity repositories and CVSS in
practice. Based on this survey study, we selected the metrics for evaluating or designing
data-intensive vulnerability assessment/management solutions for CIs. We further per-
formed a case study on vulnerability assessment using software and hardware configura-
tions of an actual large data center. We used CVE, NVD and vendor websites as sources
for vulnerability identification and retrieval. We conducted follow-up interviews of three
cybersecurity specialists in the investigated infrastructures, to collect their feedback on
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the employed study results as well as their insights on publicly available cybersecurity
data sources at large.

In doing so, we make the following contritbutions to the field:

• Identifying heterogeneity, incompleteness and inconsistencies of vulnerability re-
ports.

• Motivating vulnerability data curation and severity scoring automation.

1.6.2 EXPANDING VULNERABILITY KNOWLEDGE SCOPE

Artifact I enables context-aware data analysis that aids situation awareness with up-to-
date vulnerability trends, expanding the vulnerability knowledge scope. The proposed
data model correlates repositories of vulnerability reports such as NVD and Shodan
Database (2022) and standardized enumerations like CWE, allowing further discovery
of inconsistent labels assigned to CVE vulnerability instances. For example, consider-
ing reconciled vulnerability scores as the ground-truth, severity scores of newly reported
vulnerabilities are computed using Artifact II considering various CVSS metric labels.
Artifact I also includes a query generationmodule that supports further vulnerability re-
trieval, while addressing the synonyms issues in vulnerability repositories. In addition,
the instantiated database of Artifact I is synchronized with multiple publicly accessi-
ble repositories of vulnerability reports to narrow further the risk-window induced by
discovered vulnerabilities.

1.6.3 BRIDGING THE INFORMATION GAP

Artifact II is composed of a set of ML methods that infer missing security information
such as exploit threat and weakness category in reported vulnerability instances, facili-
tating a greater level of automation of vulnerability assessment. More specifically, two
ML approaches infer separately CVSS severity scores and CWE weakness categories of
reported vulnerability instances. Similarly, the ensemble-based ML method was devel-
oped to combine independent classifiers that use information from different sources,
yielding better performances for cybersecurity classification tasks. This approach em-
bodies a complete ML pipeline which includes modules for data pre-processing and
cleaning, feature engineering, model selection, and ensemble-model construction built
on top of trained models to optimize the classification of security indicators. Optimiza-
tion opportunities are released at each step through the process to find the best ensemble
model for different tasks.

1.6.4 BENCHMARKING CI VULNERABILITY

Artifact III delivers amodelingmethodology of intricate networks and related constraints
of CIs in terms of vulnerability analysis. Themodeled common semantics of both IT and
OT entities support IT/OT security convergence and provide a unified understanding
from different views, which prevents potential threats from infiltrating through cross-
layer gaps and reduces the magnitude of their impact. Furthermore, the dependence
rules derive the functional dependence structure from data flow specifications and can
be used to pinpoint the most critical components in a CI model. This extends works
on traceability of enterprise models by linking IT components to OT entities and to the
components of the physical layer such as the electrical grid.
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Multiple extensive and realistic reference models are instantiated to define aspects of
power-grid and manufacturing systems such as the control center, substations, and the
data/control flows between software components. These instantiated models can also
serve as a base that is analyzed by external tools for vulnerability analysis. Static anal-
ysis queries are used to pinpoint dependencies and weaknesses in the CI layered net-
work. In doing so, the proposed taxonomy and implemented queries provide a system
architecture-aware prioritizing analysis.

1.6.5 STREAMLINING VULNERABILITY ANALYSIS

A CI asset can be subject to multiple vulnerabilities given two facts: one asset is com-
posed of several components; and one component may have several vulnerabilities. A
systematic computational approach to system-wide vulnerability needs to combine all
the relevantmeasurements, considering their dependency rules. Artifact IV contributes
to such systematic CI vulnerability analysiswhile streamlining the assessment processes.
The function of this artifact is to streamline the interplay between vulnerability data and
CI layered system configuration to facilitate a greater level of automation in vulnerability
assessment. For example, Artifact IV ranks prioritization of vulnerability patching by
taking into consideration vulnerability severity (from Artifact II) and component criti-
cality (from Artifact III), to further optimize security investments and resource alloca-
tion to reduce the potential risk window. The vulnerability analysis orchestration ap-
proach assists system administrators in identifying the most crucial components for cy-
bersecurity protection, considering that different degrees of patch priority are required
for components with the same vulnerability because some components are protected or
less accessible (e.g., an isolated device).

The next sub-section clarifies the author contributions in the included publications.

1.6.6 AUTHOR CONTRIBUTIONS

Author’s level of contribution is further summarized in Table 1.1 where Major implies
that work carried out mainly by the main author, Medium implies work carried out
mainly through a cooperation between the main author and co-authors, andMinor im-
plies little involvement from the main author.

1.7 RESEARCH SCOPE

Cybersecurity is inherently an interdisciplinary field. Chang (2012) highlights in one of
the Guest Editor’s Column of The Next Wave that in addition to the critical traditional
fields of computer science, perspectives from other relevant fields (e.g., electrical engi-
neering and mathematics) are needed to deliver a multidisciplinary approach.

1.7.1 KEY RESEARCH ELEMENTS

The research conducted and presented in this thesis involves four key research elements
(see Figure 1.6): cybersecurity (the research subject content), CI (the domain of appli-
cation), data (the basis of the proposed solutions), and people (the user of the proposed
solution tools).
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Table 1.1: Author’s contribution level

Paper Idea Metric Model Data Analysis Writing

Publication I Minor Minor Major Major Medium Medium

Publication II Major Major Major Major Major Major

Publication III Major Major Major Major Major Major

Publication IV Medium Major Major Major Major Major

Publication V Medium Major Major Major Major Major

Publication VI Major Major Major Major Major Major

Publication VII Major Major Major Major Major Major

Publication VIII Major Major Major Medium Major Major

”Idea” and ”Metric” refer to research idea and research metrics formalization,
separately. ”Model” includesmodel conceptualization, design and development.
”Data” is about data obtaining and cleaning.

The cybersecurity research scope in this thesis is mostly relevant to the definition given
by Craigen, Diakun-Thibault, and Purse (2014) presented in sub-section 1.1. In the con-
text of this research, “cyberspace” refers to traditional information technology infras-
tructures such as telecommunication networks and computer systems (NIST, 2013), and
“cyber-space enabled systems” refer to cyber-physical systems. The proposed AI-based
approach used to enhance the capability of cybersecurity in the context of this thesis is
mapped to the definition fragment referring to “collection of resources, processes, and
structures”. People working in “the organization” also match the proposed human-in-
the-loop approach to cybersecurity.

Figure 1.6: Key research areas and elements

Although technical perspectives have been the dominating factor of discourse in cyber-
security research, SoC actors have a vital role in making use of the data-driven technolo-
gies that are supported by cybersecurity management. Socio-technical systems (STS)
proposed originally by Trist (1981) in the 1940s were suggested to address the broader
issue of cybersecurity. In their definition, technology (covering machines, embedded
technologies, and the associated processes), as well as society (covering working groups
and organizations), need to be given equal weight. In the scope of this thesis, cybersecu-
rity in CIs is perceived as a STS problem, involving both technical and social dimensions
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of cybersecurity.

1.7.2 RESEARCH AREA

Xu (2019) proposes the concept of cybersecurity dynamics, to capture the complexity of
cybersecurity and to reflect the awareness of the global cybersecurity state of a system. A
separated fundamental concept such as confidentiality, integrity and availability issues
subsequently lead to the rise of cryptography, encryption, intrusion detection, and simi-
lar isolated solutions (Xu, 2014). Instead, cybersecurity dynamics views these building-
block mechanisms from a holistic perspective. As originally stated by Lin, Lu, and Xu
(2019), a cybersecurity-dynamicsmodel characterizes a system’s state under a particular
set of attacks from the attacker’s perspective as well as a particular set of defenses from
the defender’s perspective. The state of awareness derived from the knowledge of real-
time or near real-time global cybersecurity indicators empowers cyber defense decision-
makers with highly effective defense postures (Chen, Cho, and Xu, 2018). According to
Xu (2019), the primary goal of modeling cybersecurity dynamics is to gain descriptive,
predictive, and prescriptive empowerment. Descriptive power refers to the capability
to quantitatively characterize a system state under different attack and defense scenar-
ios (Delen and Demirkan, 2013). Predictive power is about the ability to forecast cyber
threats to support proactive defense mechanisms (Larose, 2015)(Hafiz and Fang, 2016).
Descriptive and predictive powers provide a prescriptive view to the state of awareness,
suggesting cyber defense activities involving systems that combine actionable data and
user feedback (Lepenioti et al., 2020)(Sukhija et al., 2019).

This thesis focuses on vulnerability assessment for CI, which is aligned with this new
concept of cybersecurity dynamics. That is, the efforts are concentrated on three per-
spectives of the defender:

• First, a common semantic structure is employed to support modeling approaches
to security applications. This proposed semantic framework represents connections
between CI configurations and vulnerability categories to support the identification
of security gaps (Syed et al., 2016). A vulnerability can be modeled as a property of a
CI component. Dependence rules and quantitativemetrics are then added to support
queries such as vulnerability severity (i.e., achieved through exploit scenario and cas-
cade modeling) to gain the descriptive capability (Hendrickx et al., 2014) (Teixeira
et al., 2015).

• Second, data analytic techniques are adopted to characterize CI and vulnerability
model parameters to gain predictive capability to forecast vulnerability trends. An-
alyzing vulnerability trends employs online cybersecurity data sources as input into
predictive analysis to evaluate vulnerability severity and occurrence likelihood based
on some computational intelligence techniques (Bullough et al., 2017) (Tavabi et al.,
2018) (Almukaynizi et al., 2017) and (Xu et al., 2018b).

• Third, combining the power of computational intelligence for cybersecurity with hu-
man perception enhances the prescriptive ability for situation awareness and effi-
cient mitigation reaction when detecting vulnerabilities.

Figure 1.7 illustrates the above-mentioned disciplines along with a three-dimensional
space that forms the scope of the proposed multidisciplinary research area. We use
knowledge and approaches from these research disciplines to produce CI taxonomy,

17



CHAPTER 1 INTRODUCTION

vulnerability patterns, as well as system-level vulnerability models, all of which serve
as essential components in our data-driven vulnerability assessment solution.

Figure 1.7: Related research disciplines

1.7.3 RESEARCH FOCUS AND DELIMITATION

Cybersecurity research in CI is a multidisciplinary field. The focus of this thesis is on
vulnerability-driven risk analysis for CI. The definition of risk adopted is:

“A measure of the extent to which an entity is threatened by a potential circumstance

or event, and typically a function of: (i) the adverse impacts that would arise if the

circumstance or event occurs; and (ii) the likelihood of occurrence.”

— NIST SP 800-30 and NIST Cybersecurity Framework Version 1.1

Risk assessment studies may focus on different cybersecurity perspectives. In this in-
terdisciplinary field, some works concentrate onmodeling attack steps or attack-vectors
(Johnson et al., 2016c). In contrast, other works address the vulnerable nature of the
system while trying to root out vulnerabilities used by exploit-vectors (Zio, 2016). Both
types of works are used to model cyber-threat patterns and support cyber-risk assess-
ment (Mozzaquatro et al., 2018), which can be seen as a bow-tie relationship as sug-
gested by Ciapessoni et al. (2016).

Shevchenko et al. (2018) summarize commonly used threat analysis methods, such as
Threat agent and risk analysis (TARA) and Microsoft’s STRIDE threat model, which
identifies and rates potential threats to determine which threats to mitigate first and
which countermeasures to take. TARA uses three major libraries based on incident re-
ports and securitymeasures collected anddevelopedby Intel Security experts, i.e., threat
agent library,methods and objectives library and common exposure library (Rosenquist,
2009). Rosenstatter and Olovsson (2018) use TARA to identify threat exposures and se-
curity strategy alignment in automotive system, but at a high-level overview. STRIDE
evaluates the system detail design, and is usually used to analyze specific threats in
the design phase of software or hardware, particularly spoofing, tampering, repudia-
tion, information disclosure, DoS and elevation of privileges (Shostack, 2014). Another
threat assessment and remediation analysis method uses web-based tools to search and
process catalog-stored attack vector and to map countermeasure data (Wynn, 2014).
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Shevchenko et al. (2018) compare the trade-offs betweenmultiple threatmodelingmeth-
ods, and suggest that CVSS has the advantage in terms of automated components and
built-in prioritization of threat mitigation.

Starting with vulnerability identification, this thesis assesses risk of CIs to analyze the
likelihood if a vulnerability will be exploited and impact of an exploited vulnerability.
That is, the proposed approaches could help to identify components containing new
vulnerabilities in a fast and automated manner, with the support of publicly accessi-
ble vulnerability repositories. There are also some other requirements such as attack
detection and resilience analysis (Uday and Marais, 2015). However, these alternative
cybersecurity approaches are outside the scope of this thesis. It should be noted though,
if extended with aforementioned TARA and STRIDE threat libraries, the proposed ap-
proaches can also support threat identification and assessment.

The primary scientific approach of this thesis lies in the discipline of informatics, so the
focus is also on computational and socio-technical aspects. The computational approach
is oriented to the data-driven techniques and simulationmethods adopted in this thesis.
The socio-technical approach is related to the organizational impact of the presented
approach that involves human actors in the loop.

Due to privacy and security concerns, security experiments in real systems are limited
and might expose these systems to potential threats. Instead, computer simulation ap-
proaches are adopted in this thesis together with an in-depth literature review and in-
terviews with industrial practitioners, to enable the applicability of the model. This ap-
proach also captures the critical properties of a system’s structure and its dynamics. For
example, interviews with CI security professionals enable the collection of functional
and topological information of industrial production processes in the context of cyber-
security. Based on the collected information, CI networks are modeled to reflect real
infrastructure connections, to support vulnerability-centered simulations with reliable
predictions.

Figure 1.8: Scope of CI reference model and instantiation

The herein proposed approaches aremainly demonstrated through studies in the CI sec-
tors of energy and critical manufacturing (see Figure 1.8). The proposed CI taxonomy
contains both components and their interconnections in terms of vulnerability analy-
sis. The instantiated model includes detailed models for power-grids and manufactur-
ing networks. Therefore, the CI taxonomy and instantiated model play an important
explanatory role together. In this thesis, only the dependencies within an infrastructure
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are modeled. However, possible dependencies between different infrastructures are out
of the scope of this thesis. These instantiated models also work as a base to store model
specification, component connections, as well as vulnerability properties, which enables
model transformation from a high-level abstraction to artifacts that mimic real-life in-
frastructures.

It should however be emphasized that the problems identified and the methods pro-
posed in this thesis are not exclusively related to power grid andmanufacturing systems,
and are not limited to applications in CI cybersecurity protection. In fact, the advocated
data-driven vulnerability analysis methods are applicable to IT and OT systems as well
as their convergences with variant scales from individual IoT devices to complex auto-
motive driving systems, for example.

1.8 THESIS STRUCTURE

This document is composed of ten chapters. A summary of the content of each chapter
is provided below.

Chapter 1 provides a preliminary introduction to the research area around cybersecurity
in CIs. This introduction is followed by a presentation of some research challenges in
vulnerability assessmentmethods faced in complex CIs. Secondly, the burden of dealing
with an extensive volume of vulnerability data and existing manual auditing processes
are discussed. The proposed thesis statement is revealed, which is followed by delimi-
tation of scope to clearly define the research boundaries. This chapter concludes with a
description of the thesis structure and a summary of each of the subsequent chapters.

Chapter 2 presents relevant background and concepts. CI and CPS definitions are pro-
vided with emphasis on cybersecurity issues. This chapter discusses three semantically
interconnected CI concepts (component, asset and system) as well as the vulnerability
lifecycle and related characteristics. This chapter also introduces relevant cybersecurity
repositories and enumerations used in this thesis, including the existing CVSS standard.

Chapter 3 presents a theoretical background in our research area. Related works are dis-
cussed to highlight similarities and differences compared to the proposed approaches.

In Chapter 4, the principal research methodology guided by design science principles is
presented, which is followed by a discussion of applied research methods during our re-
search process. Some evaluationmethods andmetrics used across the researchmethods
during the research process are also discussed.

The main research results are presented in Chapter 5, Chapter 6, Chapter 7, Chapter 8,
and Chapter 9. These results are used to discuss the modules making-up the proposed
data-driven cybersecurity solutions illustrated in Figure 1.3.

In Chapter 5, exploratory studies and related RQ(1) results are presented to introduce
identified challenges in using publicly accessible cybersecurity repositories in CI vulner-
ability assessment from security stakeholders’ perspectives. These exploratory studies
include a baseline study, a questionnaire-based survey investigation, and a case study on
vulnerability assessment using real system information of an actual large data center.

In Chapter 6, the proposed vulnerability data model and related RQ(2) results are pre-
sented. A cross-linked and correlated database to collect, extract, and visualize vulnera-
bility data across multiple existing repositories is revealed. The database is then used in
a study for in-depth vulnerability data analysis centered on CI components, to explore
the trends of CI vulnerability.
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In Chapter 7, results illustrating the proposed ML methods and related RQ(3) results
are presented. This chapter outlines ML techniques to select optimal predictive models
for different vulnerability-analysis tasks such as threat-, weakness- and severity-related
classifications. An evaluation benchmark for the proposed ensemble approach is shown
to validate the performance of the proposed approach.

In Chapter 8, the results about the proposed CI taxonomy and partial RQ(4) results are
presented. A domain-specific language and its instantiatedmodels are illustrated to rep-
resent CI functional dependencies and topological structures. A study related to a power
grid infrastructure and corresponding IT/OT network is also presented in this chapter.

In Chapter 9, the domain-specific language proposed in Chapter 8 is further integrated
into a vulnerability analysis streamlining method that enhances the collaboration be-
tween different actors throughout CI-based infrastructure. A study in a manufactur-
ing infrastructure environment is presented to illustrate the application of the proposed
method.

In Chapter 10, some concluding remarks are provided along with a discussion of some
future research directions. More specifically, this chapter revisits the research questions
and objectives proposed in Chapter 1 to present contributions and limitations.
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CHAPTER 2

KEY CONCEPTS AND BACKGROUND
KNOWLEDGE

This chapter starts with brief introductions of the research area and the most relevant
disciplines, namely cyber-physical layered critical infrastructures, cybersecurity, and re-
lated data-driven analysis. Four key research elements (CI, cybersecurity, data, and
stakeholders) are discussed that characterize the cybersecurity study in this thesis. A
conceptual framework is then provided to illustrate some used terminologies in this the-
sis. In doing so, some important concepts such as vulnerability, exploit, and risk are de-
fined. CI structure as well as underlying component, asset and subsystem concepts are
introduced. The focus of this thesis is on vulnerability analysis and thus related concepts
such as vulnerability lifecycle and vulnerability characteristics are discussed.

2.1 CI CYBERSECURITY CONCEPTS

According to Burgess (2010), cybersecurity research is intrinsically about factors, prin-
ciples, and circumstances that form a conceptual background so that key actors sub-
jectively come to a shared understanding and an agreement on how to respond to se-
curity threats. Furthermore, Spring, Moore, and Pym (2017) highlight that standard
definitions are necessary as a common language or an ontology of terms to distinguish
information-security science from information-security practices. Therefore, this sec-
tion provides some conceptual definitions of commonly used cybersecurity-related ter-
minology throughout this thesis.

The grounding of concepts serves as a key basis that correlates multiple disciplines and
can be implemented through ontologies (Martins et al., 2020) (Mavroeidis and Broman-
der, 2017). An ontology is a structured form of knowledge presentation that specifies
concepts and their relationships, and can integrate information coming from different
sources. We construct a conceptual model on top of a vulnerability management ontol-
ogy developed byWang andGuo (2009), as illustrated in Figure 2.1. This figure presents
a concept map of cybersecurity terms and their semantic relationships.

In the conceptual framework, vulnerability is a significant cyber-security issue ham-
pering the protection of critical infrastructures (Humayed et al., 2017). Risk is broadly
defined as the potential occurrence of events or incidents that might materially harm
the system, as introduced earlier in 1.7.3. Risk assessment considers two main factors,
namely the likelihood and the impact of vulnerability exploitation that targets a particu-
lar CI component, to obtain malicious access, or cause damage to operational functions
(Humayed et al., 2017) (Goerlandt and Reniers, 2016). Conceptually, infrastructure op-
erators need to gauge investments against risk indicators using specific benchmarks.
These indicators rank assets by their importance, their vulnerability, and the conse-
quence of threats that exploit those vulnerabilities (Kure, Islam, and Razzaque, 2018).
The reportedmitigation vectors represent an expert-system interpretation of numerical
risk-indicators to assist operators in carrying out patching decisions (Ruan, 2017). The
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mitigation vector is a translation of numerical risk-indicators into operational instruc-
tions that support operators in the course of patching action.

Figure 2.1: Critical infrastructure cybersecurity concepts

In addition, a vulnerability assessment examines the possibility of asset disruption (Ani,
He, and Tiwari, 2017) (Kröger and Zio, 2011). However, not all assets have the same
criticality qualities, referred to as criticality vectors in the following text. To prioritize
vulnerability assessment activities, it is necessary to identify critical nodes based on their
criticality-vectors vectors. These are the nodes whose disruption would have the most
repercussions. A system with particular criticality is regarded as an asset. Vulnerabili-
ties may be exploited by a threat-agent in different ways using exploit-vectors. A threat
agent may further trigger an attack in different ways using attack-vectors. Each attack
vector represents a specific attack scenario which may result in different implications,
represented by impact-vectors. Each impact-vector may be used to represent the con-
sequence of a disruption to a targeted asset in CIs in different ways. The vulnerability-
assessment process mainly involves the identification, quantification (Ezell, 2007) and
evaluation of how exploit-vectors trigger attacks and themagnitude of those attacks rep-
resented by impact-vectors.

2.1.1 COMPONENT, ASSET AND SYSTEM

This thesis adopts the definitions of system and system element, or component as:

“System is a set of interacting elements that are organized to achieve one or more

stated purposes.

Asset fulfils specified requirements and may be implemented via hardware,

software, or firmware; physical structures or devices; or people, processes, policies,

and procedures.”

— ISO/IEC/IEEE 15288:2015 Standard

Some researchers use the definition of device instead of asset (Griffor et al., 2017). This
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thesis regards an assetmade upof components andwith particular value to stakeholders:

“ An item of value to stakeholders. An asset may be tangible (e.g., a physical item

such as hardware, firmware, computing platform, network device, or other

technology component) or intangible (e.g., humans, data, information, software,

capability, function, service, trademark, copyright, patent, intellectual property,

image, or reputation). The value of an asset is determined by stakeholders in

consideration of loss concerns across the entire system life cycle. Such concerns

include but are not limited to business or mission concerns.”

— National Institute of Standards and Technologies (NIST) SP 800-160

The connections between a component, an asset, and a system are illustrated in Figure
2.2. A vulnerability could be regarded as an emergent property of a component within
CIs. For example, vulnerabilities V 1

3,2 and V 2
3,2 exist in the component C3,2 that is em-

bedded in the asset A3. Moreover, the asset A3 is part of the system S1. In a complex
CI, hardware, software, and OS are assembled and used in different ways, which might
create various binaries with potential backdoors. As highlighted in common standards
like Corporation (2014) and ISA (2007), the first step in securing a CI is identifying the
critical assets. Protecting this critical subset of components can enhance the robustness
of a system to sustain reliable operations (Vukovic et al., 2012).

Figure 2.2: System, asset and component

CPS is one type of systems. Lee (2015) regards CPS as only the intersection of the Phys-
ical and the Cyber. In this thesis, CPS is viewed from a broader perspective, i.e., the
union of the Physical, the Cyber, and the Control between the former two. Considering
the nature of CPS, we define a CPS as composed of software (e.g., firmware, toolset, soft-
ware library) and hardware (e.g., a hard drive). Note that software further subsumes OS
(e.g., a Windows OS). OS functionally manages software components and acts as an in-
terface between application software and hardware. Software is integrated in hardware
and hence relies on this component’s power supply and CPU. In the interim, software
monitors, regulates, and acts upon hardware components. In addition, CPS requires a
reliable network connection to transport data and complete feedback loops. Typically,
a CPS asset can be for instance a human machine interface (HMI) or a programmable
logic controller (PLC).
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2.1.2 CRITICAL INFRASTRUCTURE

AcomplexCI is a systemof systems (SoS) that integrates a collection of devices to achieve
desired capabilities (Uslar et al., 2019). The dependencies in such a SoS are divided into
inter- and intra-dependencies.

The growth and scale of CI complexity are ever-evolving due to the fast expansion of net-
worked applications in smart systems, which are overseeing a range of industries and
CIs. These systems use a network of embedded sensors, platforms, and actuators to per-
ceive and affect a physical-process that typically requires guaranteed quality-of-service
performance provided by safety-critical applications (Lewis, 2019). For example, the
smart grid combines multiple electric-power production plants with multiple loads us-
ing dynamic load-balancing and dynamic pricing to meet demand-response strategies
(Zio and Sansavini, 2013). Manufacturing systems or cyber-physical production systems
(CPPSs) combine monitoring components into networked closed-loop systems with hu-
mans in the loop to improve production workflows (Lee, Bagheri, and Kao, 2015), which
relies on industrial control systems (ICS). Today’s automotive systems also employ CPSs
into a range of applications, including avionics, railroads, and traffic management. A
prominent example of CPS in smart traffic is the control of autonomous vehicles.

ICS is a typical OT architecture in CIs, consisting of automation control components
and process control components that gather and monitor real-time data in order to as-
sure the automation, process control, and monitoring of industrial infrastructure. The
fundamental ICS components consist of SCADA, PLC, HMI, distributed control system,
remote terminal unit (RTU), master terminal unit (MTU), and interface technology that
enables communication between these components. A PLC is an essential CPS compo-
nent that regulates industrial devices to maintain production processes. A RTU trans-
mits to an MTU system telemetry data from sensing devices linked with physical power
components. A HMI is either a standalone device or an embedded communication in-
terface for visualizing and monitoring MTU actions and RTU data flow (Humayed et al.,
2017)(Corporation, 2014). RTU andMTU are linked to other SCADA components, such
as SCADA servers, via routers, fiber optic cables, and switches.

Figure 2.3: Layered architecture of critical infrastructures

The networked structure of CIs integrates interrelated-layers where each layer repre-
sents a subsystem of the CI architecture, as illustrated in Figure 2.3. This figure also
depicts the interaction between growing CI layers, highlighting the prominent role of
CPS such as SCADA and other control systems. These subsystems communicate with
one another through data linkages. In the meantime, each layer connects components
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by intra-communication data lines. Within and across layers,many communication pro-
tocols are used. This layered model covers the functions and topological structure of CI
in order to provide insight into the features of CI and forecast its behavior.

The bottom physical-layer models the physical-process dynamics and properties. It fea-
tures a network of sensors (e.g., s1 and s2) and actuators (e.g., a1 and a2), embedded
into physical-process components, as illustrated in Figure 2.3. The middle control-layer
embodies the feedback-logic loop by collecting, monitoring, and estimating states from
sensors and correcting errors via manipulation mechanisms of the physical process us-
ing actuators. The control layer features a network of OT components to coordinate and
synchronize operations. Finally, the top cyber layer expresses decision-support analytic
tomanage the underlying control-system operations in an enterprise IT-networked plat-
form. The role of this platform is to optimize the efficiency and tomonitor the security of
the physical process operations. The control center provided by this layer incorporates
an IT network of workstations and servers, including application and data-store servers.

2.1.3 CYBER-PHYSICAL SYSTEM CHARACTERISTIC

In addition to CPS, there are many associated terminologies such as industrial Inter-
net, Internet of Things (IoT),machine-to-machine, smart cities, and others that describe
similar or related systems and concepts (Lee, 2015). This thesis adopts the definition of
CPS as:

“CPS integrates computation, communication, sensing, and actuation with physical

systems to fulfill time-sensitive functions with varying degrees of interaction with

the environment, including human interaction.”

— NIST CPS Public Working Group (2017)

This definition describes well the essential characteristics of CPS, which are further dis-
cussed next. Considering the CPS framework proposed by NIST CPS Public Working
Group (2017) and the CPS definition given by Berkeley CPS Project (2022), the charac-
teristics of a CPS are defined based on the conventions for a system architecture frame-
work given by ISO/IEC/IEEE 42010. This means the herein proposed framework con-
tains interpretation and use of CPS architecture views to frame cybersecurity concerns.

As illustrated further in Figure 2.4, CPSs are feedback systems distinguished by their
control loop, which takes the system output into consideration in order to adjust de-
sired response performances. Such feedback systems have mainly four characteristics
that distinguish CPS from traditional or pervasive interconnectedness, namely connect-
edness between the cyber and the physical, heterogeneity and complexity, adaptive and
predictive, as well as time-sensitive (Khaitan and McCalley, 2015):

• Connectedness between “Cyber”and “Physical”: The combination of the cyber and
the physical, and their cyber-physical connectedness, is essential to CPS. Practically,
CPS involves traditional IT that takes measurements from sensors on physical pro-
cesses for data analysis, and also involves traditional OT that processes these mea-
surements to drive actuators that affect back the physical processes.
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Figure 2.4: Cyber-physical system characteristics summarized fromCyber-Physical
Systems - A Concept Map (2022)

• Heterogeneity and Complexity: CPSs may be developed into a SoS (Eusgeld, Nan,
and Dietz, 2011) accommodating a variety of computational models together with
variant physical components. In a typical CPS structure, a controller continuously or
periodically observes the physical process, and continuously or periodically provides
actuation to distributed physical devices, via software and networks. Such networked
and/or distributed structure leads to heterogeneity and complexity of CPSs. While
behavior analysis in CPSs needs to take into account emergent behaviors or interac-
tions between CPS subsystems.

• Adaptive and Predictive: CPS are characterized by their interactions with their oper-
ating environment through closed-loop control. These control strategies need to be
adaptive to respond to changing conditions, and predictive to anticipate changes in
physical processes. CPS intelligent abilities may enable such changing capacities for
perceiving, learning and operating.

• Time-Sensitive: Finally, cyber-physical systems are typically time-sensitive, with soft-
ware that has timing constraints, including tasks that must be executed periodically
within accurate time intervals. Moreover, given their networked-nature, CPSs lever-
age network time-synchronization to support distributed actions-coordination.

2.1.4 IT SECURITY AND OT SECURITY

Rapid advances in ICT enable seamless software and hardware integration in CIs. How-
ever, the growing exposure of CIs to cyberspace for increased efficiency and intelligent
controls, lead to increased surfaces that are vulnerable to cyber attacks, which raises se-
curity concerns in terms of intrusion and tampering by adversaries (Lun et al., 2016).
Table 2.1 compares traditional IT security and OT security (particularly ICS security)
from Bhamare et al. (2020) and Asghar, Hu, and Zeadally (2019).
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Table 2.1: Major differences between ICS and traditional IT networks summarized
from Bhamare et al. (2020) and Asghar, Hu, and Zeadally (2019)

Property Industrial Control System (ICS) Network Traditional Information Technology (IT) Network

Network Edge
ICS network edge has intelligent devices

containing sensing and control functions.

IT Network edge has server computers or

workstations.

Architecture
Vertically integrated structure between

the master node and the terminal node.

Rather flat structure with peer-to-peer

relationship between servers.

Performance

Requirement

Real-time communication with critical

response time; Limited delay; Medium

throughput.

No specific requirement for real-time response;

Can tolerate delay; High throughput.

Availability

Requirement

High availability; Any discontinuity needs

to be planned in advance.
System restarting is tolerable.

Risk

Management

Safety concerns; Fault tolerance of the

production process.

Confidentiality and integrity of dataset;

Business impact.

Security

Maintenance

Thorough testing and incremental

deployment are carried out before making

changes or update to the system.

Automated software update can be arranged.

Operating

System
VxWorks, Linux,Windows, etc. Windows, Linux, Unix.

Data Exchange

Protocol

Open Platform Communications (OPC),

Distributed Network Protocol 3 (DNP3),

Modbus, etc.

Transmission Control Protocol (TCP),

Internet Protocol (IP).

Jang-Jaccard andNepal (2014) propose three categories of vulnerabilities, namely hard-
ware, software, and network infrastructure and protocol vulnerabilities. Hardware de-
rived vulnerabilities aremostly seen in the formof unauthentic or illegal hardware clones.
Hardware, software, and OS are assembled and used in different ways within CI fabrics,
creating various binaries with potential backdoors (Humayed et al., 2017) (Ashibani and
Mahmoud, 2017). One example of hardware vulnerability is no physical-access protec-
tion which an attacker might exploit to gain unauthorized physical access. And hence,
exploiting hardware base vulnerabilities enables the threat agents to access or alter phys-
ical elements of a computer server (e.g., a hard drive) or a network (e.g. a router). Soft-
ware oriented vulnerabilities exist in system firmware or application software. An out-
dated software with flaws in source code might be exploited by a bypass threat that is
further materialized by a code-injection attack triggered by malicious actors. Network
infrastructure and protocol vulnerabilities frequently appear in network protocols such
as transmission control protocol (TCP).

Intricate network structures and inherent vulnerability gaps (Rosas-Casals, Valverde,
and Solé, 2007) distinguish the problem of vulnerability assessment in complex CIs that
utilize CPS, as highlighted by Humayed et al. (2017) that “the complexity of CPSs and
the heterogeneity of CPS components have introduced significant difficulties to secu-
rity and privacy protection of CPS”. The major differences between OT (normally CPS-
based) security and the traditional IT network security are summarized in Table 2.1.
The complex structure of CPSs and the limited computing capability of CPS-based con-
trol and sensing devices lower the protection degree to withstand cyber threats targeting
dynamically evolving vulnerabilities (Lun et al., 2016). Many industrial CPSs are built
using legacy devices with limited computing sources. At the same time, an ICS designed
for reliability and longevity can easily be outpaced by the tools employed by an attacker
(Rouse, 2003). However, purely adding vulnerability patching into existing CPSs may
create back-doors that allow exploits to happen. Increasing attacks were recorded that
target directly OT networks, including the Stuxnet worm (Falliere, Murchu, and Chien,
2011) andmultiple ransomware based attacks likeRansomware Impacting PipelineOp-
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erations, Alert (AA20-049A) (2020).

The proliferation of CPSs into CIs such as an energy-distribution system requires trust.
Such trust is supported by cybersecurity of CPS networked structures to withstand ma-
licious attacks, prevent intrusions and sustain resilience of physical processes (Nguyen,
Ali, and Yue, 2017) (Khaitan and McCalley, 2015) (Bordel et al., 2017). Due to the com-
plexities and challenges unique to these vulnerable networks, there are no easy solutions
to CI cybersecurity problems. For example, limited computing resources are available
to networked devices, which are embedded in physical processes.

2.1.5 POWER GRID SECURITY AND MANUFACTURING SECURITY

This thesis proposes vulnerability analysis approaches that support risk assessment of
CIs and are validated in the domains of power-grids and manufacturing systems, as dis-
cussed in this section. The power grid is the infrastructure supplying electrical energy
with increasing challenges of efficiency and reliability, while energy is paramount to eco-
nomic development and social welfare. Manufacturing system sets up the foundation for
production of goods that help maintaining of the society.

The growth and scale of both power-grid and manufacturing systems’ complexity are
ever-evolving due to the fast expansion of networked applications. Taking the power-
grid system as an example, it is distinguished by the enormous scale and intricate inter-
connections of the network carrying power flows. The network includes power compo-
nents tied up together via transmission and distribution lines to form a complex system
connecting power-generation sources to power-consuming loads. Power is, however,
difficult to store, which requires continuous real-time supply-demand synchronization.
The power grid employs CPS in evolution from aging power-delivery systems, in order to
optimize and protect electricity delivery operations (Humayed et al., 2017). These pro-
cesses could be facilitated by the analysis of data that originate from the different layers
composing the CPS in power-grid architectures. For instance, the control layer includes
a network of microprocessor-controlled physical objects, such as RTUs, which interface
with physical process sensors and actuators. On top of the cyber-physical layer, con-
trol center applications process these measurements to support operational power-flow
decisions to balance the supplied and demanded power flows (Knapp and Langill, 2014).

Manufacturing systems face similar challenges in cybersecurity protection due to the
increasing connectivity facilitated by communication links within and across CPS net-
works, as shown in Figure 2.5. In the physical layer, engineers or operators could locally
maintainworkstations using local stations orHMIs. In the control layer, OT administra-
tors, engineers or operators could remotelymaintainworkstations using remote stations
or through a virtual private network (VPN), to optimize production operations. Then,
engineers use control and command servers to process these data to support operational
production decisions, and to synchronize their operations. The top cyber layer expresses
decision-support analytics to manage the underlying control system operations, in an
enterprise platform of application servers and datastore. The application servers pro-
vide various application services, such as computer aided design (CAD) server, software-
update server, time-unit server, and web server. The datastore includes process-data
server, historian database, and domain controller. Specifically, design engineers use
CAD program to design product through application servers and store the correspond-
ing 3D-model files in data-store servers. Software administrators use software-update
server to update outdated firmware or system software, with the support from historian-
database. The process data server stores and transmits design, process and manufac-
turing data from production flow, which supports file transfer between data analyzers.
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The historian database stores historical data from application servers, which is queried
by operators to monitor production processes. The domain controller reserves user-
information, and supports corresponding authorization maintained by administrators.

Figure 2.5: Layered structure of manufacturing system

Froman abstract level, power grid andmanufacturing systems share similar CPS layered
structures, as illustrated earlier in Figure 2.3. However, such a new interdependent
relationship between different systems also introduce new vulnerabilities to the system.
Such dependencies need to be identified and assessed systematically.

Dynamic and complex physical processes involve further multi-domain enterprise man-
agement procedures, which may result in communication gaps throughout intercon-
nected application-specific sub-systems of the overall critical infrastructure fabric (Wu
et al., 2018). Taking the manufacturing system shown in Figure 2.3 as an example, Nu-
merical controllers (NC) machining part describes a production system typically across
four stages, namely part-design that defines its product and manufacturing informa-
tion (PMI) data, process planning that creates the detailed NC machining process data,
part machining that runs this process data on computer numerical controller (CNC)ma-
chines and the tool condition data to monitor the production process, as well as quality-
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inspection that involves quality-assessment data. Groups of application-specific staff are
responsible for design, machining, and inspection activities within the production pro-
cess, such as designer, process planner, CNC machine operator and quality inspector.
Software administrators are mainly responsible for operational and maintenance tasks
to ensure capabilities of software-as-a-service within the cloud-based environment, to
enable the services of software programs such as CAD and computer-aided manufactur-
ing (CAM) programs. However, in current manufacturing management structures, the
communication between different groups is limited due to inherent differences in work-
ing contents. A successful attack that propagates without notice could result in severe
impact, due to lack of communication through manufacturing networked-layers and re-
lated operators such as network administrators, application-specific engineers and se-
curity managers. Therefore, a concrete model should be based on multiple sources of
heterogeneous data which needs to be transformed into a common semantic represen-
tation (Välja et al., 2018), and in a machine readable format, to improve a common view
of situation awareness. Our proposed taxonomy supports a greater level of communica-
tion between vulnerability-handling stakeholders to enhance such cybersecurity situa-
tion awareness.

2.2 VULNERABILITY DATA SOURCE TAXONOMIES

This section provides an overview of vulnerability data sources and open taxonomies
used in this thesis, which are categorized into scoring mechanism, enumeration, vul-
nerability repository, and sharing standard. This section analyzes the semantics of six
widely adopted cybersecurity enumerations (e.g., CWE), and study the accessibility, in-
terpretability and syntax of seven commonly used cybersecurity repositories (e.g., CVE
and Shodan).

Table 2.2 lists the features of vulnerability instance CVE-2021-36745 that are extracted
from the collected CVE andNVD data sets. The description allocated by CVE is used for
further analysis by NVD, vendors, and third-party analysts. In addition, NVD provides
vulnerable system configurations in CPE metadata format, weakness ID assigned from
CWE, and also severity scores in CVSS V2 and V3, separately.

2.2.1 SCORING MECHANISM

CVSS is developed and maintained by the CVSS Special Interest Group and reported
in the Forum for Incident Response and Security Teams. CVSS standard scheme is
widely used to support quantitative vulnerability-severity assessment in both academic
research (Khazaei, Ghasemzadeh, and Derhami, 2016) (Johnson et al., 2016b) (Spanos,
Angelis, and Toloudis, 2017) and security-critical industrial domains (Stine et al., 2017).
Using CVSS mechanisms, a vulnerability instance could be identified by different types
of properties measured through inherent metrics following a range of corresponding
measurement values (Pendleton et al., 2016). The principal properties of an asset vul-
nerability are categorized into three groups, namely Base, Temporal, and Environmen-
tal properties. The base-property refers to inherent characteristics of a vulnerability that
do not change over time or over deployment environments.

We first introduce base score properties ofCVSS Version 2 or V2, which are grouped into
two classifications, namely exploitability P v2

Exploit and impact P
v2
Impact properties, which

we discuss next.
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Table 2.2: Example of collected information for vulnerability CVE-2021-36745

Feature Name Source Value

CVE ID CVE CVE-2021-36745

CVE Description CVE

A vulnerability in Trend Micro ServerProtect for Storage 6.0, ServerProtect

for EMC Celerra 5.8, ServerProtect for Network Appliance Filers 5.8, and

ServerProtect for Microsoft Windows/Novell Netware 5.8 could allow a

remote attacker to bypass authentication on affected installations.

CVE Reference CVE

https://success.trendmicro.com/jp/solution/000289030

https://success.trendmicro.com/solution/000289038

https://www.zerodayinitiative.com/advisories/ZDI-21-1115/

CVE Allocate Date CVE 2021-07-14

NVD Publish Date NVD 2021-09-29

NVD Last Modified NVD 2021-10-02

NVD Vulnerable Configuration NVD CPE

cpe:2.3:a:trendmicro:serverprotect:5.8:*:*:*:*:emc:*:*

cpe:2.3:a:trendmicro:serverprotect:5.8:*:*:*:*:netapp:*:*

cpe:2.3:a:trendmicro:serverprotect:5.8:*:*:*:*:netware:*:*

cpe:2.3:a:trendmicro:serverprotect:5.8:*:*:*:*:windows:*:*

cpe:2.3:a:trendmicro:serverprotect:6.0:*:*:*:*:storage:*:*

NVD CWE ID NVD CWE-287.

NVD CVSS V3 Score NVD Base score is 9.8.

NVD CVSS V3 Vector NVD CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H.

NVD CVSS V2 Score NVD Base score is 10.

NVD CVSS V2 Vector NVD CVSS:2/AV:N/AC:L/Au:N/C:C/I:C/A:C.

• CVSS V2 Exploitability Property P v2
Exploit quantifies the likelihood as well as the ef-

fort and intricacy to be invested for exploiting a component that would be exposed
to a given vulnerability. This exploitability property utilizes a set of three metrics for
measurement, namely AccessVector (AV), AccessComplexity (AC) and Authentica-
tion (Au). The Access Vector metric measures the likelihood for an attack scenario
targeting the component to occur through this vulnerability, through aphysical-based,
an adjacent network based, or a network-based access. The effort that needs to be
investedmay vary across these scenarios, quantified as part of the Access Complexity
metric. The Authentication metric evaluates the level of authentication an attacker
needs to require before launching an attack.

• CVSS V2 Impact Property P v2
Impact groups metrics along the (CIA) triad, to quantify

the magnitude of potential losses of Confidentiality (C), Integrity (I) and/or Avail-
ability (A).Measurements along thesemetrics categorize the severity levels impacted
by the vulnerability as none- (N), low- (L) or high- (H).

Next, we explain the base score properties of CVSS Version 3 or V3. These base proper-
ties are further grouped under three classifications, namely exploitabilityP v3

Exploit, scope

P v3
Scope, and impact P

v3
Impact properties. Impact property of CVSS V3 share the samemet-

rics as the impact property of CVSS V2, and therefore would not be discussed.

• CVSS V3 Exploitability Property P v3
Exploit combines the following metrics: Attack-

Vector (AV), AttackComplexity (AC), PrivilegesRequired (PR) and UserInteraction
(UI). The Attack Vector and the Attack Complexity metrics measure similar aspects
as the Access Vector and Access Complexity metrics of CVSS V2. Along the path of
an attack scenario, some credentials or privileges may be required. The level of these
requirements is measured by the Privileges Required metric, for an agent with au-
thority to be granted access to the component. And, the level of participation that is
expected in order to exploit and compromised the vulnerable component ismeasured
by the User Interaction metric.
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• CVSS V3 Scope Property P v3
Scope measures the propagation of a vulnerability from

a targeted component to eventually grant access to others within an asset configu-
ration, through a metric named ScopeChange (or S). The Scope metric is used to
measure the extent to which other components than the vulnerable one, can be ac-
cessed.

• CVSS V3 Impact Property P v3
Impact adopts the same metrics as the CVSS V2 impact

property.

Temporal properties refer to the dynamic characteristics of a vulnerability, which changes
over time. This is because the exploits complexity of a vulnerability might change due
to exploit techniques used by attackers as well as patch-techniques’ enhancement from
security experts. The exploit-techniques’ evolution can be measured by ExploitCode-
Maturity, while the patch-techniques’ enhancement can be measured by Remediation-
Level. Another interesting character of a temporal property is its vendor dependence,
which affects the degree of credibility of the vulnerability instance using the metric Re-
portConfidence (Wang, Zhang, and Xia, 2008).

Environment properties emerge from the dynamic characteristics of a vulnerability that
vary across different deployment environments. This is because the vulnerable asset
may be deployed in a different location of the infrastructure that influences the central-
ity and functional importance aspects within the CPS infrastructure, which reflects the
magnitude of induced consequences from successfully exploiting the vulnerability. The
environmental property can be measured by SecurityRequirements, characterized by
ModifiedBaseMetrics that factor in weights towards base metrics.

CVSS combines the above properties to infer vulnerability level rating its severity based
on a rule-based algorithm, which is further depicted in Expression 2.1 that use mea-
surements of Exploitability, Scope and Impact property metrics to generate the Base
score of a vulnerability. Considering a component c of a CPS asset C, exploitability and
impact propertymeasurements are extracted as illustrated Expressions 2.2 and 2.3, sep-
arately. To infer a score of a vulnerability v for a component c, a function measures the
corresponding base properties: fExploit, fScope and fImpact, as illustrated by the fBase

function illustrated by Expression 2.1.

f
v2
Base = (P

v2
Exploit, P

v2
Impact), orf

v3
Base = (P

v3
Exploit, P

v3
Scope, P

v3
Impact) (2.1)

In Expression 2.1, vulnerability measurements vector vi are collected for component ci
by Expressions 2.2 and 2.3. f ∶A→ B means a functional association.

fExploit∶C → PExploit (2.2)

fImpact∶C → PImpact (2.3)

Taking the vulnerability instance CVE-2021-37172 (2021) as an example, this vulnera-
bility instance affects Siemens PLC product running SIMATIC S7-1200 CPU family with
firmware version number 4.5.0 (i.e., the vulnerable component), by allowing a threat
agent to bypass authentication and download arbitrary programs to this PLC (i.e., the
vulnerable CPS asset). This vulnerability has a CVSS version 3 base score of 7.5, which
is further composed of an exploitability score of 3.9 as well as an impact score of 3.6.
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CVSS maps a numerical score to a qualitative severity level. Vulnerability severities are
rated as ’low’ (V2 score ∈ [0.0−3.9]), ’medium’ (V2 score ∈ [4.0−6.9]), or ’high’ (V2 score
∈ [7.0 − 10.0]) according to the CVSS V2 Documentation (2022). While according to the
CVSS V3 Documentation (2022), vulnerability severities are rated as ’none’ (V3 score
= [0.0]), ’low’ (V3 score ∈ [0.1−3.9]), ’medium’ (V3 score ∈ [4.0−6.9]), or ’high’ (V3 score
∈ [7.0 − 8.9]), or ’critical’ (V3score ∈ [9.0 − 10.0]).

2.2.2 ENUMERATIONS

Open enumerations are advocated to itemize system weakness, instances of malicious
attacks’ categorizations, and vulnerable system configuration to guide a cybersecurity-
analysis process. This thesis presents more details of five enumerations briefly intro-
duced in section 1.2.

This sub-section introduces several major cybersecurity enumerations. These standards
include respectively a taxonomy from cwe, threat categorization from the website CVE
Details (2022) and attack patterns from Common Attack Pattern Enumeration and
Classification (CAPEC) (2022), as well as Adversarial Tactics, Techniques, and Com-
mon Knowledge (ATT&CK) (2022). Besides, security analysts need to match a current
system configuration with retrieved vulnerability reports from enumerations like vul-
nerable product dictionary from CPE and recommended secure system configurations
from Common Configuration Enumeration (CCE) (2022).

(i) Common Weakness Enumeration (CWE) and Weakness Labels

CWE provides a comprehensive dictionary and classification taxonomyof knownvulner-
abilities. CWE version 4.6 currently provides three concept-views on the CWE official
site, i.e., views by Software Development, by Hardware Design, and by Research Con-
cepts. In total, there are 924 documentedweaknesses in theCWE database (last checked
November 3, 2021). These weaknesses have been used to construct 44 different views
or ontologies, some of which cross-reference each other. Different ontologies are in-
troduced either as rigorous academic studies or ad hoc collections based on experience.
One example is the direct mapping from CVE-ID(s) to CWE-ID(s) that is carried out
manually by security analysts like NVD analysts. Another well-known attempt of CWE
ontology is the installment of the OpenWeb Application Security Project Top Ten 2021
(2022) list that groups and categories CWEs and selects the top ten weaknesses with the
highest exploitability, impact and incident rate in web application security. Platforms
likeComputerAided Integration ofRequirements and Information Security (2022) and
IriusRisk (2022) employCWE for vulnerability patterns analysis. CAIRIS requiresman-
ual definitions for each vulnerability and attack while selecting templates imported from
CWE. Similarly, CWE libraries are loaded at application startup time and are accessible
in IriusRisk, to provide references to threat modeling.

The CWE hierarchy follows a top-down format from Pillar (which has a set of 10 CWE-
IDs), to Class (which has a set of 100 CWE-IDs), then to Base (which has a set of 533
CWE-IDs), and finally to Variant (which has a set of 297 CWE-IDs). Class-level CWE
item provides a broad overview of a vulnerability type and is independent of any im-
plementation. Base- and Variant-level CWE items provide finer granularity vulnerabil-
ity types. CWE adopts a hierarchical structure where the top categories contain tree-
structure patterns. Non-root lower level CWE nodes inherit the characteristics of the
parent nodes (Aghaei, Shadid, and Al-Shaer, 2020). Although tree-based ontologies are
useful for understanding and clustering weaknesses (Han et al., 2018), the applications
of ontology-based frameworks are limited due to the complexity of extracting and cata-

37



CHAPTER 2 KEY CONCEPTS AND BACKGROUND KNOWLEDGE

loging CWEs from vulnerability repositories (Ruohonen and Leppänen, 2018).

The current CWE version 4.6 (last checked November 3, 2021) contains a list of 1250
CWE items that are identifiable withCWE-IDs. EachCWE item further contains names,
descriptions, views, demonstrative examples, potential mitigations, memberships, and
may have mappings to CAPEC-IDs and references. In total, there are 323 CWE items
that have related attack patterns with CAPEC-IDs. The remaining 927 CWE items have
no correlated attack patterns. For instance, CWE-369, CWE-476 and CWE-787 (shown
later in Table 5.2) have no related attack type.

CWE entries address key features of exploitability and consequences of a vulnerabil-
ity. Recall the vulnerability instance CVE-2021-36745 (shown in Table 2.2), its assigned
CWE-ID is ’287’ with a name as ’Improper Authentication’. The supportive information
of CWE-287 undertakes additional features that are not included in the original report
of this instance, and include: (i) What is the weakness? (The software does not prove
or insufficiently proves that an actor’s claim is correct); (ii) How likely is this weakness
exploited? (High); (iii) What are the common consequences? (Read application data, or
gain privileges, or assume identity, or execute unauthorized commands).

(ii) Common Attack Pattern Enumeration and Classification (CAPEC)

CAPEC sets forth a common set of identification for cyber attack patterns. CAPEC ver-
sion 3.6 currently provides two views on the CAPEC site (last checked November 3,
2021), i.e., Mechanisms of Attack and Domains of Attack. CAPEC adopt similar hi-
erarchical patterns as CWE. The CAPEC hierarchy follows this top-down format from
View to Category, to Meta, then to Standard, and finally to Detailed. There exists the
potential for some attack patterns to align with more than one category depending on
one’s perspective. Techniques refer to the actions that adversaries need to perform in
order to accomplish goals, which are translated into various tactics. The current CAPEC
version 3.6 contains a list of 546 attack patterns, each of which has a CAPEC-ID, name
and description for each ID, the likelihood of an attack, typical severity, dependent at-
tack pattern(s), views, prerequisites, mappings to CWE-ID(s) and all required external
references. Currently, there is no explicit link between CVE-ID(s) and CAPEC-ID(s),
which is in fact correlated through CVE->CWE and CWE->CAPEC. For instance, CWE-
287 discussed in the previous section is correlated to ten different CAPEC-IDs such as
CAPEC-114 (“Authentication Abuse”) and CAPEC-151 (“Identity Spoofing”). Addition-
ally, some CAPEC entries are further correlated to the ATT&CK taxonomy, of which the
details are seen in CAPEC ViewWith Entry ID 658 (2022).

(iii) Adversary Tactics, Techniques and Common Knowledge (ATT&CK)

ATT&CK is adopted to build threat awareness into cybersecurity solutions. ATT&CK
contains a comprehensive matrix of known adversary tactics and techniques used dur-
ing cyberattacks (Strom et al., 2018) (Al-Shaer, Spring, and Christou, 2020). It is inter-
preted as tactics that describes the tactical goal or the reason for an adversary to perform
an action, techniques that suggest how an adversary performs a malicious action, and
procedures that hint a specific implementation an adversary uses for techniques. There
are also sub-techniques that are specific categorical malicious behaviors. ATT&CK pro-
vides a structured taxonomy to describe adversary behaviors in three major domains,
namely Enterprise,Mobile and ICS domains. The Enterprise domain covers adversary
tactics and techniques on standard IT systems like Linux or Windows based OS. The
Mobile domain contains attacks on mobile devices. And lastly, the ICS domain includes
attacks targeting CPS based systems, particularly ICSs. The lasted version of ATT&CK
is version 10 (last checked November 3, 2021). Unlike CWE and CAPEC, ATT&CK doc-
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uments do not cover CVE examples for each ATT&CK-ID. Nevertheless, mappings from
CVE-ID(s) toATT&CK-ID(s) are partially accessible through the pipeline ofCVE->CWE,
CWE->CAPEC, and finally CAPEC->ATT&CK-ID(s). One example is the mapping of
CVE-2012-0931 to ATT&CK-T1548, as shown in Table 2.3.

Table 2.3: Example of CVE-ID mapping to ATT&CK

CVE-ID CWE-ID(s) CAPEC-ID(s) ATT&CK-ID(s)

CVE-2021-3440
CWE-269

(i.e., Improper Privilege Management)

CAPEC-122

(i.e., Privilege Abuse)
N/A

CAPEC-233

(i.e., Privilege Escalation)

T1548

(i.e., Abuse Elevation Control Mechanism)

CAPEC-58

(i.e., Restful Privilege Elevation)
N/A

(iv) cvedetails.com and Threat Labels

The website cvedetails.com provides 13 threat types that a vulnerability instancemay be
exposed to, namely DoS, Code Execution, Overflow, Memory Corruption, SQL Injec-
tion, XSS (or cross-site scripting), Directory Traversal, HTTP Response Splitting, By-
pass Something,Gain Information,Gain Privileges, cross-site request forgery (CSRF),
and File Inclusion. Note that these 13 threat types are regarded as vulnerability types
in the cvedetails.com website. This thesis defines these types as threat types as they are
closer to the symptoms than to the root causes. Figure 2.6 shows the distributions of
threat types. The top 3 threat types in terms of the number of vulnerability instances are
Code Execution, DoS and Overflow with more than 39k, 26k and 20k instances, sepa-
rately (last checked November 3, 2021).

Figure 2.6: Threat type (assigned by cvedetails.com) distributions for vulnerabili-
ties published from 1999 to November 3, 2021

(v) Common Platform Enumeration (CPE)

CPE provides a vulnerable product dictionary. The current version of CPE is 2.3, which
is included in the Security Content Automation Protocol (SCAP) standard version 1.2 by
the U.S. NIST for cybersecurity automation. The current CPE 2.3 naming specification
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follows a formatted string binding and an abstract logical construction known as well-
formed CPE name. One example is VMWare vCenter Server 6.7 that is expressed as
cpe:2.3:a:vmware:vcenter_server:6.7:-:*:*:*:*:*:*. This string binding is interpreted
aswfn:[part=“a”, vendor=”vmware”, product=”vcenter_server”, version=”6.7”]. Here
part can have three values, namely ”h” that refers to hardware device, ”o” that refers to
operating system, or “a”that refers to software application. Note that the CPEmetadata
also indicates the applicable vulnerable system configurations. For example, vulnera-
bility instance CVE-2020-0964 (2020) describes a remote code execution vulnerability
in Windows Graphics Device Interface, which applies to a list of servers like Windows
Server 2016 andWindows Server 2019. Another vulnerability instance CVE-2020-0966
(2021) indicates a remote code execution vulnerability in the VBScript, which is only
applicable to Windows Server 2016 and 2019 when Internet Explorer 11 is running on
the server. Note that vendor names in CPE metadata may appear with variations. For
example, the vendor Schneider Electric SE has variant forms like “schneider-electric”,
chneider-electric”, and schneider-electic”.

2.2.3 VULNERABILITY REPOSITORY

Security-related data can usually be obtained in two ways: (i) direct access using soft-
ware like vulnerability scanner; and (ii) indirect access using existing online public datasets.
Direct data collection approaches are suitable for short-term analytics, or a compara-
tively small amount of collected data (Xin et al., 2018). There exist other indirect offline
accesses to security datasets. However, those data accesses usually require stakeholders’
authorization or ethical concerns. This thesis concentrates on online public datasets.

This sub-section mainly introduces seven enumerations. CVE, NVD, and CERT Coor-
dination Center (CC) Vulnerability Note Database (VND) (2022) have been recognized
as standard resources for security analysis that publish vulnerability reports regularly.
Additional available sources of security-related data could be gathered in online forums
such as Exploit Database (2022) and SecurityFocus Forum (2021), third-party analysts
such as ICS-CERT, Shodan Database (2022) (or sentient hyper-optimized data access
network) and VulDB, as well as manufacturer websites such asMSRC. The SecurityFo-
cus archive is shut down in January 2021 and not accessible. SecurityFocus is included
in this chapter as some of the experiments conducted earlier involve the SecurityFocus
dataset.

(i) Common Vulnerability Enumeration (CVE)

MITRE Corporation publishes CVE and assigns an identifier to each discovered vulner-
ability. In addition, it maintains a publicly accessible database of all identifiers through
CVE Numbering Authorities (2022). A typical CVE entry includes the following fields:
a unique identifier, a brief description of the reported vulnerability, and any pertinent
references about the vulnerability, as illustrated in the example of vulnerability instance
CVE-2021-37172 (2021) in Figure 2.7. The unique CVE identifier, or CVE ID, is the
key that differentiates one security vulnerability from another. In doing so, CVE IDs
provide a reliable way of communicating across these different databases to get more
information about the reported security flaws. CVE unstructured data can be down-
loaded in CSV, JSON (provided by the CVE AutomationWorking Group (2022)), XML,
or a XML-based Common Vulnerability Reporting Framework (2021) (CVRF) formats.
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Figure 2.7: CVE-2021-37172 as an example of published vulnerabilities in CVE

(ii) CERT/CC Vulnerability Note Database (VND)

Carnegie Mellon University initialized and maintained CERT/CC VND to provide infor-
mation about software vulnerabilities, with more than 3 500 vulnerability notes till Oc-
tober 2021 (Madnick, Li, and Choucri, 2009). The CERT Coordination Center Vulnera-
bility Data Archive (2020) is incomplete, as addressed by the organizer that only around
6%of received reports have been analyzed, published and disclosed asCERTVulnerabil-
ity Notes (2020). CERT/CC also develops a Python-based web platform named VINCE
for easier data retrieval and interactions. VINCE API delivers both raw JSON data and
vulnerability cases in CVRF format. Each vulnerability note in CERT/CC contains an ID
(e.g., VU#883754), an overview, a detailed description, the impact of this vulnerability,
vendor statements (not mandatory), as well as mitigations and references. CERT/CC
vulnerability archive is independent from CVE, even though some vulnerability notes in
CERT/CC provide cross-references to CVE vulnerabilities, i.e., CVE IDs.

(iii) ExploitDB

Exploit Database (2022) discloses public exploits, PoC and shellcode to demonstrate
how a vulnerability can be exploited (Almukaynizi et al., 2017). An exploit normally
contains a title, description, PoC code, andmetadata like exploit ID, CVE-ID, and CWE-
ID. According to a study by Sun et al. (2021), 73.5% exploits were announced publicly in
ExploitDB at least one day earlier than the published date of the corresponding CVEs.
In contrast, around 28% exploits disclosed in ExploitDB have no assigned CVEs. Figure
2.8 presents an example of published exploit in ExploitDB without any correlated CVE-
ID. This exploit report also clarifies the affected product, version, potential impact and
PoC exploit.

An interesting investigation from Cyentia Institute and Security (2018) shows that the
rate of active exploitation is correlated to the date when the vulnerability is published as
well as the date when the relevant exploit is published. They further argue that “roughly
two out of every three exploited CVEs have associated published code. When an exploit
code is published, the chance to observe an exploitation vector in thewild is seven times
higher than without a published exploit code”.

(iv) SecurityFocus

SecurityFocus Forum (2021) is a widely used vulnerability database and also features a
security news portal (Fang et al., 2020). Besides vulnerability descriptions, SecurityFo-
cus also addresses whether a vulnerability has a PoC exploit. Note that SecurityFocus
is not dependent upon CVE data sources (Rodriguez et al., 2018). Actually, a BugTraq
vulnerability report may refer to several CVE vulnerability instances. A statistic analysis
by Fang et al. (2020) highlights that although the amount of vulnerabilities reported in
SecurityFocus is less than the number of vulnerabilities found in NVD, the fraction of
exploited vulnerabilities in SecurityFocus (37.008%) is much higher than the propor-
tion in NVD (6.676%). Fang et al. (2020) also observe that the vulnerability reports in
SecurityFocus contain higher coverage andmore reference significance in predictive cy-
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Figure 2.8: EDB-ID 44655 as an example of published exploits in ExploitDB

bersecurity analysis, leading to their experiment results where SecurityFocus performs
better than NVD in an actual environment.

(v) US-CERT

The United States Computer Emergency Response Team (2022) provides two major
advisories towards CI and key resources cyber information sharing. One is ICS-CERT
Advisories (2022) advisory that focuses on control systems’ security. The other is CERT
Alerts (2022) that provides an early warning of a single specific threat or vulnerability
expected to have a significant impact once exploited. The ICS-CERT advisories add fur-
ther analysis on reported vulnerabilities in CVE, particularly on risk evaluation, affected
products, and mitigations such as workarounds or official patches.

(vi) Shodan

Shodan Database (2022) is a search engine that scans the internet to find open ports.
It is also a data source mainly targeting CPS or IoT security, including SCADA (Bo-
denheim et al., 2014). CPS and IoT systems include devices like webcams, routers,
and servers. Relevant information like ports and vulnerabilities of these devices can
be fetched through Shodan website or Shodan API. Interestingly, these are currently
internet-connected devices, sending (public) live data from different locations across
the world. Unlike NVD, where vulnerability reports are published, Shodan crawls IP
addresses, made available on device respective websites and APIs. Returned data from
Shodan can be cross-referenced with NVD for vulnerability analysis (Fagroud et al.,
2020). To get the API key of Shodan, the user needs to hold either an enterprise ac-
count or an academic account.
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(vii) National Vulnerability Database (NVD)

National Vulnerability Database (NVD) (2022) is built upon CVE entries to provide
enhanced information for each entry, such as severity scores (calculated based on CVSS
standard) and impact ratings. Newly disclosed CVE entries typically appear in NVD
within an hour, as written in CVEs and the NVD Process (2022). NVD also provides ad-
vanced searching features such as by OS, by vendor name, by product name, by version
number, and by vulnerability type and severity (Spanos, Angelis, and Toloudis, 2017).
The vulnerability severity score is calculated following the CVSS version 3 and version
2 standards. NVD converts the unstructured CVE data into structured JSON or XML
formats (Anwar et al., 2020). NVD adopted a subset of CWE to categorize vulnerabil-
ities. In 2019 September, NVD upgraded the CWE subset mapping to the CWE-1003
list. Also, since 2019 November, NVD consumed CNA’s CVSS scores and CWE classes,
together with CVSS scores and CWE data assigned byNVD (Byers, Waltermire, Turner,
et al., 2020).

Figure 2.9: CVE-2021-1529 as an example of published vulnerabilities in NVD

The vulnerability analysis process takes time. One example is the vulnerability instance
CVE-2021-1529 disclosed in CVE on October 20th, 2021. This vulnerability is assigned
a CVSS version 3 base-score of 7.8 by the vendor CISCO, while waiting for a CVSS score
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to be assigned byNVD analysts manually, as shown in Figure 2.9 (a). NVD then assigns
a score with the same value as CISCO-assigned score to this vulnerability on October 26,
2021, as shown in Figure 2.9 (b). In addition, the vulnerability-related features, such as
affected product, CWE-ID and references, are also marked in Figure 2.9.

2.3 VULNERABILITY LIFECYCLE

Figure 2.10 presents a typical vulnerability lifecycle, including Creation, Discovery, Ex-
ploit, Disclosure, Countermeasure Available and Patch stages (Joh and Malaiya, 2011).
An application software with bug or backdoor may give rise to design and implemen-
tation weaknesses. When such weaknesses are discovered, attacks may be triggered to
exploit the vulnerabilities. A thorough understanding of the vulnerability lifecycle en-
hances the ability to defend against potential threats. Discovery stage refers to the first
timewhen a vulnerability is discovered and reported (usually in a private group). Exploit
stage is the time when an exploit for a vulnerability occurs. Disclosure stage is defined
as the time when a vulnerability is publicly disclosed by a certain party. PoC or working
code for exploiting a vulnerability may be available before or after the disclosure. Coun-
termeasureAvailable stage refers to the timewhen a fix or aworkaround by a third party
is available, which is contrasted to Patch stage when the vendor or the originator re-
leases an official fix. Between discovery and disclosure stages, the vulnerability instance
is only known to private groups. While after disclosure, the knowledge is known by the
public. Therefore, the time span between Discovery and Disclosure increases prospects
for exploits to occur, while post-disclosure leads to patching opportunities (Arora et al.,
2006).

Figure 2.10: Vulnerability lifecycle adapted from Frei et al. (2006)

Early detection or identification of vulnerabilities minimizes the window of exposure
(Frei et al., 2006), which enhances the security of a system. The tool andmethodused for
vulnerability identification vary according to the application context, as demonstrated by
Antunes andVieira (2014). Normally, two types of approaches are advocated to pinpoint
vulnerabilities and unravel their corresponding attributes, namely static (passive) vul-
nerability identification and live (run-time) vulnerability detection (Neuhaus and Zim-
mermann, 2010) (Austin, Holmgreen, and Williams, 2013). Static approaches include
penetration testing (Bertoglio and Zorzo, 2017), vulnerability code pattern recognition,
or passive reconnaissance, especially in software debugging or web-based environment
(O’Hare, Macfarlane, and Lo, 2019). Software vulnerability differs to other vulnerability
categories (e.g., hardware vulnerability) in that software vulnerability is closer to fault,
flaw or bug (Ghaffarian and Shahriari, 2017). Antunes and Vieira (2014) conduct an
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evaluation of eight different web-services vulnerability-detection tools, including four
penetration testing tools, three static code analysis tools and one anomaly detection
tool. The run-time vulnerability detection approach involves either a (nearly) real-time
system-wide vulnerability scanner or anomaly detection system (Farris et al., 2018).
Vulnerability scanners have been adopted to capture attackers’ activities in mainly net-
work based environments. For example, Holm et al. (2011) collect information by a
network-scanner. Then, collected information is synchronously comparedwith a database
of vulnerability-signatures to identify security patterns. Static- and live-vulnerability
identification methods are combined to produce multiple sources of correlated data in
some studies like (Jajodia et al., 2011).

Vulnerability-categorization approach requires the exploration of reported vulnerabil-
ities in a vulnerability database to identify vulnerability patterns, such as the methods
proposed by Huang et al. (2010), Almukaynizi et al. (2017), Bozorgi et al. (2010) and
Christey and Martin (2007). As discussed in the earlier section, databases like CVE ac-
cumulates vulnerability reports for more than 23 years (from 1999 till now), and could
provide a basis for offline security-practices or vulnerability-trends analysis (Chang et
al., 2011). CWE provides a comprehensive dictionary and classification taxonomy of
known vulnerabilities. It adopts a top-down hierarchical structure where the top cat-
egories can contain tree-structure patterns. Although tree-based ontologies are use-
ful for understanding and clustering weaknesses (Han et al., 2018), the applications of
ontology-based frameworks are limited due to the complexity of extracting and cata-
loging CWEs from vulnerability repositories (Ruohonen and Leppänen, 2018). The doc-
umented weaknesses in CWE have been used to construct different ontologies in which
references may cross each other. Some other efforts into vulnerability classification in-
clude manual categorization of operation-system vulnerabilities by Abbott et al. (1976),
as well as more advanced classification methods based on ML algorithms like the works
by Na, Kim, and Kim (2016), Chen et al. (2019) and Huang et al. (2019).

Vulnerability assessment plays a key role in patching prioritization and decisionmaking
(Hong, Kim, and Haqiq, 2014), which is categorized into qualitative methods and quan-
titative methods. Qualitative models primarily address relationships among vulnerabil-
ity and risk and express vulnerability observations based on non-numerical data, such
as those employed in risk management frameworks: CRAMM (Farquhar, 1991)(Yazar,
2002), OCTAVE (Alberts et al., 2003), CORAS (Fredriksen et al., 2002)(Den Braber et
al., 2007), Aurum (Ekelhart, Fenz, and Neubauer, 2009), ISO/IEC 27005. Although
qualitative approaches provide mitigation guidelines to manage risks through corre-
sponding vulnerabilities (Shamala, Ahmad, and Yusoff, 2013), their abstract manage-
ment procedures normally require experts’ knowledge to manually regulate the assess-
ment process (Ryan et al., 2012). Quantitative assessment, on the other hand, measures
the likelihood and impact of a vulnerability to prioritize patching exercises (Allodi and
Massacci, 2017). Some quantitative approaches such as the one from Houmb, Fran-
queira, and Engum (2010) employ the industrial standard CVSS as metrics to evaluate
vulnerability scores. Another method for quantitative vulnerability assessment is to use
a testbed for vulnerability and threat scenario simulation (Holm et al., 2015). For in-
stance, Negi et al. (2019) develop a power-distribution testbed to evaluate some vulner-
abilities in SCADA systems.

Vulnerability remediation may involve various strategies, such as updates, patches, and
improving system access-control. Considering the expanding amount of vulnerabilities
that need to be dealt with, a remediation strategy needs to focus on only a subset of vul-
nerabilities (Nayak et al., 2014). Such prioritization is usually connected with vulnera-
bility severity and exploit likelihood (Fruhwirth and Mannisto, 2009) (Hong, Kim, and
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Haqiq, 2014). Different approaches tometrics have been suggested tomeasure these two
factors, including applying probabilisticmetrics through threats, attacks and vulnerabil-
ities tools (Jajodia et al., 2011), or directly using CVSSmetrics (Houmb, Franqueira, and
Engum, 2010) (Joh and Malaiya, 2011). Remediation focus should cover vulnerabilities
that may result in security incidents and an efficiency attribute.

Several studies link remediation and patching to vulnerability lifecycle, especially the
windowof exposurebetween vulnerability discovery and available patch (Arbaugh, Fithen,
and McHugh, 2000). Frei et al. (2006) suggest one of the earliest works on this topic.
They collect vulnerability records from NVD, OSVDB (referring to the open source vul-
nerabilty database) and other online cybersecurity repositories like CERT and Securi-
tyFocus, to empirically analyze the correlation between risk exposure with discovery-,
exploitation-, disclosure- and patch-time.

Most existing vulnerability assessment techniques are based on scheduled analysis life-
cycle, which can be weekly, monthly, or even yearly. This poses a limitation in secu-
rity management of safety-critical systems such as CIs, as malicious attempts may use
new exploits that occur between successive analysis milestones (Arbaugh, Fithen, and
McHugh, 2000). Scheduled analysis may leave a gap between a vulnerability exploit oc-
currence and the deployment of an available patch (Shahzad, Shafiq, and Liu, 2012). On
the contrary, a timely vulnerability-analysis lifecycle allows mitigations to occur within
the time interval that span the discovery and disclosure of vulnerabilities. It also gives
time for vulnerability patches to be available and deployed before the release time of
exploits. Moreover, vulnerability assessment needs to adjust to fluctuating operational
functionalities and changing threat-landscape, dynamically (Xu, 2019) (Xu, 2014). A
closed-loopmodel that is sensitive to these dynamics is needed to provide near real-time
risk-monitoring (Chen, Cho, and Xu, 2018). Such timely analysis method contrasts with
traditional linear cycles within rigidmanagement portfolios, whichmay tolerate security
gaps and exploits occurrence beyond disclosure limits (Frei et al., 2006). The proposed
approaches in this thesis short thewindow of exposure through timely vulnerability as-
sessment.
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DATA DRIVEN VULNERABILITY
ANALYSIS

This chapter elaborates on current state-of-the-art vulnerability analysis research. Namely,
ontologies and data-driven cybersecurity approaches and their application to CIs pro-
tection are discussed. The goal is to highlight the benefits of data-driven vulnerability
analytics for cybersecuty decision-making solutions.

3.1 VULNERABILITY DATA PREPARATION

Research efforts are rising in cyber intelligence exploiting increasing data from public
vulnerability repositories and technical blogs (Liao et al., 2016). The increasing avail-
ability of public accessible cybersecurity databases provides a basis for further vulnera-
bility analytics. Data is crucial for machine learning applications, as learning algorithms
require adequate data to classify patterns or acquire predictive abilities. ML systems
acquire knowledge by training, absorbing new data as they iteratively perfect their anal-
ysis. Consequently, the accessibility of precise and conflict-free data sources is crucial
from a security standpoint.

3.1.1 CORRELATIONS AMONG VULNERABILITY DATA

Databases such as the CVE repository accumulate vulnerability reports for around 20
years, which could provide a basis for vulnerability-trends analysis (Na, Kim, and Kim,
2016) (Russo et al., 2019). Tools like CVE-Search (2022) (referring to a web interface
andAPI for CVE) andOpenVulnerability andAssessment Language (OVAL) (2022) are
some of the common techniques used to identify and manage organization vulnerabili-
ties in a vendor-independent environment. Application of these tools leads to stream-
lined approaches that retrieve vulnerabilities from public repositories in support of vul-
nerability assessment applications (Siboni et al., 2019). Besides, some commercialized
vulnerability management and assessment products, such as InsightVM (2022) from
Rapid7 Research,Nessus (2022) and Tenable.io from Tenable, deploy system scans that
are matched with the CVE repository to monitor vulnerabilities and exposures of infras-
tructures. Although there have been more efforts by the industry to integrate security
tools into a wider framework, this process is often very vendor-specific, leaving the bur-
den on the security team for addressing ad-hoc security challenges.

Statistical interpretations of CVE andNVD datasets need to be combined with other live
security-related data sources, such as Twitter, the dark web, and product vendors across
deployed infrastructures, to raise reliability and precision of security indicators (Sauer-
wein et al., 2019). The reason is that using a single data source for cybersecurity analysis
may introduce a bias. This is exemplified in the works of Chen et al. (2019) and Bullough
et al. (2017), both of which extract vulnerability-related data by crawling Twitter and ex-
tracting tweets that containCVE as a keyword. The goal of doing this is to connect related
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analysis into broader statistical associations. For example, one study from Allodi and
Massacci (2014) correlates NVD to data sources such as Exploit Database (2022), and
Symantec (2022) AttackSignature and ThreatExplorer. Geer and Roytman (2013) cor-
relate the NVD database with data sources such as ExploitDB andMetasploit (2022) to
support penetration testers. However, further research that incorporates heterogeneous
data from different databases while providing structured indicators is limited (Dong et
al., 2019).

Various frameworks, ontologies and languages are proposed to enhance the interop-
erability of distributed cybersecurity data sources, with some examples such as SCAP,
OVAL, CybOX, STIX, TAXII and CVRF (Brown, Gommers, and Serrano, 2015) (Kam-
panakis, 2014). Ontologies provide a formal and explicit way with structured indicators
to specify concepts and relationships, and are therefore beneficial in cybersecurity in-
formation correlation. One representative of such works is the unified cybersecurity
ontology proposed by Syed et al. (2016), which links multiple vulnerability databases
(e.g., CVE, CWE, CAPEC), STIX (referring to structured threat information expression)
version 1, as well as other ontologies. However, the reasoning ability of the unified cy-
bersecurity ontology needs to be improved further. In a related research, Kotenko et al.
(2018) propose an ontological storage that covers various cybersecurity databases by se-
mantically interconnecting different cybersecurity objects, using ontology web language
(OWL) and a description logic query language (based on SPARQL). The data sources
implemented in their study are divided into groups to statistically analyze their connec-
tions, e.g., CAPEC, CVE and CWE in one group. However, the applicability and com-
plexity of correlating all these databases are not considered. Doynikova, Fedorchenko,
and Kotenko (2019) further extend the ontology with domain-specific security metrics,
such as infrastructure metrics and event metrics. Still, information regarding the same
vulnerability instance is not integrated into a single unified package from various data
sources. Brazhuk (2019) uses similar techniques to correlate attack patterns in CAPEC
and weakness concepts in CWE using OWL and SPARQL query languages.

Some works use ontological databases to support high-level reasoning, such as tran-
sitive closure and subsumption, to further improve threat intelligence. For example,
Alqahtani, Eghan, and Rilling (2016a) use a symbolic-approach to improve knowledge
management in cyber threat intelligence (CTI). Their framework applies a probabilistic
semantic similarity measure to establish bi-directional traceability links between secu-
rity databases, which is demonstrated using NVD andMaven build repository. Yet, pair-
matching instances of these two data-sources and the following data-validation process
are manually conducted, whichmight be prone to human errors. The same authors pro-
pose a unified ontology-basedmodeling approach for software vulnerability data sources
in Alqahtani, Eghan, and Rilling (2016b). However, generating new knowledge through
the manipulation of symbols is not included in this work. Nevertheless, reasoning ca-
pability is vital to support situation awareness in cybersecurity decision-making (John-
son et al., 2016a). Mavroeidis and Bromander (2017) summarize some of the common
challenges in applying ontology for threat intelligence. They particularly highlight the
lack of expressiveness and complication of combining different ontologies due to various
terms associated with similar concepts. The authors also argue that most of the existing
ontologies explicitly target specific threat/vulnerability categories, and therefore those
ontologies limit the decision process to those threats/vulnerabilities only.

Nevertheless, there is a lack of common terminology that allows data interoperabil-
ity and systematic analytics (Torkura, Cheng, and Meinel, 2016). Most of the exist-
ing studies are focused on data from a single database or have tailored their solutions
to accommodate disparate data models and terminologies in use. Such methods usu-
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ally require distinctive expertise for the employed data sources. Extensive remodel-
ing or minor refinement is needed depending on the level of heterogeneity of these de-
ployed sources. Translating standalone data objects and enumerations into a common
data model (CDM) generates the possibility of study validation and systematic analytics
across various data sources.

This thesis suggests a CDM to correlate diverse cybersecurity repositories or standards.
This CDM allows us to collect unstructured and semi-structured data items from mul-
tiple public repositories, and to transfer them into structured data. Using this CDM,
we integrate different data sources into semantic categories considering data instance
co-occurrences. This approach contrasts with rigid traditional management portfolios,
whichmay tolerate security gaps and exploits beyond disclosure limits. The strengths of
our data curation approach are two-fold: (i) we collect unstructured and semi-structured
data items from multiple public repositories, and transfer them into structured data;
and (ii) we integrate these several sources into a single database using a CDM. In other
words, vulnerability instances are collected synchronously from repositories, to assist
operators in evaluating up-to-date vulnerability trends, and to further narrow the risk
window induced by the discovered vulnerabilities.

3.1.2 VULNERABILITY DATA QUALITY

Recent developments in data analytics need data-driven vulnerability assessments, in
which the data held and provided in the aforementioned repositories can be found in a
variety of formats. These research and commercial solutions rely significantly on the in-
tegrationmultiple pieces of open-source vulnerability information, making it imperative
to settle disagreements and prove the accuracy of such information.

However, some recent research works exemplify that the data quality of online vulnera-
bility databases suffers fromdiversity, incompleteness, and redundancy, which hampers
accurate vulnerability assessment (Jo et al., 2020) (Chaparro et al., 2017) (Anwar et al.,
2020) (Dong et al., 2019). For instance, SecurityFocus and ExploitDB contain vulnera-
bilities that are yet to be reported inCVE. Thus, inferred decisions based on cybersecurity
measurements need to include a wide range of vulnerability data repositories. Incom-
plete (Chaparro et al., 2017), outdated and incorrect vulnerability entries, may leave a
risk window for potential zero-day attacks (Nappa et al., 2015) (Nappa et al., 2015). For
instance, around 25%CVE reports that involveGoogle Chrome as affected products have
incorrect Chrome version strings (Nguyen and Massacci, 2013). Additionally, varying
CVE reporting templates make the reports too ambiguous to know what specific vulner-
ability it is referring to, forcing the reader to make assumptions about its meaning. For
example, the attack types are reported using the consequence of the incident, the attack
pattern, or the name of the device being targeted. CVE repository analytics involve rec-
ognizing vulnerability patterns based on severity scores. However, some CVE reports
are neither scored, nor classified, which limits their mapping to some threat models and
thus reduces mitigation effectiveness (Ladd, 2017). Recently reported instances are no-
tably lacking such scoring valuations, yet they are crucial for computing severity scores
that would otherwise result in poor patching decisions (Householder et al., 2017). Mean-
while, scanning through individual vulnerability reports may induce confusion since a
single vulnerability report may address multiple vulnerability cases, e.g., a software em-
bedded inmultiple vendor components. Similarly, multiple reported casesmay describe
the same vulnerability, e.g., multiple reported components embedding a variation in the
same software version. Therefore, vulnerability disclosure in these repositories cannot
be directly used to identify known vulnerability instances in deployed system compo-
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nents (Ruohonen, 2019). Instead, such instances need to be clustered into known pat-
terns.

Nappa et al. (2015) make substantial efforts to identify and report discrepancies in NVD
vulnerability entries. They crawl online security advisories in the Mozilla website and
compared extracted vulnerable version ranges published inNVD. They summarize three
main inaccurate issues of NVD entries, namely missing vulnerable versions, extraneous
vulnerable versions, and missing vulnerable program file versions. The third issue is
particularly true forMicrosoft products such asmsword.exe. Dong et al. (2019) conduct
quantitative analysis on vulnerable software version inconsistencies between CVE and
NVD. Their experimental data includes vulnerabilities reported from January 1999 to
March 2018, which indicates that only 59.82% of the CVE summaries strictly match the
standardized NVD entries. They also compare the matching rate of vulnerable software
versions between NVD against CVE and five other public cybersecurity data sources,
namely OpenWall, Security Focus, Security Focus Forum, Security Tracker, and Ex-
ploitDB. Their results show that the matching rate between NVD and ExploitDB is the
highest, followed by the matching rate between NVD and CVE. Ruohonen and Leppä-
nen (2018) apply information retrieval techniques as an alternative to support keyword-
based searches in four data sources tracked in the Snyk vulnerability database. Based
on their model performance using similarity metrics, they argue that neither CWE nor
OWASP is ideal for constructing a reference corpus.

Jo et al. (2020) develop a tool, GapFinder, based on the text-mining technique to identify
semantic inconsistencies and technical inconsistencies of open-source malware threat
reports. By combining malware graph constructor with named entity recognition and
relation extraction language processing techniques, their tool also addresses various
language-specific issues and malware domain-specific issues. Anwar et al. (2020) per-
form a systematic evaluation of the consistency and completeness of NVD data feeds,
based on which they further improve the quality of the data. Farhang et al. (2020) have
investigated the degree to which Android smartphone vendors have included vulnera-
bilities in their security bulletins and found significant differences in the timeliness of
reporting and the consistency of the reports.

This thesis includes three studies to analyze data quality issues in publicly accessible vul-
nerability repositories. Firstly, we carried out a baseline study to explore existing repos-
itories and how to access them, as well as the data characteristics of one of the most
commonly used repositories, NVD. Secondly, we facilitated a survey among CI stake-
holders to understand the current usage of security databases and vulnerability scoring
mechanisms in CI vulnerability analysis, and also to investigate different perceptions
and user expectations of vulnerability repositories from CI cybersecurity practitioners.
Thirdly, we performed a case study about the impact of data quality issues on vulnerabil-
ity analysis of real-world IT and OT systems. These three studies look closely at whether
or not current vulnerability repositories can help with the practice of CI vulnerability
assessment. This further indicates the related challenges facing CI cybersecurity stake-
holders.

3.2 MACHINE LEARNING FOR VULNERABILITY
ANALYTIC

Emerging adversary strategies necessitate the development of new monitoring mecha-
nisms to remediate the security gaps caused by the revealed vulnerabilities. Security in-
telligence appears to be an attractive methodology supported by vulnerability databases
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and machine learning tools.

Contemporary advances in data-driven decision-making processes that are equipped
with AI tools profoundly broaden the boundaries of traditional human decision-making
processes (Buczak and Guven, 2015) (Larose, 2015), especially with ML techniques.
Here, AI refers to the broad area of computer science that empowers machines with hu-
man intelligence (Smith and Eckroth, 2017). ML is a subset of AI that employs statistical
learning algorithms to learn and improve from human-like experiences, and is usually
categorized into supervised, unsupervised and reinforcement learning approaches (Xin
et al., 2018). Even though ML for cybersecurity is a new field, it plays an important
role in addressing certain problems related to cybersecurity (Chan et al., 2019) (Dilek,
Çakır, and Aydın, 2015). For example, ML enhances automation and helps by reducing
false positives in traditional cybersecurity solutions, and traditional labor-intensive data
triage can be automated through event correlation rules to ease the burden of human an-
alysts (Le, Chen, and Babar, 2021).

3.2.1 MACHINE LEARNING TECHNIQUES FOR VULNERABILITY
ASSESSMENT

Kijewski and Pawliński (2014) suggest that automation is vital to copingwith the flood of
internal alerts and externally received information about vulnerabilities. ML techniques
enhance automation and reasoning capabilities, improve performance, and support bet-
ter prediction analysis of conventional cybersecurity solutions. To be effective, a ML
approach requires big data whereby embedded data-mining algorithms empowered by
ML techniques contribute to advanced analytics, that focus on extracting patterns (e.g.,
exploit patterns (Husari et al., 2017) and vulnerability patterns), or forecasting vulner-
ability trends (Buczak and Guven, 2015).

Retrieved information from vulnerability data sources supports further pattern recog-
nition or trend analysis. The first large-scale vulnerability trend analysis uses the large
and rapidly changing volume of CVE data as input, but manually selected CWE cate-
gories as topic-identifiers (Christey and Martin, 2007). However, this process could re-
sult in information loss, as not all vulnerabilities were accounted for in fixed data-sets.
Therefore, it is desirable to automate the analysis process by translating natural language
statements used in vulnerability reports into a machine-readable format and to apply
text-mining techniques to extract patterned insights (Andrade et al., 2019). Traditional
text-processing techniques fail to capture semantic similarities betweenwords, and thus,
the classification accuracy of resulting vulnerability patterns is decreased. Neuhaus and
Zimmermann (2010) apply topic model based on latent dirichlet allocation (LDA) to an-
alyze vulnerability trends using reports from CVE. A topic model can automatically ex-
tract topics from a textual corpus. Chen, Thomas, and Hassan (2016) further elaborate
a survey of topic-modeling applications in software repositories.

Pattern-based methods are commonly used for vulnerability categorization and assess-
ment (Andrade et al., 2019) (Torres, Comesaña, andGarc ía-Nieto, 2019). In thesemeth-
ods, feature-engineering approaches are used to extract textual descriptors that distin-
guish between vulnerabilities, detect anomalies, and generate a vectorial- or a graphical
representation of vulnerability attributes used in pattern recognition processes. Extract-
ing valid features is crucial to the effectiveness and applicability of ML. The choice of the
features can be either determined manually by individual experts, or generated semi-
automatically using natural language processing (NLP) techniques. A manual feature
engineering process may benefit from experts’ insights, while an automatic or semi-
automatic process can effectively extract features from a larger corpus. Some of the
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commonly-used NLP and text-mining techniques are summarized in Table 3.1 with re-
lated referenced papers. More details on related text-mining techniques are provided in
Section 7.2.

ML techniques such as text-mining are applied to automatically classify disclosed vul-
nerabilities and guide predictive analytics of the security gap. Text-mining techniques
have been widely used to collect cyber threat intelligence from cybersecurity reposito-
ries and technical blogs (Liao et al., 2016), to retrieve attack patterns (Husari et al.,
2017), and to assess vulnerability severity (Khazaei, Ghasemzadeh, and Derhami, 2016)
(Spanos, Angelis, and Toloudis, 2017). The effectiveness of text-mining techniques has
been illustrated in a study by Bozorgi et al. (2010). They employ support vector ma-
chine (SVM) to predict time-to-exploit indicators of reported vulnerabilities on theOpen
Source Vulnerability Database (OSVDB) and CVE. They train a SVM classifier using
the exploit-classification status reported in OSVDB as ground truth. Zhu and Dumitraş
(2016) apply NLP to extract malware detection features, from research papers automat-
ically. The system they proposed, FeatureSmith specifically generates features for de-
tecting Android malware through a semantic network. This system also mirrors human
reasoning processes. Zhu and Dumitras (2018) also propose a ChainSmith system with
multi-class classifiers to extract features from security articles for indicators of compro-
mise (IOCs). Liao et al. (2016) systematically collect cyber-threat intelligence from tech-
nical blogs. From these technical blogs and reports, the authors mine IOC by matching
them to the OpenIOC ontology through a rule-based extraction method. Yi et al. (2020)
adapt an ensemble model to include rule-based, dictionary-based, and conditional ran-
dom fields-based extractors, to further improve the performance of cybersecurity entity
extraction. Scandariato et al. (2014) adapt bag-of-words for feature extraction, and em-
ploy Naïve Bayes and Random Forest classifiers for software-vulnerability classification
and prediction. Bullough et al. (2017) evaluate performances of several prior ML mod-
els, including the SVMmodel fromBozorgi et al. (2010), to quantify the influence of class
imbalance, as well as how training and testing datasets are divided. They use PoC ex-
ploits in ExploitDB as ground truths and extract training data fromNVD. Kuppa, Aouad,
and Le-Khac (2021) apply a multi-head joint embedding neural network model to map
62,000CVE records to 37ATT&CK techniques. Themethod they propose enrichesCVEs
with attack technique labels through NLP techniques and multi-label text classification
models. Zhang, Caragea, and Ou (2011) use NVD data to predict the time until the next
undiscovered vulnerability is reported in a particular piece of software. Bullough et al.
(2017) evaluate performances of various ML models to generate predictions on vulner-
ability exploitation based on data from NVD and Twitter. They implement multiple ML
models in their system to evaluate the influence of class imbalance and how training
and testing datasets are divided. They also argue that using Twitter for vulnerability
exploitability analysis is not practical.

Targeting CVSS base score generation, Gawron, Cheng, andMeinel (2017) apply Neural
Networks andNaiveBayes algorithms. In contrast, Yamamoto,Miyamoto, andNakayama
(2015) deploy supervised LDA for CVSS metrics classification. Nevertheless, using cor-
related cybersecurity data sources also raises potential inconsistencies, such as the dis-
parity between scores for the same vulnerability instances (Johnson et al., 2016b). One
drawback of previous AI-based CVSS computing approaches is that they directly adopt
the vulnerability reports and CVSS scores from NVD as training grounds, which may
induce a bias in their model.

In comparison, we correlate vulnerability instances inNVDwith the corresponding ven-
dor reports and third-party cybersecurity analysts such as CERT reports to consolidate
data sources. As a result, the relevant information is integrated into a unified struc-
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ture as the training grounds. In doing so, our approach streamlines the computation of
vulnerability severity to address such inconsistencies upstream to optimize security in-
vestments and shorten the potential risk window. Our proposed approaches utilize ML
algorithms to streamline vulnerability assessments. We first initialize a vulnerability
scoring system to rate the severity of a reported vulnerability instance, whereby stan-
dard CVSS metrics are used as a scoring basis to evaluate vulnerabilities’ exploitability
and the consequence of maliciously exploiting those vulnerabilities. This approach ad-
dresses compatibility issues across different CVSS versions, while automating vulnera-
bility analysis. We also suggest a weakness categorizationmodel that associates a higher
abstraction level CWE-ID with a vulnerability report.

3.2.2 ENSEMBLE METHOD

The aforementioned ML-based works primarily focus on how to use ML techniques to
make cybersecurity deductions and decisions in an automatedmanner, with limited con-
tributions to the following aspects. Firstly, the availability of precise and conflict-free
data sources is paramount considering security implications. Secondly, deployment of
ML usage remains underutilized. The deployment of AI in various tools also contributes
to the issues of interoperability and compatibility (Heelan, 2011). Nevertheless, exist-
ing ML-based methods are usually driven by specific cybersecurity problems such as
detecting exploits. These customized approaches require specified ML algorithms and
adjusted parameters to achieve optimized performances. Yet, a thorough vulnerability-
driven cybersecurity assessment needs to consider various aspects such as vulnerability
categorization, severity evaluation and exploit prediction. These diverse aspects require
different learning models. Different models perform diversely for various tasks. For
example, logistic regression (LR) (Almukaynizi et al., 2017) (Zhang, Caragea, and Ou,
2011) algorithm does not require heavy computing sources, but its prediction accuracy
may be lower compared with more CPU-intensive neural network (NN) (Zhou et al.,
2016) training. There is no one-size-fits-all solution that handles diverse classification
and clustering tasks in a uniform manner (Torres, Comesaña, and Garc ía-Nieto, 2019)
(Oprea et al., 2018). This is especially true in vulnerability analysis, considering the
difficulty in the evaluation of related cybersecurity properties and the subsequent clas-
sification imbalance or bias (Sommer and Paxson, 2010).

Unlike a singular ML model, an ensemble method combines multiple ML models to
produce one optimal predictive model (Tong, Liu, and Wang, 2018) (Lower and Zhan,
2020). Most ensemble approaches have built-in techniques to handle class imbalance.
The effectiveness of ensembleML techniques has been exemplified in the studies that are
discussed later (Resende and Drummond, 2018). An example is a study carried out by
Vanerio and Casas (2017) in which a supervised learning method named Super Learner
is proposed to find the optimal ensemble model for anomaly detection. Li et al. (2017)
utilize binary classification and k-nearest neighbor (KNN) classifiers into a hybrid intru-
sion detection solution. Similarly, Rajagopal, Kundapur, and Hareesha (2020) develop
an ensemble paradigm based on meta-classification and stacking generalization, while
also targeting prediction accuracy enhancement of network intrusions. Identifying base
ML algorithms that can perform a security-focused classification task is crucial for con-
structing effective ensemble models that suit cybersecurity needs, such as improving
the accuracy of attack detection (Seni and Elder, 2010) (Dietterich, 2000). For exam-
ple, Fang et al. (2020) employ the LightGBM algorithm as their ensemble technique to
predict exploits and track the footprints of vulnerabilities. These studies present wide
applications of ensemble approaches, and thus reveal the potential of utilizing ensemble
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techniques to improve general model performances such as prediction accuracy. How-
ever, there have been few attempts to use ensemble methods for multiple vulnerability-
analysis purposes.

It is also critical to construct an appropriate combination scheme for selected base ML
algorithms (Onan, Korukoğlu, and Bulut, 2016). Common ensemble models combine
several individual models by taking the average or a weighted average of these individ-
ual models. Some mechanisms for such an ensemble construction are voting (Kittler
et al., 1998), bagging (Breiman, 1996), boosting (Freund and Schapire, 1995), stack-
ing (Wolpert, 1992), mixture of experts (Waterhouse, MacKay, Robinson, et al., 1996),
among others. A hard-voting scheme (or majority voting) is used only when the pre-
dicted labels are available. If continuous outputs such as posterior probabilities are ac-
cessible, a soft-voting scheme (or average voting) or other linear combinations may be
adopted (Kittler et al., 1998). Stackingmethods (Wolpert, 1992) are also used to train the
output classifier, while taking feedback from input classifiers as new features. In bagging
(Breiman, 1996) and boosting methods, homogeneous classifiers are usually trained us-
ing different samples of the dataset, to produce an ensemble model that is more robust
than the individual classifiers. Both bagging and boostingmechanisms entail a large size
of initial data to capture most of the complexity of the underlying distribution, in order
to ensure that sampling from the dataset represents a good approximation of the real
distribution. Some other construction mechanisms include adaptive ensemble models
that handle non-stationary time series. For example, Larcher Jr and Barbosa (2019) ap-
ply adaptive ensemble methods to enhance the trade-off between cybersecurity require-
ments and system efficiency. Adaptive ensemble methods usually use weighted voting
techniques that vary attribute weights across classifiers depending on selected metrics.
Such a process can be further improved by taking into consideration outperformingmet-
rics for more adaptive predictions (Quintal et al., 2020).

This thesis proposes an ensemble approach that combines independent classifiers while
taking input data from heterogeneous cybersecurity sources on top of the vulnerabil-
ity data curation process. which will be discussed later in Chapter 6 and the gap-filling
MLmechanisms for CVSS and CWE categorizations. This approach yields better perfor-
mance for cybersecurity classification tasks, while improving flexibility in handling di-
verse cybersecurity analysis missions. More specifically, we suggest an optimization al-
gorithm that selects the best ML base algorithm(s) to construct effective ensemble mod-
els for diverse cybersecurity mission targets. Furthermore, a variant of cross-validation
is adopted to minimize possible over-fitting across classification tasks (Van der Laan,
Polley, andHubbard, 2007). The optimization algorithmexplores all combination schemes
for selecting the best-performing ML-based instances.

3.3 SYSTEM-WIDE VULNERABILITY ANALYSIS

System-driven vulnerability assessment focuses primarily on thewholeCI system, rather
than on individual components (Kure, Islam, and Razzaque, 2018). Identifying individ-
ual vulnerabilities only is not sufficient or adequate in today’s complex systems (Am-
mann, Wijesekera, and Kaushik, 2002). In system-driven techniques, chief security of-
ficers acquire the system’s vulnerability score at the highest level. This is derived iter-
atively from the interdependent system components. Assessing the risk of a complex
critical infrastructure, such as a power-grid system, necessitates the consideration of
several vulnerabilities across highly interdependent CI components.
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3.3.1 SEMANTIC MODEL

System-driven vulnerability assessment focuses primarily on thewholeCI system, rather
than individual components (Kure, Islam, and Razzaque, 2018). Identifying individual
vulnerabilities only is not sufficient or adequate in today’s complex systems (Ammann,
Wijesekera, and Kaushik, 2002). In system-driven approaches, chief security officers
obtain a system’s high-level vulnerability score. This is derived iteratively from the sys-
tem parts that interact with each other. Risk assessment of a complex critical infrastruc-
ture like a power-grid system involves various vulnerabilities across highly interdepen-
dent CI components.

Risk assessment of a complex CI such as a power-grid system involves analyzing various
vulnerabilities across highly interdependent IT and OT components. Identifying only
individual vulnerabilities and threats is not sufficient in today’s complex systems (Kure,
Islam, and Razzaque, 2018). Different modeling attempts have been made to pinpoint
both individual vulnerabilities (e.g., legacy software) and structural vulnerabilities (e.g.,
lack of network segmentation) (Blockley et al., 2002). Data visualization models such
as tree structures, directed graphs, and logic diagrams are widely used for system-wide
cybersecurity assessment or exploit modeling (Noel et al., 2016) (Lallie, Debattista, and
Bal, 2018). However, many of the previous tree structures or graph-based studies are
usually ad-hoc to specific system structures or network environments to evaluate the
likelihood or the possible consequence of exploiting specific vulnerabilities, such as DoS
and Man-in-the-Middle (MiTM). Flexibility and extensibility are usually not the prime
designing criteria (Noel et al., 2016). In other words, existing cybersecurity assessment
frameworksmay require substantial reconstruction to validate a different type of vulner-
ability, and are therefore neither effective nor economical. Moreover, the experimental
datasets or evaluation datasets are mostly not published, which makes the process hard
to reproduce (Eckhart and Ekelhart, 2018).

Many valuable frameworks are proposed to address increasing security issues in the OT
systems, including NIST SP 800-82 for the ICS security (Stouffer, Falco, Scarfone, et al.,
2011), NIST Cyber Security Framework for Improving Critical Infrastructure Cyberse-
curity (2014), andNorth American Electric Reliability Corporation Critical Infrastruc-
ture Protection (2008) standards. In addition, several international standards specif-
ically focus on security in the domain of the smart grid, such as IEC 62351 (entitled
“Power systems management and associated information exchange. Data and com-
munications security”) and NISTIR 7628 Rev. 1 (entitled “Guidelines for Smart Grid
Cyber Security”), which are summarized by Ruland et al. (2017). Due to the IT and OT
convergence introduced in the previous section, the scientific community and the indus-
try continue to search for solutions to bridge the gaps between IT and OT security. How-
ever, (Conklin, 2016) suggests that the adaption of IT-specific security regulations(e.g.,
NIST SP 800-53) in OT security directives (e.g., NIST SP 800-82) leaves the fundamen-
tal business objective differences between IT and OT systems unaddressed.

Risk modeling languages, such as semantic maps and ontologies, for model-based se-
curity engineering have been proven to be scalable and flexible (Nguyen, Ali, and Yue,
2017) (Zhou et al., 2012). Several enterprise architecture frameworks have been de-
veloped to support risk presentation and analysis, such as CORAS by Fredriksen et al.
(2002). There are also newer works such as Secure-i* by Liu, Eric, and Mylopoulos
(2009) and Secure-Tropos by Mouratidis and Giorgini (2007). These semantic works
are beneficial, yet the most of them are overly generic. Thus, these works rely on the
proficiency of their consumers. In order to conduct an effective cybersecurity analysis,
ontologies developed for cybersecurity reasons and CI operations must be combined.
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There have been few attempts to create a single ontology for IT/OT security in CIs,
as the varied descriptive terminology given in these two domains result in consider-
able heterogeneity and little interoperability. Some works (e.g., (Venkata, Kamongi,
and Kavi, 2018) (Mozzaquatro et al., 2018)) connect Common Platform Enumeration
(CPE) (2022) ontology with vulnerability databases, meaning that vulnerability infor-
mation for different components can be integrated into their ontology. In these works,
ontologies are applied to provide a formal and explicit way to specify concepts and re-
lationships. In the study by Venkata, Kamongi, and Kavi (2018), for instance, pub-
lic vulnerability data seeds from repositories such as Common Platform Enumeration
(CPE) (2022) (CVE andCPEare correlated to their ontology knowledge base, and further
mapped through the STRIDE (Khan et al., 2017) threat categorization. However, this
work does not consider further reasoning and logical analysis of how its ontology cor-
relates with various vulnerabilities, threats, and mitigations. Mozzaquatro et al. (2016)
propose an IoTSec ontology-based framework that combines both model-driven devel-
opment and ontology-driven development. This framework covers two use-case scenar-
ios, i.e., one for design purposes and the other for run-time system security monitoring
and management. Mozzaquatro et al. (2018) further extend the IoTSec reference ontol-
ogy into a database of IoT cybersecurity knowledge (vulnerability, threat, and prevention
mechanism) to support cybersecurity analysis.

Enterprise modeling has also been proposed for supporting cybersecurity management
by a number of authors. Pavleska et al. (2019) develop a reference architecture for eval-
uating information security of an enterprise architecture. Their conceptual framework
covers security goals, vulnerabilities, threats, and security measures, all being linked
to the enterprise model. The reference architecture is a guideline to manually assess
the security status of an enterprise, using its enterprise model. Grandry, Feltus, and
Dubois (2013) extend the ArchiMate meta-model by cyber security concepts such as
risks, threats, vulnerabilities, security goals, and countermeasures. Efforts to include
security aspects into ArchiMate (Ellerm and Morales-Trujillo, 2020) predominantly fo-
cus on design rather than analysis of vulnerabilities. ArchiMate is not (yet) designed to
cover the plethora of OT and physical components found in CIs like smart grids.

Our taxonomy is based on existing models and our own CI investigations. When es-
tablishing vulnerability attributes for our CI entities, for instance, we adopted and im-
proved upon the CVRF framework (Schiffman, 2011) to make cybersecurity information
exchangewith large security alert repositories such asNVDmore accessible. In doing so,
we propose a taxonomy that includes IT andOT components, their attributes such as po-
tential vulnerabilities, and their linkages, which can serve as the foundation for IT/OT
convergence research. Then, we construct power-grid reference models that demon-
strate the applicability of our taxonomy in bridging terminologies used in the IT and OT
cybersecurity domains to improve situational awareness of CI cybersecurity.

3.3.2 REFERENCE ARCHITECTURE

Reference models are widely used in systemmodeling or model-based system engineer-
ing to support security-driven analysis (Cloutier et al., 2010). They capture the typical
topological structure and functional relationships of designs. By generalizing these com-
mon traits, they promote reusability. In the smart grid study and its sub-field, reference
model research has been conducted to provide formal and clear guidelines for the design
of power-grid architectures. The IEEE P2030 Smart Grid Interoperability Framework
(Photovoltaics and Storage, 2011), the EUMandateM490 SGAM (Gottschalk, Uslar, and
Delfs, 2017), and others are examples of national or international initiatives to standard-
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ize the smart grid.

Some studies attempt to enhance both abstraction and extensibility of the power-grid
reference architecture through ontology ormeta-modeling. Irlbeck et al. (2013) propose
a bottom-up reference architecture for smart grid and discusses the problems and goals
associated with establishing such designs in Europe. Bytschkow et al. (2014) present
a CPS reference framework, which is then used to describe cross-domain relationships
in the smart grid and automotive sectors. Korman et al. (2016) offer a reference archi-
tecture to combine advanced metering infrastructure and cybersecurity research, with
the reference model serving as an instance of their suggested meta-model. Their smart
metering reference model conforms to UML syntax and provides automated EA (enter-
prise architecture) analysis via OCL or P2AMF implementation. They indicate that a
reference model alone cannot satisfy all needs, such as availability, uncertainty, and the
expression of validation constraints. Reference models in conjunction with a modeling
tool can instead meet these needs at a higher level. They further improve their smart-
grid referencemodel to provide functional anddata-flow-oriented reference architecture
models to automate security evaluations and cyber-attack simulations. Their work fo-
cuses mostly on the cyber network model for smart metering and related load balancing
capabilities. The European SEGRID project (SEGRID Consortium, 2017) also provide
significant reference models for smart grids, but focuses solely on communication and
enterprise modeling while ignoring the physical components. It also offers minimal in-
formation on the controlling network and other components.

The majority of current power-grid reference models aim to provide architectural snap-
shots. However, adaptability and extension of the system structure may not be the pri-
mary design objective. However, the reusability of a reference design is essential for
allowing model updates that bring the suggested architecture up to date. The proposed
cyber-physical reference models for the power grid offer reusability and efficiency with
standardized virtual replicas for cyber connections, cyber-physical configuration, and
physical operations. Using the proposed taxonomy, the instantiated reference models
can be easily maintained and adjusted. In the meanwhile, we considered noteworthy
contributions from smart-grid-related documents such as the IEC 62351 series.

3.3.3 CYBER-PHYSICAL DEPENDENCE ANALYSIS

A complex CI is a SoS that integrates a collection of devices to achieve the desired ca-
pabilities (Uslar et al., 2019). In addition, there are complex interaction dependen-
cies between interconnected components (Kong, 2019). The dependencies in such a
SoS are divided into inter- and intra-dependencies. The inter-dependencies and intra-
dependencies of CIs such as smart grids implicitly determine the cascading effects and
the system resilience under potential attacks or failures (Marashi, Sarvestani, and Hur-
son, 2017).

Akbarzadeh andKatsikas (2021) suggest an application ofmodeling and simulationmeth-
ods to study CPSs and detect dependency chains. They also provide an approach to iden-
tifying and analyzing inter-dependencies and intra-dependencies between subsystems
of a complex system by quantitative measures of the impact of dependency, suscepti-
bility of dependency, and weight of dependency. Besides the study by Akbarzadeh and
Katsikas (2021), valuable research works have been carried out for modeling dependen-
cies in CIs in terms of cybersecurity enhancement of such complex systems (Chopade
and Bikdash, 2011). Ouyang (2014) reviews six significant types of approaches for mod-
eling interdependencies among CIs, such as empirical approaches and agent-based ap-
proaches, and suggested the necessity of an open modeling framework to allow adjust-
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ment of CI models. König et al. (2019) propose a combination of local and global views
and illustrates the common practical division of the physical and cyber domains. They
use a limited number of data elements, including assets, interdependencies, and link-
ages between assets, as well as events and alerts linked with assets. The physical and
cyber parts require these items of the system. They also provide a high-level descrip-
tion of how these parts inter-operate, which expands awareness from “knowing what”to
“knowing what will happen next”, thus solving the core responsibilities of effective risk
management. Kwasinski (2020) study the network and physics of the power grid de-
pendence within the domain and confirms the cyber-physical properties of the power
grid. This study shows that internal dependence reduces the resilience of the power sys-
tem, while service buffers (such as energy storage or data connection re-establishment
wait times) help to limit the impact of internal dependencies on resilience. Therefore,
understanding and discovery of internal cyber-physical dependencies are essential to
the security analysis of complex CPSs (Chopade and Bikdash, 2011). Actually, lower re-
silience in the cyber-domain vertices is more critical than lower resilience in physical
domain vertices (Kong, 2019).

In this thesis, we modeled intra-dependencies within CIs in order to evaluate the in-
teractions between cyber networks and physical controlling networks. However, inter-
dependencies between connected CIs, such as smart grids and water distribution sys-
tems, are beyond the focus of this research. These intra-dependencies are multidimen-
sional and are classified as functional, logical, geographical, social, and economic con-
nections. Functional dependence means that a task of one component is functionally
dependent on another component (Wang, Xing, and Levitin, 2012) (Zhao and Xing,
2019). Logical dependence is an implied relationship between two components, which is
commonly observed in software development (Oliva et al., 2011). Spatial dependence is
the propensity for two close components to have a greater likelihood of influencing one
another. Two physical servers housed in the same office have an increased risk of fire
propagation, which is a typical example of spatial dependence. In addition, two software
components embedded in the same hardware are interdependent due to the competition
between computing sources. Social dependence implies the influence of social elements
such as energy sector policies. In contrast, economic dependency is related to expendi-
tures or earnings, such as business competitiveness. Social-economic dependence also
encompasses instances in which various entities collaborate and are responsible for dif-
ferent areas of the smart grid (Palm, 2021). This thesis is only concerned with func-
tional dependencies, namely cyber- and cyber-physical functional dependencies. Phys-
ical dependencies such as electricity generation, transmission, and distribution are not
explored in this thesis.

Seven functional dependence rules are defined and expanded in Chapter 8. These func-
tional dependence rules bolster modeling of cascades and criticality analysis. The posi-
tion of a component inside a network systemdifferentiates the component’s significance,
and consequently leads to varying degrees of system failure. Zhu and Milanović (2017)
suggest a way for weighted modeling CPS in which a three-dimensional weighted com-
plex network model is introduced. In heterogeneous systems, the various engineering
structures can be modeled without modifying the topological model. Due to the inter-
dependencies across systems, the sophisticated network-based models expose the sus-
ceptibility of various engineering systems and the essential components that could trig-
ger a cascading failure. Myhre et al. (2020) evaluate the betweenness centrality of the
components in a combined electrical grid and ICT system using complex network the-
ory. Additionally, they model the impact on the system when individual nodes are re-
moved in order to further diagnose crucial nodes. The propagation of defects from the
network to the physical device will have the most negative impact on the system’s re-
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liability. Marashi, Sarvestani, and Hurson (2017) offer an analytical reliability model
that takes into account the consequences of damage to physical and cybe-components,
as well as the effects of cyber-physical linkages between these components.
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CHAPTER 4

RESEARCH METHODS

This chapter explains the research paradigmandmethods utilized throughout the thesis.
Then, a description of the research process is provided to map the proposed research
methodologies to the various research stages. The evaluationmethodologies andmetrics
used for each study strategy are also addressed.

4.1 RESEARCH PARADIGM AND METHODOLOGY

Andersen and Hepburn (2016) characterize scientific activities as “systematic observa-
tion and experimentation, inductive and deductive reasoning, and the formation and
testing of hypotheses and theories”. Scientific methods are the means by which these
activities are conducted to establish facts and reach new conclusions. Saunders, Lewis,
and Thornhill (2009a) compares the research process to the layer-by-layer uncovering
of an onion. This approach depicts a sequence of stages via which various data collec-
tionmethods can be comprehended and defined. This thesis employs the research onion
model to explain the research paradigm, methodology, and tools methodically. Follow-
ing this methodology, the selected study design of this thesis is marked in red, as seen in
Figure 4.1. Robson and McCartan (2016) emphasize that research should be conducted
methodically and ethically. Next, the adopted research paradigm is described to demon-
strate the methodical and ethical nature of the proposed works.

Figure 4.1: Research methodology adapted from the research onion model of Saun-
ders, Lewis, and Thornhill (2009a)
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4.1.1 DESIGN SCIENCE RESEARCH PARADIGM

A research paradigm is a fundamental set of common beliefs and agreements shared
between scientists about how research problems should be understood and addressed,
and how knowledge is gained or created (Kuhn, 2012). A research paradigm comprises
awareness of different theories and practices used to carry out research in a particular
discipline (Creswell and Clark, 2017). Typically there are four main types of paradigms
which are positivism, interpretivism, critical realism, and pragmatism. Positivism and
interpretivism are the two major traditional trends adopted in quantitative and quali-
tative researches, separately (Robson and McCartan, 2016). These two paradigms are
mutually exclusive as positivism is more frequently used in quantitative works that are
independent from human interpretations, while interpretivism is more commonly used
in qualitative works where human interpretations are studied. Critical realism and prag-
matism are related to either positivism and interpretivism. Design science research
(DSR) paradigm is commonly employed within the information system. Hevner (2007)
claims that “design science research is essentially pragmatic in nature due to its em-
phasis on relevance; making a clear contribution into the application environment”.
This paradigm can be viewed as a theoretical construct that describes and explains tech-
nological development (Ropohl, 1999). In this perspective, science and technology are
both indispensable sources of investigation.

According to Oates (2005) and Hevner et al. (2004), a philosophical paradigm can be
characterized using four components, namely ontology, epistemology, methodology and
axiology. Ontology is concerned with assumptions about the form and nature of real-
ity. And hence, ontological assumptions shape how a researcher perceives and stud-
ies research objects. Epistemology refers to the nature of knowledge and also the ways
how knowledge is constituted and transferred (Saunders, Lewis, and Thornhill, 2009b).
Epistemological assumptions definewhat is acceptable, valid, and legitimate knowledge.
Axiological assumptions represent a researcher’s vision of the role of values. The char-
acteristics of the DSR paradigm are further summarized in Table 4.1 using these four
metrics.

Table 4.1: Design science research paradigm adapted from Saunders, Lewis, and
Thornhill (2009b) and Vijay, Bill, and Stacie (2015)

Paradigm Ontology Epistemology Axiology Approach

Design

Science

Multiple meanings;

Depending on the

technological and

social development.

Knowledge is created through

setting objectives and iterations;

Contribution may include

future practices or artifacts.

Value-driven;

Researcher creates,

designs, improves

and understands.

Developmental/practical solutions;

Technological augmentations

to social and individual factors.

A scientific inquiry may take an inductive, deductive, or abduction form (Flick, 2015).
The goal of an inductive research is to generalize and infer theoretical conclusions from
observed data. Whereas, the goal of a deductive research is to test and validate a theo-
retical hypothesis based on a pre-existing theory considering new data. Abduction, on
the other hand, provides the logic to discover grounded theories related to the under-
standing of unstructured phenomena. A DSR paradigm may employ combinations of
inductive, deductive and abduction reasoning during the research process.

66



CHAPTER 4 RESEARCH METHODS

4.1.2 DESIGN SCIENCE METHODOLOGY

Aresearchmethodology describes the general principles to guide research activities (Oates,
2005). The researchquestion and the investigatedphenomenondeterminewhatmethod-
ology can answer the research question most effectively and efficiently. Cybersecurity is
a socio-technical discipline, as introduced earlier in Section 1.7.3. The research prob-
lem and the questions addressed in this thesis require a rich understanding of the cur-
rent socio-technical developments in cybersecurity analysis andmanagement, including
technical evolutions and social actors’ involvement. This thesis focuses on the socio-
technical properties of vulnerability-analysis processes in an iterative to accommodate
new requirements. The far-reaching contribution of this thesis leads to a set of new
methods with embedded models and algorithms to support data-driven vulnerability
analysis in complex CIs. Therefore, the DSR paradigm was considered the most appro-
priate approach to elaborate on the proposed methods.

A research strategy refers to how to combine research methods, and includes mono,
mixed, ormulti-strategy (Saunders, Lewis, andThornhill, 2009b). Mono strategymeans
that only quantitative or only qualitative methodology is chosen. Mixed strategy refers
to combinational methodology with both quantitative and qualitative data are collected.
Multi-strategy is similar to the mixed method in the sense that both quantitative and
qualitativemethodologies exist in the research, but differs in that only one type of data is
collected. In the field of cybersecurity, social sciences and technical sciences play equally
important roles (Trist, 1981). Therefore, cybersecurity research relies upon observations
from both sides to form coherent explanations (Spring, Moore, and Pym, 2017).

According to Simon (2019), DSR originated from the science of the artificial which is
centered around human-made artifacts that meet some actual needs. Hevner and Chat-
terjee (2010) also suggest that DSR “is a research paradigm in which a designer an-
swers questions relevant to human problems via the creation of innovative artifacts,
thereby contributing new knowledge to the body of scientific evidence. The designed
artifacts are both useful and fundamental in understanding that problem”. DSR em-
ploys a combination of different facts (social, behavioral, and formal) to explore, explain
and evaluate actions for the development and future use of artifacts. Such artifact can
be a construct, a model, a framework, an architecture, a method, or an instantiation
(Vijay, Bill, and Stacie, 2015). For example, a construct contains various conceptual ele-
ments, while a model describes the relationships between these elements. A framework
represents the essential structure of the artifact components. Amethod refers to a guide-
line, an algorithm, or a practice to realize the artifact. An instantiation is considered as
the implementation of the artifact in a specified context.

Cybersecurity studies focus on developing such artifacts that provide desired computa-
tional functionswithout being vulnerable to relatively trivialmalicious attacks (Landwehr,
2012). Particularly, this thesis contributes to the knowledge of how to perform vulnera-
bility analysis for complex CIswith the support of publicly accessible vulnerability repos-
itories, by constructing four complementary artifacts (i.e., a vulnerability data model, a
ML-based vulnerability analysis method, a CI vulnerability taxonomy, and a vulnerabil-
ity analysis streamlining method) as well as their instantiations, as introduced earlier in
Section 1.5. In doing so, this thesis enhances the descriptive, prescriptive, and predictive
advances in CI vulnerability analysis practices, as shown in Figure 1.2 in Section 1.4.

Under DSR paradigm, further methodology-related concepts are introduced next to un-
derstand their usage within the context of this thesis.
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4.1.3 RESEARCH METHODS

Gregor (2006) classifies theories for IS into theories for analysis, explanation, predic-
tion, explanation, and prediction, as well as design and action. This thesis utilizes vari-
ous types of theories during different stages of the research process shown in 4.3. More
specifically, theories of explanation are taken into consideration at the initial stage of
research problem awareness to explore the challenges of CI vulnerability analysis using
publicly accessible vulnerability repositories. In addition, theories of design and action
are applied for the design, demonstration, and evaluation of the proposed artifacts to
better measure their utility. Here we present the definitions of these two types of theo-
ries that further influence the selection of research methods:

“A theory of explanation says what is how, why, when, and where. The theory

provides explanations but does not aim to predict with any precision. There are no

testable propositions.

A theory of design and action says how to do something. The theory gives explicit

prescriptions (e.g., methods, techniques, principles of form and function) for

constructing an artifact.”

— Gregor (2006)

A researchmethod depicts how a research task is explored, described, explained, or per-
formed using specific techniques and tools. Hevner et al. (2004) introduce five types of
research methods to evaluate knowledge generated from DSR processes, namely obser-
vational, analytical, experimental, testing, and descriptive methods. Next, we discuss
these five different methods.

• Observational methods include case studies or field studies that are carried out to
learn the usage of an artifact in a specified context (Yin, 2011). Field study, on the
other hand, involves actual workplace settings for observing, interacting, and under-
standing stakeholders while they are immersed in their natural environment.

• Analytical methods include static analysis, architecture analysis, optimization, and
dynamic analysis, which can help to observe how variables of interest related to other
factors. The static and dynamic analysis methods examine the structure of the arti-
fact to analyze the static and dynamic qualities, separately. The architecture analysis
method studies the fit of the artifact into technical IS architecture.

• Experimental evaluation strategies include laboratory and field experiments, as well
as computer and experimental simulations. When applying experimental methods,
the researcher manipulates some factor controls and measures any change in other
factors (Berger and Maurer, 2002), or conducts simulations with artificial data.

• Testing methods include both functional and structural testing methods. The for-
mal one also refers to black-box testing that discovers failures and defects. The latter
method (white box) covers the approaches for performing coverage of testing in ar-
tifact implementation.

• Descriptive methods include informed argument or scenario descriptions. The in-
formed argument suggests that information from the knowledge base, such as rele-
vant research results, are provided as convincing arguments. The latter, or scenario
descriptions, construct specific scenarios to demonstrate the utility of an artifact.

Table 4.2 summarizes various research methods during different stages in this thesis.
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Table 4.2: Adopted research methods

Activity Method Data Collection RQ

Study I on baseline analysis Observational study
Publicly accessible repositories

Literature review
RQ (1)

Study II on users’ perspectives Survey Online questionnaire RQ (1)

Study III on data quality impact Case study (exploratory)
System documentation

Interview
RQ (1)

Study IV on real-world vulnerability

analysis using Artifact-I
Archival analysis Publicly accessible repositories RQ (2)

Study V on comparative analysis Static analysis Contemporary practices review RQ (2)

Study VI on Artifact-II CVSS

categorization method performance
Experiment

Publicly accessible repositories

Literature review
RQ (3)

Study VII on real-world vulnerability

severity scoring using Artifact-II
Archival analysis Publicly accessible repositories RQ (3)

Study VIII on Artifact-II CWE

categorization method performance
Experiment

Publicly accessible repositories

Literature review
RQ (3)

Study IX on Artifact-II ensemble

ML method performance.
Experiment

Publicly accessible repositories

Literature review
RQ (3)

Study X on power-grid modeling

and analysis using Artifact-III
Simulation

Literature review

Case study
RQ (4)

Study XI on analyzing manufacturing

vulnerability using Artifact-IV
Case study (explanatory)

Literature review

System documentation

Interview

RQ (4)

According to Hevner and Chatterjee (2010), simulation can be used to “better under-
stand the original (simulated) entity because simulation can help predict behavior by
making explicit “new”knowledge, i.e., the knowledge that is indeed derivable but only
with great effort”. Due to privacy and security concerns, security experiments in actual
systems are limited and might expose these systems to potential threats. Instead, simu-
lation-basedmethods contribute as both experiment base and training exercise tools for
security professionals while bringing minimal potential consequences to the real world
(Philosophy, 2013) (Veksler et al., 2018) (Benzel, 2011). Comparative experiment-based
evaluations are carried out to assess the quality of Artifact II, with evaluation criteria
drawn fromML literature.

Network models of infrastructures are employed for attack scenarios or user-defined
vulnerability simulations. A simulator records the states of a systemat time t, t+1, t+2,…,
to produce a numerical picture of the system’s evolution under specified variables. Such
simulations enable CI vulnerability assessment usingArtifact III. Evaluation criteria are
drawn from the ontology literature.

We consider the case study definition from Runeson et al. (2012) that is based on the
original definition from Yin (2009). Runeson et al. (2012) states that a case study in
software engineering serves as “an empirical inquiry that draws on multiple sources of
evidence to investigate one instance (or a small number of instances) of a contempo-
rary software engineering phenomenonwithin its real-life context, especiallywhen the
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boundary between phenomenon and context cannot be clearly specified”. Although the
studies performed in this thesis are not necessary for the field of software engineering,
this definition still provides valuable references. Case-study methods are adopted for
problem awareness (i.e., Study III) in the initial stage as well as evaluations (i.e., Study
XI) of Artifact IV.

Twomore archival analysis studies (i.e., Study IV and Study VII) are performed to eval-
uate the usefulness of Artifact I and Artifact II on vulnerability analysis using historical
vulnerability instances retrieved from publicly accessible repositories. Here, archival
analysis is defined by Wohlin (2021) that meet: “(1) Evaluations or illustrations on a
limited scale, for example, in a laboratory. These could be labeled evaluations or illus-
trations given their primary objective, and (2) Studies of existing information in open
source repositories, defect databases of other database sources”.

Meanwhile, a static analysis approach is also used in the comparativeStudyV to evaluate
utility of Artifact I, with criteria drawn from database studies.

4.1.4 DATA GENERATION METHODS

In this thesis, both quantitative data and qualitative data are collected to support vulner-
ability assessments. Quantitative data is further composed of: (i) vulnerability scores re-
trieved fromonline cybersecurity repositories to quantify vulnerability severity; (ii) com-
ponent criticality based on functional and structural dependencies. Qualitative data is
further composedof three subsets: (i) CI system-related information such asCI-component
types, names, and connections are gathered through observations, documentations, and
expert interviews, to support CI modeling; (ii) Users’ views on using open-source cyber-
security repositories in their security practices, which is gathered through the questionnaire-
based survey; and (iii) Experts’ feedback on study results of vulnerability assessment in
an actual large data center, which is collected through interviews. And hence, a mixed
strategy is employed in this thesis, as shown in Table 4.2.

Data collected from running these simulations measures how different defense mech-
anisms and various vulnerabilities affect system-wide security. And then, user-defined
vulnerabilities are described and coded in proportion to online vulnerability records.
This step ensures that the employed simulation studies reflect both the latest vulnera-
bility occurrences and also domain-specific vulnerabilities.

4.2 DESIGN SCIENCE RESEARCH PROCESS

This thesis employs five DSR processes to develop and demonstrate artifacts that bridge
the knowledge gaps among cybersecurity functions and orchestrate cybersecurity activ-
ities for complex CIs. These five research processes, corresponding artifacts, and the
connections among different processes are illustrated in Figure 4.2.
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Figure 4.2: Design science research process

In this thesis, each research process is conducted following the framework depicted in
Figure 4.3. This framework mainly adapts DSR-process structures provided by Hevner
and Chatterjee (2010), while taking into consideration of the framework for the pro-
duction and presentation of DSR in IS by Peffers et al. (2007), and is also inspired by
Johannesson and Perjons (2014).

Figure 4.3: Design science research framework adapted fromHevner andChatterjee
(2010) and Peffers et al. (2007)

Mainly six steps are included in the process. An initial research problem is converted
into explicit research questions that target particular objectives and lead to meta re-
quirements. Accordingly, an artifact is designed, developed, demonstrated, evaluated,
and communicated to the related scientific forum. The evaluation and communication
of the artifact may generate feedback that is used to better its design and development.
The DSR research process is therefore iterative, with theory and observation in constant
interaction. The research methods at the top and the dashed arrows represent specific
tools and approaches that assist the DSR process’s tasks. The knowledge-base circle and
dashed arrows show the scientific processes and foundations used to design, produce,
and assess the artifact. The foundations include existing theories, models, methods, and
experiences that this DSR could build upon.
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4.2.1 RESEARCH PROCESS 1: EXPLORATORY STUDIES

This research process starts with data collections from online cybersecurity data sources
like NVD, with which a baseline study is performed to investigate how to access and in-
terpret such data, as well as the patterns of historical records disclosed in NVD consid-
ering their correlations with standards such as CWE and CAPEC. This baseline study
(i.e., Study I) lays the foundations andmotivations for the following research processes,
by trying to identify the challenges of applying cybersecurity repositories to support CI
vulnerability assessment.

As part of this research process, a survey was conducted to gather data about industrial
and academic perceptions of CI cybersecurity in terms of support from publicly acces-
sible cybersecurity repositories and enumerations. Around 1200 surveys are sent out to
stakeholders, including cybersecurity professionals as well as practitioners working in
the area of CI cybersecurity domains, with monitoring and operational related responsi-
bilities as well as academics working in related fields. The survey results of the received
410 responses are discussed in Section 5.3.

The baseline and survey studies gather the details about the phenomenon under inves-
tigation. These two studies also set up a hypothesis that the issues of heterogeneity,
diversity, incompleteness, and inconsistencies of public vulnerability repositories pose
obstacles to their applications in supporting CI vulnerability assessment. We carried
out a case study (i.e., Study III) to validate this hypothesis, which specifically looks into
the impact of data incompleteness and inconsistencies of these repositories. This case
study was performed with actual system information (including system configuration
and component information) from an actual data center. We also interviewed security
professionals working in this data center to collect their feedback on the case study re-
sults, as shown in Table 4.3.

Table 4.3: Research process 1 - exploratory studies

Adopted Methods Deliverable Supporting Knowledge

Step 1: literature review.

Initial Problem: complex CI

vulnerability assessment processes that

involve multiple vulnerability data-sources.

CI cybersecurity.

Step 2: literature review.

Research Question: what are the challenges

in CI vulnerability assessment using

publicly accessible cybersecurity repositories?

Cybersecurity domain knowledge;

Vulnerability-analysis lifecycle;

Online cybersecurity data.

Step 3: Study I.
Purpose of Study: to identify how to access

and interpret cybersecurity data sources.

Online cybersecurity data;

Statistical analysis.

Step 4: Study II.

Purpose of Study: to understand the

challenges in security-repository deployment

from a user’s perspective.

Qualitative analysis;

Survey study.

Step 5: Study III.

Purpose of Study: to investigate the

impact of security repository data quality

on vulnerability assessment.

CI cybersecurity analysis;

Data quality analysis;

CI system characteristics.

Step 6: publication. Paper IV. Cybersecurity research community.
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4.2.2 RESEARCH PROCESS 2: VULNERABILITY DATA CURATION

The industrial survey presented in Research Process 1 emphasized the issues of hetero-
geneity and incompleteness of online vulnerability data sources and the problems in-
duced by the static vulnerability-analysis lifecycle. These challenges lead to the research
question in Research Process 2: how to obtain and correlate data for vulnerability anal-
ysis considering complex and heterogeneous sources among security alert repositories,
considering that most vulnerability reports are written in a natural language?

Table 4.4: Research process 2 - vulnerability data curation

Adopted Methods Deliverables Supporting Knowledge

Step 1: industrial

survey.

Initial Problem: heterogeneous, incomplete

and redundant vulnerability data-sources;

static vulnerability-analysis lifecycle.

Vulnerability-analysis domain.

Step 2: literature review.

Research Question: how to obtain vulnerability

reports written in natural language considering

heterogeneous sources of security alerts?

Cybersecurity domain knowledge;

Vulnerability-analysis lifecycle;

Online cybersecurity data.

Step 3: contemporary

practices review.

Requirement Specification: correlates separated

cybersecurity repositories, to enable context-

aware data analysis that aids cybersecurity

situation-awareness.

Existing data-correlation works;

Vulnerability-analysis lifecycle.

Step 4: cybersecurity

database specification.

Artifact I: a vulnerability common data

model and related data correlation methods.

Cybersecurity data-repositories;

Database construction;

Correlation and reasoning.

Step 5: localized

database instantiation.

Correlating 12 (CVE, NVD, CWE, CAPEC,

Red Hat,MITRE, cvedetails, SecurityFocus,

Shodan, ATT&CK, Manufacturer,

and third-party analyzer (e.g., ICS-CERT))

repositories for CI vulnerability analysis.

Cybersecurity data-repositories;

Database construction;

Document-based database.

Step 6: Study IV

for utility evaluation.

Evaluated Artifact: is applicable for CI

vulnerability-characteristic analysis.

CI cybersecurity analysis;

Statistical analysis.

Step 7: Study V

for performance evaluation.

Evaluated Artifact: performance

trade-offs compared to similar works.

Vulnerability-driven CI

cybersecurity analysis;

Database quality assessment.

Step 8: publication.
Artifact knowledge: communicated through

Paper II and V.

Cybersecurity research

community and stakeholders.

Table 4.4 summarizes performed studies to address these issues. More specifically, we
correlate numerous widely used vulnerability data sources to incorporate distinct view-
points from security repositories, motivated by relatedworks summarized in sub-section
3.1.1. In addition, we define a common data model and related correlation algorithms,
which are implemented as a localized and synchronized database to facilitate vulnera-
bility analytics. This instantiated database artifact is validated through two case stud-
ies. One study (i.e., Study IV ) explores the applicability of the proposed vulnerability
database (containing 12 data sources) in the context of CI vulnerability analysis to gain
insights into the threat landscape in CI environments. Then, a comparative analysis
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study (i.e., Study V ) examines the utility of the proposed approach against current rel-
evant works, including standalone repositories (e.g., CVE) as well as similar correlation
solutions (e.g., CVE-Search and Security Database).

4.2.3 RESEARCH PROCESS 3: BRIDGING THE DATA GAP

The research process answers how can manual procedures of severity assessment and
classification of weaknesses be supported by ML algorithms, and is summarized in Ta-
ble 4.5. The literature review results of this process is summarized in Section 3.2. We
proposed three sub artifacts to answer our research question, and following ML classi-
fication evaluation metrics presented in sub-section 7.2.3.

Artifact II-A, or theML-based vulnerability scorer, is evaluated through an experimental
study (i.e., Study VI) that contrasts our solution against several similar works. This ex-
perimental study involves two groups of comparison studies. Firstly, the performances
of two sets of models are assessed, one set that only uses NVD as the data source for
training data. In contrast, the other set uses both NVD and SecurityFocus as the train-
ing data sources. Secondly, the performance of the LR-based model is compared with
themodels from two related studies in terms of classification accuracy. This artifact also
proves better performanceswith similarmodels from relatedworks, and is also validated
through a case study (Study VII) on CI vulnerability assessment.

Artifact II-B, or theML-based weakness classifier, is evaluated through an experimental
analysis (i.e., Study VIII). The proposed solution is initialized through a bidirectional
long-short-term-memory (LSTM) neural network (NN) model and global vectors for
word representation (GloVe) embedding. The validation is done by comparing the solu-
tion performance with existing weakness categorization and prediction studies.

StudyVII explores the applicability of the proposed vulnerability-severity scoringmech-
anism in CI vulnerability analysis. Four CI asset types, namely RTU, MTU, PLC and
HMI, are selected for this case study. The statistical exploitability, scope, and impact
characteristics of CI vulnerabilities are presented in sub-section 7.3.5.

Experimental studies for these two initial artifacts show that the adoption of ML tech-
niques in the previously human-centered vulnerability-analysis process contributes to
higher automation in such processes and higher accuracy compared to manual vulnera-
bility assessment in terms of severity scoring and threat categorization.

We diagnosed one limitation in these two initial artifacts that ML techniques are still
underutilized in vulnerability assessment of diverse dimensions. To address the issue
that there is no one-size-fits-all solution for various vulnerability assessment aspects,
we develop a selective ensemble model on top of the ML-based vulnerability scoring.
This artifact (i.e., Artifact II-C) or the selective ensemble model is evaluated by a com-
parative experimental investigation (i.e., Study IX). This is to demonstrate how the pro-
posed ensemble model outperforms individual ML models. This study compares the
suggested approach against a number of prevalent text-mining approaches in the con-
text of two important cybersecurity scenarios, namely vulnerability analysis and threat
modeling, using a standard set of performance measures. The evaluation benchmark of
our proposed cybersecurity analysis approach involves an extensive database that com-
prises over 130 000 samples stemming from 8 actual online cybersecurity repositories
and other correspondingmanufacturer websites, which is the result ofResearch Process
2.
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Table 4.5: Research process 3: bridging the data gap

Adopted Methods Deliverables Supporting Knowledge

Step 1: industrial

surveys.

Initial Problem: human-centred and

subjective vulnerability analysis lead

to errors and inconsistencies.

Vulnerability-driven cybersecurity.

Step 2: literature review.

Research Question: can the manual

procedures of severity assessment and

classification of security vulnerabilities

be supported by ML algorithms?

Cybersecurity domain knowledge;

AI methods for cybersecurity;

Quality of database.

Step 3: contemporary

practices review.

Requirements Specification: identifies

vulnerability patterns, from multivariate

time-varying data.

Existing ML methods for cybersecurity;

Cybersecurity domain knowledge;

Online cybersecurity data-sources.

Step 4: ML-based multi-

dimensional vulnerability

analysis.

Initial Artifact II-A: LR-based vulnerability

classifiers for each CVSS metric.

Initial Artifact II-B: LSTM-based weakness

categorization using CWE abstracts.

Online cybersecurity data-sources;

Text-mining techniques;

Natural language processing techniques.

Step 5: Study VI & VIII.
Artifact Evaluation: performance

trade-offs compared to similar works.
ML-model evaluation metrics.

Step 6: Study VII.

Artifact Evaluation: CI vulnerability

assessment in terms of vulnerability

severity.

Cybersecurity domain knowledge;

ML methods for cybersecurity.

Step 7: updated question.

Updated Problem: no one-size-fits-all

solution that matches multiple

vulnerability assessment requirements.

Cybersecurity domain knowledge;

ML methods for cybersecurity.

Step 8: literature review.

Updated Question: how to find an

optimized model from a model-set

for a given cybersecurity task?

Cybersecurity domain knowledge;

ML model evaluation & optimization;

Quality of database.

Step 9: contemporary

practices review.

Updated Requirements: streamline

vulnerability assessment process and

further improve Artifact I, II-A, and II-B.

Existing ML methods for cybersecurity;

Cybersecurity domain knowledge;

Vulnerability-analysis lifecycle;

Online cybersecurity data-sources.

Step 10: a selective

ensemble approach.

Artifact II-C: an ensemble approach

that streamlines the process of

vulnerability-assessment model

training, evaluation and optimization.

Online cybersecurity data-sources;

Text-mining techniques;

Ensemble models.

Step 11: a pipeline of

ML models.

Implemented Artifact: selects the most

effective ensemble models from

five base machine-learning algorithms

for two different cybersecurity tasks.

Text-mining techniques;

ML-model evaluation metrics;

Ensemble models.

Step 12: Study IX.
Artifact Evaluation: performance

trade-offs compared to similar works.

ML-model evaluation metrics;

Ensemble models.

Step 13: publication.
Artifact knowledge: communicated

through Papers III, V and VII.

Cybersecurity research

community and stakeholders.
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The experimental results show improved prediction performance compared to individ-
ual text-mining techniques, commonly employed in security management when analyz-
ing vulnerability reports. For example, LSTM-RNN (Long Short-Term Memory based
Recurrent Neural Network) (Zhou et al., 2016) andMLP (Multi-layer Perception Classi-
fier) (Zanaty, 2012) are chosen as base learners for threat classification ensemble, while
LSTM-RNN, NBSVM (Naïve Bayes (Wang and Manning, 2012) based Support Vector
Machines) (Joachims, 2001) and MLP are chosen as base learners for vulnerability-
severity score computation ensemble.

4.2.4 RESEARCH PROCESS 4: VULNERABILITY ANALYSIS FOR
CRITICAL INFRASTRUCTURES

Weconducted a literature reviewon IT andOT semantics for CI cybersecurity protection,
and summarized the results in sub-section 3.3.1. We discovered that there is a lack of
taxonomy that is concise, easy to use, and free of overlapping concepts and features. This
is partly because IT security and OT security utilize distinct terminologies. There is also
limited support for query-based dependence analysis in previous CI models. Therefore,
we set up the goal ofmodeling IT/OT convergent CI semantics that is extendable in terms
of component types and their interconnections, while facilitating scalable dependence
assessment.

This research process aims to answer the question of how to model CIs that support
vulnerability analysis, and further, how to assess CI vulnerabilities with the support of
the previous artifacts (i.e., the correlated vulnerability database and the ensemble ML
pipeline). To solve this question, we proposed an extensible taxonomy for CPS-basedCIs
that supports static analysis of functionally dependent components utilizing deductive
rules, as well as vulnerability chain modeling and identification. Steps of this research
process are summarized in Table 4.6.

We define the characteristics of IT and OT entities and their convergence across the
cyber-physical layers of CIs, as CI cybersecurity is a relatively immature domain. Our
taxonomy is built upon the semantic models and industrial frameworks introduced in
Section 3.3.1, following the Telos (Mylopoulos et al., 1990) (Koubarakis et al., 2021)
language, while also inspired by the architecture analysis and design language (AADL)
(Feiler, Lewis, and Vestal, 2003). We define our dependence rules on top of the works
introduced in Section 3.3.3. Similarly, instantiations of the proposed taxonomy are built
on top of existing smart grid models introduced in Section 3.3.2, which results in multi-
ple reference models to enhance the extendability and explanatory strength (Nickerson,
Varshney, and Muntermann, 2013).

By carrying out this procedure, we can obtain a varied collection of attributes and di-
mensions of CI items concerning cybersecurity. Our taxonomy is visualized using the
open-source tool ConceptBase (Jarke et al., 1995). This tool enables the representation
of classes, domain-specific objects, and instantiated models within the same database.
Additionally, it supports the specification of graphical symbols for particular classes,
which are then applied to all instances of that classes. Moreover, the definedmodels can
be simply extracted in a preferred format (e.g., XML) and used for power-grid simulation
and vulnerability modeling.

We further proposed Artifact IV to enhance the level of automation in system-wide vul-
nerability assessment.

We validated the applicability and expressiveness of our artifacts in different CI scenar-
ios in power grids and manufacturing systems, including Study X and Study XI.
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Table 4.6: Research process 4: vulnerability analysis for critical infrastructures

Adopted Methods Deliverables Supporting Knowledge

Step 1: literature review.
Initial Problem: lack of standardized CI

taxonomy for cybersecurity analysis.
CI cybersecurity domain.

Step 2: literature review.
Research Question: how to model CI

networks to support vulnerability analysis?

CI domain knowledge;

Model-based cybersecurity analysis.

Step 3: contemporary

practices review.

Requirements Specification: CI components

are modeled using meaningful concepts

and relationships, to support the analysis

of complex cyber-physical correlations.

Existing CI taxonomies;

CI conceptual models;

CI dependence analysis;

Reference models for CIs protection.

Step 4: CI ontological

modeling.

Initial Artifact III: specification repository

for CI models and internal CI dependencies.

Conceptual modeling;

Inventory ontology;

Model-based system engineering.

Step 5: CI information

collection and modeling.

Implemented Artifact: a repository of

power-grid and manufacturing networks

for static vulnerability analysis.

Power-grid domain knowledge;

Manufacturing industry knowledge;

Model-based system engineering.

Step 6: Study X in

power grids.

Artifact Evaluation: structural, functional

adequacy, compatibility, operability, reliability,

and maintainability of CI dependence

analysis and cascade modeling.

Power-grid domain knowledge;

Model-based system engineering.

Step 7: updated question.

Updated Problem: system-wide vulnerability

assessment needs enhanced levels of

automation.

Cybersecurity domain knowledge;

ML methods for cybersecurity.

Step 8: literature review.

Updated Question: how can vulnerabilities

of complex CIs be modeled and assessed

with the support of a curated database and

vulnerability assessment algorithms?

Cybersecurity domain knowledge;

ML methods for cybersecurity;

Model-based system engineering.

Step 9: contemporary

practices review.

Updated Requirements: vulnerability

analysis orchestration to connect

Artifact I, II, and III

Cybersecurity domain knowledge;

Vulnerability-analysis lifecycle;

Model-based system engineering.

Step 10: streamlining

vulnerability analysis.

Artifact IV : method for streamlining

vulnerability analysis for CIs.
Model-based system engineering.

Step 11: Study XI in

manufacturing.

Artifact Evaluation: applicability for CI

cybersecurity in a query-able taxonomy.

Manufacturing industry knowledge;

CI cybersecurity.

Step 12: dissemination

and presentation.

Artifact knowledge: Paper I,

Paper VI and Paper VIII.

CI research community;

Power-grid stakeholders;

Manufacturing stakeholders.

Study X evaluates structural, functional adequacy, compatibility, operability, reliability,
andmaintainability of the taxonomy. More details of thesemetrics are presented in sub-
section 4.3.5 .In the context of these six metrics, the expressiveness of this taxonomy is
evaluated using a standard IEEE 9-bus model. Explicit information such as heteroge-
neous components of the IEEE 9-busmodel and connections between these components
are defined as instantiations of the CI taxonomy. In addition, we present deductive rules
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and queries to validate certain semantic relations, such as data and power connections.

Study XI evaluates further the applicability and usefulness of the proposed taxonomy
in terms of human-in-the-loop vulnerability assessment. In addition, we implemented
a human-robot collaboration (HRC) assembly model based on a real-world system lo-
cated at the ASSAR Industrial Innovation Arena in Sweden. We interviewed industrial
production personnel to get information regarding the general manufacturing network
structure and this specific HRC assembly method. This stage ensures that the topolog-
ical factors and other settings of our instantiated manufacturing models correspond to
a realistic scenario of industrial manufacturing processes. Simultaneously, historical
instances of vulnerability are analyzed to derive statistical patterns and severity CVSS
scores, which are then used to construct attack graphs using simulation tools.

4.3 DISCUSSIONS ON TRUSTWORTHINESS OF THE
RESEARCH

The US National Security Agency technical director emeritus Robert Meushaw (2012)
wrote in a forum about what distinguishes security-science research and practice is that
the former contributes to knowledge gain of the community. He states that security-
science research should be based on objective and qualitative or quantifiable descrip-
tions of security properties and behaviors. Such descriptions should clarify the limita-
tions clearly. The US Department of Defense also emphasizes in their JASON report
Science of Cyber-Security Corporation (2010) the importance of shifting security prac-
tices towards the science of security. According to this JASON assessment, foundational
concepts, mathematical constructions, or techniques for accurate prediction and mea-
surement are necessary to strengthen the current scientific foundation of cybersecurity.

This thesis utilizes mixed research methods. And hence, the trustworthiness validation
of this thesis considers suggestions in both qualitative (Thomson, 2011) and quantitative
(Heale and Twycross, 2015) research evaluationmetrics. Considering these suggestions,
the thesis outcomes are evaluated from five main perspectives, namely (i) repeatability
and reproducibility; (ii) validity and generalization; (iii) applicability and usability; (iv)
ethical concern; and (v) ontology evaluation metrics.

4.3.1 REPEATABILITY AND REPRODUCIBILITY

Maxion (2011) underlines the significance of experiments in the cybersecurity field, par-
ticularly its evaluation criteria, such as repeatability and reproducibility. Repeatability
and reproducibility metrics have also been stressed by Collberg and Proebsting (2016).
Repeatability implies that the experiment should produce consistent and progressing
results, if repeated. Reproducibility suggests that by following the experiment steps in-
troduced, researchers can reproduce the same results. Validity describes the proposed
theory/model should be well-grounded and generalizable.

Detailed instructions are given to record the experiment steps and case-study procedures
in this thesis, to increase repeatability and reproducibility. For example, step-by-step
documentations are provided to guide the implementation and use the proposed corre-
lated and cross-linked vulnerability database proposed in Chapter 6. Some correlated
vulnerability files are also uploaded to the GitHub platform as Jiang (2021) project for
open source usage and to enhance reproducibility (Stodden, 2010) (González-Barahona
andRobles, 2012). Data pre-processing andMLmodel training processes are also clearly
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documented in Chapter 7, with several trained models uploaded to Github as Vulnera-
bility Classifier (2021) for academic purposes.

4.3.2 VALIDITY AND GENERALIZATION

Herley and Van Oorschot (2017) describe that a claim should be consistent with other
claims or available observations. In addition, the predictions of proposedmodels should
be correct, so that the number of observations that can be accurately anticipated should
increase and advance through time. Limitations in the earlier scientific security research
efforts include a lack of formal verification methods and an excessive emphasis on sym-
bolic interpretation instead of requirement analysis of real implementations. Mean-
while, they discuss some future directions for security science, such as formalmathemat-
ical models and language, data collection, good experimental design, and quantitative
and qualitative metrics and measurements that deserve more consideration in security
research.

Explicit definitions of concepts are provided in this thesis to enable common under-
standings to further enhance validity and generalization. Such definitions are based on
relevant literature reviews and meetings with field stakeholders.

The data gathered to design the artifacts of this research is based on different sources
such as observations, interviews, and the study of organizational documents related to
security-analysis processes, as well as existing scientific literature. For example, the data
gathered for vulnerability assessment is collected from multiple standard data sources.
The datasets used forML-artifacts evaluation and demonstration are randomly sampled
from the available historical vulnerability instances. Moreover, datasets used for ML-
model training and testing are duly clarified for the sample size and how the samples
are generated. Based on a thorough review of the literature, a set of evaluation metrics
such as accuracy and F1-score are carefully chosen for each ML classification task.

Cybersecurity knowledge needs to be appropriately generalized to allow sharing on such
a fundamental basis. Spring,Moore, andPym (2017) put attention onhow to drawuseful
generalizations in scientific security. They state that structured observations performed
with robust researchmethods such as randomized controlled trials can overcome the po-
tential lack of control groups in experimental studies. They also acknowledge that case
studies andmodel-based reasoning are alternative approaches to be used in the cyberse-
curity area. The proposed artifacts in this thesis include both models and instantiations
to allow generalization such as the application of the proposed models to other related
fields. For example, the proposed CI taxonomy (or Artifact III) describes the basic CI
components and their dependencies. Instantiations of this taxonomy not only cover the
introduced scenarios about power grids and manufacturing processes, but can also ex-
tend to other technical critical infrastructures.

4.3.3 USEFULNESS AND USABILITY

One research gap in security science pointed out by Corporation (2010) is that trans-
lating scientific developments into practice is missing. This gap has been highlighted
by Degabriele, Paterson, and Watson (2010) and Maughan et al. (2013), as a system
that is proved to be secure in theory may not be fully trustworthy in real environments.
Vulnerability-centered cybersecurity research must adapt to real-world circumstances,
integratewith userworkflows, and provide practical benefits (Heelan, 2011). As cyberse-
curity is tightly tied to human behavior and the examined systems, the evaluation of cy-
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bersecurity artifacts is typically domain-specific and context-specific (Evans and Stolfo,
2011).

This thesis explores various views on the utility of the proposed artifacts. For example,
the utility of the instantiated cross-link vulnerability repository is assessed based on the
data sources, accessible features, structured scheme, integrated standards, and query
assistance provided for vulnerability analysis.

Feedback is solicited from security professionals and also operational practitioners in
power grids and manufacturing, to enhance the usefulness of this thesis. For exam-
ple, Study IV is carried out locally to evaluate applications of the correlated vulnera-
bility database in assessing historical vulnerability reports, to further raise applicability
prospects. Similarly, Study XI assesses the applicability of the proposed CI taxonomy
and cybersecurity orchestration framework in an actual human-robot collaboration sys-
tem.

This thesis also considers the usability that is defined as “the extent to which a system,
product or service can be used by specified users to achieve specified goals with effec-
tiveness, efficiency and satisfaction in a specified context of use ”by Bevan, Carter, and
Harker (2015). Following this definition and other usability properties described in Be-
van et al. (2016), this thesis brings primary benefits to security actors involved at various
SOC levels. Several beneficiary use cases are discussed in the following empowerment.

• Security operators can utilize the proposed commondatamodel and correlation tech-
niques to implement their localized database, to get up-to-date vulnerability records
for further analysis. By doing so, security operators get support for the development
of vulnerability patches and deploy them before exploits are made available.

• Security analyzers can get support from the proposed ML-based vulnerability analy-
sis method in vulnerability categorization, assessment and remediation. For exam-
ple, vulnerability-metric measurements are collected and computed automatically
without conventional manual inputs, which alleviates these security actors’ tasks.

• Operators of CI networks, especially power-grid and manufacturing networks, can
apply the proposed CI taxonomy and instantiated model to enhance the system-
structure design. Theymay develop further cybersecurity simulations to identify vul-
nerabilities and analyze related impact scenarios that may bring damage to critical
CI assets once exploited.

• SOC organizations can benefit from the proposed cybersecurity orchestration solu-
tion to achieve a higher level of automation in vulnerability-severity awareness and
risk- analysis exercises, and also to enhance cybersecurity situation-awareness be-
tween different organizational roles.

4.3.4 ETHICAL CONCERN

Dittrich, Kenneally, et al. (2012) provide theMenlo Report to address some ethical con-
straints in information and communication technology researches, including cyberse-
curity works. They restate the three classic concerns brought up in the Belmont Report
to respect for persons, beneficence, and justice. This first principle allows applications
of ethical principles to protect humans from activities having human-harming potential,
even though those activities may not directly involve humans. The second principle im-
plies the need for systematic assessments of both risks of harm and benefit. The third
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principle suggests that the selection and treatment of both participating and impacted
subjects should be fair. Dittrich, Kenneally, et al. (2012) also clearly clarify one more
consideration: respect for law and public interest. This fourth principle addresses the
concern to legal controls of confidentiality, availability, and integrity involving informa-
tion or information systems.

Following these four ethical principles, the research subjects are carefully considered
in light of the above principles. The data collected is mainly from online open-source
repositories and is stored andmanaged with relatively high authorization requirements.
The research outputs regarding details of the companies are not published considering
security and privacy properties.

4.3.5 ONTOLOGY EVALUATION METRICS

We validate the structural, functional adequacy, compatibility, operability, reliability
and maintainability of our taxonomy in two studies of instantiated power grid mod-
els, following standards of Nickerson, Varshney, and Muntermann (2013) as well as the
ontology quality evaluation and requirements (OQuaRE) (Duque-Ramos et al., 2014)
framework. The OQuaRE framework adopts the ISO/IEC standards for software prod-
uct quality requirements and evaluation proposed by Suryn, Abran, and April (2003) in
ontology assessment.

• The structural metric measures semantic models from four dimensions: (i) whether
an ontology has a high cohesion with strongly related classes and a good domain
coverage; (ii) whether an ontology is informative; (iii) whether an ontology provides
formal relations support; and (iv) whether an ontology is related to the existence of
multiple inheritances.

• The functional adequacy metric expects an ontology to have characteristics as: (i)
avoiding heterogeneous terms; (ii) providing consistent search and query; (iii) rep-
resenting acquired knowledge clearly; and (iv) can be used to build other ontology.

• The compatibility metric considers the performance of an ontology when adapted to
different environments without additional actions other than those that were clari-
fied by the ontology (i.e., adaptability).

• The operabilitymetric assesses the effort andknowledge required for individual users
to make use of the ontology.

• The reliability metric evaluates the performance of an ontology under specified con-
ditions for a given period of time, which is divided into availability and recoverability.

• The maintainability metric measures how well an ontology can adapt to changes in
the environment, such as changes in requirements or functional specifications. This
metric has multiple dimensions, one is reusability which estimates the degree an on-
tology can be used for building other assets, and the other is modularity which tests
the impact on an ontology when changes to partial components are made.

81





CHALLENGE IDENTIFICATION

AND BASELINE STUDIES





CHAPTER 5

CHALLENGE IDENTIFICATION AND
BASELINE STUDIES

Vulnerability-related information is usually reported in natural-language expressions
across numerous and multifaceted repositories, as well as hundreds of manufacturing
websites, and other thousands of security blogs posted every day (Sauerwein et al., 2019).
Multiple cybersecurity reports and bulletins provide various perspectives for vulnera-
bility analysis. For instance, data sources such as CVE, CERT and Shodan are com-
monly adopted in academic research and industrial products. However, these informa-
tion items are separated, stored and published in different data formats. Furthermore,
they obey different standards, each with its own syntax and semantics.

This chapter addresses the challenges in CI vulnerability assessment using publicly ac-
cessible cybersecurity repositories. This research question can be divided into three
inter-related sub-questions as follows: (i) how to access relevant cyber security data
sources? (ii) how to interpret the corresponding data features? and (iii) what are the
challenges in deploying these repositories to support CI cyber security from a user’s per-
spective?

To answer the first and the second sub-questions, we carried out a baseline study Study
I) across multiple open and public cybersecurity repositories to explore the syntax and
characteristics of these data sources. This baseline study explores cybersecurity data
sources froma general user’s perspective. Subsequently, we conducted an industrial sur-
vey Study II) to discuss CI cybersecurity stakeholder perspectives on the usage of open
and public cybersecurity repositories and instrumenting CVSS. This survey attempts to
answer the third sub-question, together with a vulnerability analysis case study (referred
to as Study III) on an actual CI system in order to assess the quality of available vulner-
ability data collected from open and public cybersecurity repositories. In doing so, we
emphasize particularly the incompleteness and inconsistency of CVE,NVD and vendor-
specific security repositories. We also interviewed several security specialists from the
investigated institution to collect their feedback on the case study results and related
challenges in CI vulnerability assessment.

This chapter covers, but is not limited to results from Paper IV.

5.1 BEFORE THE BASELINE STUDY

The first crucial step is to decide the data relevance, or the level of consistency between
the data content and the user’s area of interest.

5.1.1 DATA IDENTIFICATION

This thesis focuses on vulnerability-driven cybersecurity assessment of complex CIs. Cy-
bersecurity activities around vulnerabilities can be divided into different stages of the
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vulnerability lifecycle, as introduced in Section 2.3. Based on the introduced vulnerabil-
ity lifecycle (Joh and Malaiya, 2011) (Frei et al., 2006), vulnerability-driven cybersecu-
rity follows a continuum from vulnerability identification and vulnerability categoriza-
tion to vulnerability assessment and vulnerability remediation, and then loops back to
the beginning step to track another vulnerability. This closed-loop model illustrates the
feedback from vulnerability validation that prompts a patching action and/or tracking
another vulnerability. Information related to each step of this closed-loop needs to be
collected for security patterns analytic.

Early detection or identification of vulnerabilities minimizes the window of exposure
(Frei et al., 2006), which enhances the security of a system. Collected system infor-
mation is synchronously compared with a vulnerability-signature database to identify
vulnerabilities. Such vulnerability signatures refer to official instances disclosed in CVE
andNVD, and unofficial security reports in news, forums and research publications. Se-
curity news posted in Twitter (Sabottke, Suciu, and Dumitraş, 2015), for example, are
usually up-to-date, but might not be reliable. Additionally, system-relevant information
is retrieved from CCE and CPE to support the vulnerability identification process.

The vulnerability-categorization approach requires the exploration of reported vulnera-
bilities in a vulnerability database to identify vulnerability patterns. This thesis utilities
CWE to derive a comprehensive weakness classification taxonomy of known vulnerabil-
ities.

Vulnerability assessment plays a key role in patching prioritization and decisionmaking.
It is further categorized into qualitative methods and quantitative methods. The qual-
itative method primarily addresses relationships between vulnerability and risk. It ex-
presses vulnerability observations based on non-numerical data, which is supported by
threat categorization extracted from the website cvedetails.com and attack information
is provided by CAPEC and ATT&CK. The quantitative assessment, on the other hand,
measures the likelihood and impact of a vulnerability to prioritize patching exercises
(Allodi and Massacci, 2017), which is empowered with CVSS severity scores retrieved
from NVD and some third party analysis.

Vulnerability remediation may involve various strategies, such as updates, patches, and
improving system access control. The remediation level of a given vulnerability instance
is assessed based onwhether workarounds, temporary fixes, or official patches are avail-
able. The remediation availability information is usually collected through vendor web-
sites. Meanwhile, CRE (although not in use anymore) also provides some general guide-
lines for remediation.

Vulnerability validation is conducted through simulation analysis (Negi et al., 2019) or
interviews with cybersecurity experts. This thesis utilizes vendor websites, some third-
party analysts and security research publications as sources for vulnerability validation
information.

The aforementioned data sources are further categorized them into object classes to rep-
resent these keywords and their correlations, in order to recognize security patterns be-
tween different directions such as instance,weakness, threat, attack, remediation, and
system. These objects are also mapped to the data sources in Table 5.1. We would dis-
cuss these data sources with more details next.

86



CHAPTER 5 CHALLENGE IDENTIFICATION AND BASELINE STUDIES

T
a
b
le
5
.1
:
S
u
m
m
a
ry
o
f
v
u
ln
er
a
b
il
it
y
d
a
ta
so
u
rc
es

D
a
ta

D
a
ta
D
e
s
c
r
ip
ti
o
n

C
a
te
g
o
r
y

O
b
je
c
t

P
u
r
p
o
s
e

D
a
ta

S
o
u
r
c
e

D
e
s
c
r
ip
ti
o
n

S
ta
n
d
a
rd

S
y
st
em

V
u
ln
er
a
b
il
it
y
Id
en
ti
fi
ca
ti
o
n

C
C
E
;
C
P
E

C
o
n
ta
in
s
p
ro
d
u
ct
re
co
rd
s
o
f
o
p
er
a
ti
n
g
sy
st
em

s,
so
ft
w
a
re
a
n
d
h
a
rd
w
a
re
.

S
ta
n
d
a
rd

T
h
re
a
t

V
u
ln
er
a
b
il
it
y
A
ss
es
sm

en
t

C
V
E
D
et
a
il
s

C
o
n
ta
in
s
co
m
m
o
n
th
re
a
t
ty
p
es
li
k
e
m
a
lw
a
re
a
n
d
w
eb
-t
a
rg
et
ed

th
re
a
ts
.

S
ta
n
d
a
rd

W
ea
k
n
es
s

V
u
ln
er
a
b
il
it
y
C
a
te
g
o
ri
za
ti
o
n

C
W
E

C
o
n
ta
in
s
co
m
m
o
n
ly
o
cc
u
rr
in
g
w
ea
k
n
es
se
s
in
so
ft
w
a
re
.

S
ta
n
d
a
rd

A
tt
a
ck

V
u
ln
er
a
b
il
it
y
A
ss
es
sm

en
t

C
A
P
E
C
;

A
T
T
&
C
K

C
o
n
ta
in
s
a
tt
a
ck
p
a
tt
er
n
sp
ec
if
ic
a
ti
o
n
s,
e.
g
.,
te
ch
n
iq
u
es
a
n
d
p
ro
ce
d
u
re
s.

S
ta
n
d
a
rd

R
em

ed
ia
ti
o
n

V
u
ln
er
a
b
il
it
y
R
em

ed
ia
ti
o
n

C
R
E

C
o
n
ta
in
s
re
co
m
m
en
d
ed

co
u
n
te
rm

ea
su
re
s.

In
st
a
n
ce

V
u
ln
er
a
b
il
it
y

V
u
ln
er
a
b
il
it
y
Id
en
ti
fi
ca
ti
o
n

V
u
ln
er
a
b
il
it
y
V
a
li
d
a
ti
o
n

V
u
ln
er
a
b
il
it
y
A
ss
es
sm

en
t

C
V
E
;
N
V
D
;

C
E
R
T
-V
N
D

C
o
n
ta
in
s
o
ff
ic
ia
ll
y
d
is
cl
o
se
d
v
u
ln
er
a
b
il
it
y
re
p
o
rt
s;

N
V
D
a
ls
o
p
ro
v
id
es
C
V
S
S
se
v
er
it
y
sc
o
re
s.

In
st
a
n
ce

M
ix
ed

V
u
ln
er
a
b
il
it
y
Id
en
ti
fi
ca
ti
o
n

V
u
ln
er
a
b
il
it
y
R
em

ed
ia
ti
o
n

V
u
ln
er
a
b
il
it
y
V
a
li
d
a
ti
o
n

V
en
d
o
r
W
eb
si
te

C
o
n
ta
in
s
o
ff
ic
ia
l
v
u
ln
er
a
b
il
it
y
d
is
cl
o
su
re
re
la
te
d
to
th
is
m
a
n
u
fa
ct
u
ri
n
g
.

In
st
a
n
ce

M
ix
ed

V
u
ln
er
a
b
il
it
y
Id
en
ti
fi
ca
ti
o
n

S
ec
u
ri
ty
N
ew
s

C
o
n
ta
in
s
u
n
o
ff
ic
ia
l
se
cu
ri
ty
is
su
es
,
u
su
a
ll
y
u
p
-t
o
-d
a
te
.

In
st
a
n
ce

M
ix
ed

V
u
ln
er
a
b
il
it
y
Id
en
ti
fi
ca
ti
o
n

S
ec
u
ri
ty
F
o
ru
m

C
o
n
ta
in
s
b
o
th
v
u
ln
er
a
b
il
it
y
re
p
o
rt
s
a
n
d
u
n
o
ff
ic
ia
l
se
cu
ri
ty
d
is
cu
ss
io
n
s.

In
st
a
n
ce

M
ix
ed

V
u
ln
er
a
b
il
it
y
Id
en
ti
fi
ca
ti
o
n

V
u
ln
er
a
b
il
it
y
V
a
li
d
a
ti
o
n

S
ec
u
ri
ty
R
es
ea
rc
h

C
o
n
ta
in
s
re
li
a
b
le
se
cu
ri
ty
re
se
a
rc
h
,
b
u
t
m
ig
h
t
n
o
t
u
p
-t
o
-d
a
te
.

87



CHAPTER 5 CHALLENGE IDENTIFICATION AND BASELINE STUDIES

5.1.2 DATA COLLECTION

This thesis employs multiple ways to collect vulnerability data from online public repos-
itories, as depicted in Figure 5.1. The collected datasets are stored separately with the
corresponding labels. Figure 5.1 also illustrates the format of stored datasets as one of
the markup language tags (e.g., XML, HTML), or JSON format, or CSV format. For in-
stance, CVE is available in CSV, HTML, Text, XML, JSON and CVRF, among which we
selected JSON for baseline studies of CVE.

Figure 5.1: Example of vulnerability data collection

More specifically, CVE data is downloaded in JSON format. CVE assigns an ID to a
vulnerability instance, together with a description of this instance and some references
linked to the vendor or some third-party analysts. The local CVE database is updated on
an hourly schedule to synchronize with the online CVE data feeds.

NVD data feeds are directly downloaded and stored in a local database in JSON format.
The JSON format is an open standard file format used for interchanging data, consist-
ing of human-readable text (i.e., not binary) attributes’ value pairs. JSON objects can
be nested inside other JSON objects. In contrast, each nested object has a unique access
path across the tree-like structure. The proposed curator also sets up a scheduler to per-
form hourly data retrieval and update through an existing Python library APScheduler
(referring to Advanced Python Scheduler), to ensure that the local files and online NVD
data feeds are synchronized. An hourly schedule is chosen to mirror NVD data consid-
ering that the “recent”and “modified”feeds in NVD are updated every two hours, while
the rest are updated nightly.

Standard enumerations datasets like CWE and CAPEC lists are directly downloaded
from the websites in XML format, with CWE in version 4.6 and CAPEC in version 3.6
(latest check date is November 3, 2021). CWE and CAPEC apply similar hierarchical
structures where the top categories contain tree-structure patterns, as introduced ear-
lier in Section 2.2.

We utilized web crawling and web scraping techniques Mahto and Singh, 2016 to cap-
ture vulnerability information published in security analysis’ websites like SecurityFo-
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cus. Web crawling refers to the process of browsing and indexing contents from web
pages. Examples of relevant built-in Python functions include urllib.request that down-
loads html pages and urllib.error that handles exceptions. Web scrapingmeans locating
and collecting certain information using tools like HTML parser Beautiful Soup (2022).
Information retrieved from fetching, parsing and extracting targeted data is stored in a
proper format tailored to the targtted information usage. For instance, the information
extracted from SecurityFocus is stored in local files with fields like Bugtraq-ID, CVE-ID,
title, publish date and affected product in CSV (or comma-separated values) format.

Somemanufacturersmaintain their security repositories andprovideAPIs towards these
repositories. For instance,Microsoft security updates are accessible through an official
MSRC Security Updates API (2022), and can be further retrieved in CVRF format doc-
uments. A Microsoft CVRF document may be composed of several vulnerability con-
tainers, each of which refers to one CVE instance. Additionally, there are open-source
Githubprojects (e.g.,VIA4CVE -Vulnerability InformationAggregator forCVEs (2022))
that query this Microsoft API and fetch Microsoft bulletins and vulnerability data in
JSON format. There are also third-party analyzers such as Shodan that provides API to
query CI relevant vulnerabilities using an academic-level Shodan account.

5.2 STUDY I: DIVERSITY AND HETEROGENEITY OF
VULNERABILITY DATA

We conducted some static analysis of retrievedNVD data feeds in JSON format from the
NVD website at 15:00 pm on 2021 November 3rd. We uploaded some of the marked up
data feeds and adopted analysis methods as a Github project in Jiang (2021). The re-
trieved 20 JSON files (with file name ’nvdcve-1.1-year.json’ with year value in the range
from 2002 to 2021) contribute to 173 365 vulnerability instances. This vulnerability set
contains 9821 vulnerability instances marked as “Rejected”, meaning that one specific
vulnerability instance is not accepted as a CVE entry with reasons like duplicated entry
or withdrawal by the original requester. After removing the “Rejected”entries, the data
set contains 163 505 instances. Next we discuss the static patterns of disclosed vulnera-
bilities in NVD with some charts generated in this study.

Figure 5.2 visualizes the vulnerabilities published inNVD in a dailymanner. The amount
of published vulnerabilities has been increasing, particularly in the past five years. The
daily published amounts peaked at 1098 instances on December 31, 2004, followed by
816 and 791 instances published on May 2, 2005 and December 31, 2002, separately.

Till November 3, 2021, NVD assigns 163 375 vulnerabilities with CVSS V2 base scores
together with specific CVSS V2 vectors. Meanwhile,NVD assigns 90 008 vulnerabilities
(published after 2015) with CVSS V3 base scores together with specific CVSS V3 vec-
tors, to support assessment of the exploitability and impact of published vulnerabilities.
Figure 5.3 and Figure 5.4 present the distribution of CVSS scores and CVSS metrics
along the published years under CVSS V2 and CVSS V3, separately. A small fragment of
vulnerability instances published in 2021 have no CVSS V2 scores or vectors. Similarly,
some vulnerabilities published in 2016 and 2021 are not assigned with CVSS V3 scores
or vectors.

Considering CVSS qualitative scales, a large portion of vulnerabilities published inNVD
are within the ’medium’ V2 severity scale, as illustrate in Part (a) of Fig. 5.3, which is
converted to similar slice-sizes of ’medium’ and ’high’ V3 severity scales shown in Part
(a) of Figure 5.4.
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Figure 5.2: Daily published vulnerabilities on NVD from 1999 to November 3, 2021

Figure 5.3: CVSS version 2 score and metric value distribution for NVD entries
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Figure 5.4: CVSS version 3 score and metric value distribution for NVD entries

We discuss the vulnerability patterns when only taking the NVD assigned CVSS base
properties into consideration. Note that CVSS base properties do not consider the vul-
nerability characteristics that may change over time or in different deployment environ-
ments. And hence, the discussions here do not target specific systems. As shown in the
exploitability distribution under CVSS V2 metrics in Part (b), (c), and (d) of Figure 5.3,
most of the reported vulnerability instances are highly exploitable and do not require
extra conditions to exploit. The majority of vulnerability instances are accessed through
a network and are therefore remotely exploitable, while the minority of vulnerability
instances require local access or a local account. Vulnerability instances that require
adjacent network access have been reported only since 2012. Such vulnerabilities ap-
pear in a comparably high frequency in the year of 2014. Generally, the knowledge level
and skills to trigger a successful attack are increasing, as evidenced by the trend of a
more even distribution between low complexity and medium complexity over the past
ten years. Meanwhile, attackers need to authenticate none or only one time to exploit
most of the existing vulnerability instances. The remaining parts, i.e., Part (e), (f) and
(g) of Figure 5.3 illustrate the distribution of impact severities of the retrieved vulnera-
bility instances under CVSS V2, which indicates a higher diversity of impact compared
to the diversity of exploitability in general. The distributions of confidentiality impact,
integrity impact and availability impact also show similar diversity patterns, in which
Partial- and None-impact have more appearances thanHigh-impact.

We found similar exploitability and impact patterns in vulnerability distributions under
CVSS V3 metrics, as shown in Figure 5.4. Vulnerabilities exploited by physical-path
based attacks have limited presence throughout the time range between 2016 to 2021.
Exploiting most of these published vulnerabilities does not require privileges or user
interaction.
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NVDmaps CVE vulnerabilities to a selected set of 241 unique CWEs (introduced earlier
in sub-section 2.2.2) inNVDCWE Slice (2021). Similar to the statistic analysis for CVSS
mapping, we utilize tools like Pandas and Numpy to analyze the static patterns of CWE
mappings in NVD vulnerabilities. We found that in the set of 163 505 vulnerabilities
(with “Rejected”entries removed), 44 970 vulnerabilities have no CWE related informa-
tion that is further consists of 3 scenarios where (i) 26 739 vulnerability instances are
assigned with NVD-CWE-Other only, e.g., CVE-2021-0309; (ii) a vulnerability instance
is assigned with NVD-CWE-noinfo only, e.g., CVE-2021-0377; and (iii) CWE entries
of 161 vulnerability instances are missing, e.g., CVE-2021-1117 that has no CWE weak-
ness information till the statistic analysis conduction time in November 3, 2021. The
remaining 118 535 vulnerability instances with some CWE information contains 115 469
instances assigned with single CWE entries, 2 934 instances assigned with 2 CWE en-
tries, 116 instances assigned with 3 CWE entries, and 4 instances with 5 CWE entries.
For instance, the vulnerability CVE-2020-11901 (with report “The Treck TCP/IP stack
before 6.0.1.66 allows Remote Code execution via a single invalid DNS response.”) is
assigned 4 different CWE labels, namely CWE-330 (i.e., use of insufficiently random
values), CWE-787 (i.e., out-of-bounds write), CWE-125 (i.e., out-of-bounds read) and
CWE-131 (i.e., incorrect calculation of buffer size). Some of examples are listed in Table
5.2 to show various ways of mapping from vulnerability instances to CWE and further to
CAPEC. Further, the 10 weakness types with top occurrences inNVD published vulnera-
bilities are CWE-79 assigned to 16 903 instances, CWE-119 assigned to 11 197 instances,
CWE-20 assigned to 7 948 instances, CWE-89 assigned to 6 787 instances, CWE-200
assigned to 6 421 instances, CWE-264 assigned to 5 128 instances, CWE-787 assigned
to 4 318 instances, CWE-22 assigned to 3 931 instances, CWE-125 assigned to 3 418
instances, and CWE-352 assigned to 3 158 instances.

Table 5.2: Example of mappingss from vulnerabilities to CWE and CAPEC

CVE-ID CWE-ID(s) CAPEC-ID(s)

CVE-2018-8792 CWE-125 CAPEC-540

CVE-2021-27438
CWE-94 CAPEC-242, CAPEC-35, CAPEC-77

CWE-798 CAPEC-191, CAPEC-70

CVE-2016-4309
CWE-362 CAPEC-26, CAPEC-29

NVD-CWE-Other N/A

CVE-2018-20314

CWE-362 CAPEC-26, CAPEC-29

CWE-125 CAPEC-540

CWE-787 N/A

CVE-2017-8535

CWE-119
CAPEC-10, CAPEC-100, CAPEC-123, CAPEC-14, CAPEC-24, CAPEC-8, CAPEC-42

CAPEC-44, CAPEC-45, CAPEC-46, CAPEC-47, CAPEC-9

CWE-369 N/A

CWE-476 N/A

CWE-674 CAPEC-230, CAPEC-231

CVE-2019-10084

CWE-311
CAPEC-157, CAPEC-158, CAPEC-204, CAPEC-31, CAPEC-37, CAPEC-383, CAPEC-384

CAPEC-385, CAPEC-386, CAPEC-387, CAPEC-388, CAPEC-477, CAPEC-609, CAPEC-65

CWE-330 CAPEC-112, CAPEC-485, CAPEC-59

CWE-732
CAPEC-1, CAPEC-122, CAPEC-127, CAPEC-17, CAPEC-180, CAPEC-206, CAPEC-234

CAPEC-60, CAPEC-61, CAPEC-62, CAPEC-642

CWE-532 CAPEC-215

CWE-384 CAPEC-196, CAPEC-21, CAPEC-31, CAPEC-39, CAPEC-59, CAPEC-60, CAPEC-61

Historical vulnerabilities disclosed in NVD exemplified the diversity of assigned weak-
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nesses. For example, the Category weakness of “Permissions, Privileges, and Access
Controls ”(CWE-264) is assigned to 5128 vulnerability instances, as shown in Table 5.3.
CWE-264 is eliminated from theResearchConceptView (CWE-1000). Instead, this view
(CWE-1000) distributes weakness related to features of improper permission manage-
ment and improper privilege management to a list of CWE-ID(s). For instance, CWE-
284 (or improper access control) is one of the most abstract Pillar-level weaknesses in
CWE-1000. CWE-284 is allocated to 990 vulnerability instances. Further, another view,
orCWE-700 and Seven Pernicious Kingdoms adopt aCategoryweaknessCWE-254 that
covers CWE-284. The description of CWE-254 is “Security Features ”that is any feature
like improper authentication or cryptography issue. Even as vague as CWE-254, this
weakness is assigned to 419 vulnerability instances disclosed in NVD.

Table 5.3: Example of diverse CWE-IDs allocated to vulnerability instances

CWE-ID Abstraction Level Name Occurrence Membership

CWE-264 Category Permissions, Privileges, and Access Controls 5128 MemberOf CWE-635

CWE-254 Category 7PK - Security Features 419 MemberOf CWE-700

CWE-284
Pillar Improper Access Control 990

MemberOf CWE-1000

MemberOf CWE-254

CWE-285 Class Improper Authorization 72
MemberOf CWE-254

ChildOf CWE-284

CWE-287 Class Improper Authentication 2206
MemberOf CWE-1003

ChildOf CWE-284

CWE-295 Base Improper Certificate Validation 585 ChildOf CWE-287

For the set of 163 544 vulnerability instances published in NVD, 115 830 instances are
assigned threat types by cvedetails.com. 47 717 instances, or approximately 29.2% of
published instances, have no assigned threat labels, meaning that those vulnerability
reports are not categorized to any specific threat category, as presented earlier in Fig-
ure 2.6. A vulnerability could be exposed to more than one threat type. For example,
vulnerability instance CVE-2021-39250 is exposed to both Code Execution and XSS. In
total, 90 629 (or 55.4%) vulnerability instances have a single threat-class label, 18 891
(or 11.6%) vulnerability instances have two threat-class labels, 3 704 (or 2.3%) vulner-
ability instances have three threat-class labels, 2 559 (or 1.6%) vulnerability instances
have four threat-class labels, only 4 vulnerabilities are assigned five different threat la-
bels, and only 1 vulnerability instance has six threat-class labels.

Tools like confusion matrix and cross-tab are used to investigate the correlations be-
tween threat-labeled vulnerabilities. Based on the confusion matrix, Cramer’s V values
are further calculated to quantify the correlations between threat categories. This cal-
culation is conducted using the scipy.stats.chi2_contingency function that computes
the chi-square statistic and p-value of independence of variables in a contingency table.
Cramer’s V is a formalized version of the chi-square text statistic, with its value in the
range V ∈ [0, 1]. V ∈ [0.1, 0.3], V ∈ [0.4, 0.5] and V > 0.5 refer to weak, medium and
strong associations between the studied variables, separately. The generated Cramer’s
V values indicate weak association between any pair of the 13 threat-category vulnerabil-
ities. For example, the strongest correlation among all threat-labeled value pairs is the
association between Overflow labeled andMemory Corruption labeled vulnerabilities,
with Cramer’s V equals to 0.289. The weakest associations are between File Inclusion
labeled and Directory Traversal labeled vulnerabilities, and also between XSS labeled
and HTTP Response Splitting labeled vulnerabilities. Both have Cramer’s V equal to 0.
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Code Execution labeled vulnerabilities have the strongest associationwithMemory Cor-
ruption labeled vulnerabilities (with Cramer’s V = 0.274), and the least association with
HTTP Response Splitting labeled vulnerabilities (with Cramer’s V = 0.022).

5.3 STUDY II: INDUSTRY SURVEY ANALYSIS ON
USER EXPECTATION OF VULNERABILITY DATA
SOURCES

The purpose of using industry-survey is to gather data from various cybersecurity stake-
holders with a background in CI or ICS cybersecurity to collect their feedback and per-
ceptions of the following two questions: (i) the usage of open-source cybersecurity data
sources in terms of cybersecurity awareness; and (ii) the usage of vulnerability scoring
mechanisms in terms of vulnerability assessment.

This survey-based study was carried out in Sweden, US and China and included 595
participants. We designed the survey as anonymous reports that take about 10 minutes
to complete. It is created on an online survey and voting platform that allows survey
customization and can be exported as a survey link. The generated questionnaire con-
sists of three main sections to cover information for the aforementioned aspects as well
as participant information, which are instantiated through 9 questions to be answered.
The design of the questionnaire follows the principles from Somekh and Lewin (2011).
The details of all these questions can be found in Appendix I. We launch this survey by
sending out survey links to potential participants through emails and social media App
(e.g. WeChat for targeted participants that are located in China). These participants are
employed within the areas of CI cybersecurity or closely related fields, such as telecom-
munication operation and software development. We sent out 1200 invitations or get
them distributed through previous contacts. 595 participants submitted their question-
naires, which led to 410 surveys for further analysis after filtering out incomplete ones.
This 410 survey set covers respondents located in three countries, namely Sweden (7
participants), the US (3 participants) and China (400 participants). Even though the
survey was carried out among a limited population and was a single point measurement
so no comparison with another time point, the results of the survey are still valid in
gathering users’ expectations on publicly accessible vulnerability repositories and vul-
nerability scoring mechanisms.

Among these 410 respondents, 80 work in ICS security, 89 work in network security,
88 work in IT services, 34 serve in telecommunication operation and equipment main-
tenance, 38 conduct in cybersecurity-related researches, 41 work in the manufacturing
industry, and 40 have close responsibilities in software development.

Figure 5.5 shows the interconnections between respondents’ working fields and their fre-
quencies andmotivations in using open and public cybersecurity data sources (e.g.,CVE,
ExploitDB) andCVSS. Generally, participantsworkingwithTelecomOperations/Equip-
ments and Software Developmentmake use of both CVE and CVSS the least. The factor
of Working field has a low influence on the distribution of the reasons in using open
and public cybersecurity repositories and standard scoring system CVSS. Still, respon-
dents with a career in Industrial Control System Security,Network Security and IT Ser-
vices show generally higher interests in knowing the general security status. Overall, the
strongest two motivations for open and public cybersecurity data sources are knowing
the latest security status and comparing and choosing products from different vendors.
The latter is also the biggest reason for applying CVSS to support cyber vulnerability
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assessments.

Figure 5.5: Correlation between working field and usage of CVE and CVSS
(see Figure 10.2 and Figure 10.3 in Appendix I for more details.)

The survey results indicate amoderate usage of open andpublic cybersecurity data sources
among stakeholders. The most desired feature of these cybersecurity repositories with
respects to user expectation is to provide the latest security status. More than half of
the survey attendants also expect these data sources to deliver complete, accurate and
consistent information for products comparison in terms of cybersecurity. CVSS usage
is comparatively lower among the survey responders. The users assume CVSS metrics
are more likely to support production selection regarding cybersecurity and clarify se-
curity status of currently employed products. Even though the survey attendants only
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cover a small group of CI cybersecurity stakeholders, the survey results bring inputs to
cybersecurity data quality assessment metrics from the users’ perspective.

5.4 STUDY III: VULNERABILITY DATA QUALITY
ASSESSMENT IN ACTUAL CI SYSTEM

This section presents an exploratory case study to validate data quality of online and
public vulnerability repositories in terms of data inconsistencies and incompleteness.
In this case study, we matched the system scan against a set of public vulnerability
databases includingCVE,NVD and vendor security advisories. By doing so, we extracted
component-based vulnerability lists for the investigated system, to identify inconsisten-
cies of retrieved vulnerability information. Deep analysis of conflicting vulnerability re-
ports also indicates important insights and guidance for the cybersecurity community
on the usage of online public vulnerability data sources. The proposed metrics of data
inconsistency analysis are introduced next, followed by a step-by-step illustration of the
case study process. Then the systems under investigation are introduced, followed by
empirical analysis of the impact of data inconsistencies in the vulnerability-analysis re-
sult of the investigated systems.

5.4.1 METRIC DEFINITION AND MEASUREMENTS

This case study adopts the definition from Loshin (2010) that data inconsistency refers
to data values in one data set not being consistent with values in another data set. Data
inconsistency metrics and a set of measurement steps are defined next to assist in iden-
tifying and evaluating data inconsistencies in multiple open public vulnerability data
sources.

Given a list of n vulnerability data sources [V1,⋯, Vi,⋯, Vn] (0 < i ≤ n), when query-
ing data source Vi, we obtain a new set of k vulnerabilities V ′i ⊆ Vi. Each vulnerability
vi,j ∈ V ′i (0 ≤ j ≤ k) has a set of attributes ap ∈ A (0 < p ≤ m). Therefore, each vulner-
ability instance vi,j has a vector vi,j=[v

a1

i,j ,…,v
ap

i,j ,…,v
am

i,j ]. According to Loshin (2010),

consistency analysis include 5 contexts, namely record-level, cross-record, temporal,
application/business-level, and reasonableness-level consistency. This thesis mainly
considers record-level and cross-record data inconsistencies.

a) Record-Level Inconsistency

Record-level inconsistency exists between vulnerability attributes v
ap1

i,j and v
ap2

i,j (0 < p1 ≤
m, 0 < p2 ≤m,p1 ≠ p2). Record-level inconsistency is seenwheremultiple names are pro-
vided to represent the same entity, such as vendor names, vendor-product names, and
vulnerable product versions (Anwar et al., 2020). Vendor names are not identical inCPE
metadata due to various reasons such as misspelled names (e.g., Schneider Electric has
been spelled as ’schneider-electic’ and ’chneider-electric’), and using abbreviated names
(e.g., General Electric Company has been expressed as ’ge’ and ’general-electric’). The
causes for inconsistent vendor product names are similar to the ones for vendor names,
but is also related to the fact that different stakeholders may provide different names for
the same product. Record-level inconsistency appears when different attributes of the
same vulnerability provide contradictory information.
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b) Cross-Record Inconsistency

Cross-record inconsistency exists between vulnerabilities v
ap

i1,j and v
ap

i2,j whereby vi1,j ∈
Vi1, vi2,j ∈ Vi2 (0 < i1 ≤ n, 0 < i2 ≤ n). This inconsistency indicates scenarios where the
same attributes such as vulnerability severity scores, publication dates and vulnerable
products are conflicting, or where multiple attributes indicate contradicting vulnerabil-
ity characteristics.

Different data-repository sources may provide conflicting severity scores. For example,
the vulnerability CVE-2015-6461 is assigned CVSS V2 base score of 5.5 by NVD and 3.2
by ICS-CERT. The score inconsistency arises due to contradictory conclusions on the
access vector of this vulnerability, for which NVD assigns it as network-based and ICS-
CERT assigns it as local-based. Under CVE-2017-6023, this vulnerability is assigned
CVSS V3 base score of 9.8 with vector AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H by
NVD and 7.3 with vectorAV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:L by ICS-CERT, sep-
arately. A more general example is shown in Figure 5.6. Considering a random vul-
nerability instance v, NVD, the corresponding manufacturer, and a third-party analyst
provide their severity scores as SNVD, Smanufacturer and SAnalyst which can be incon-
sistent. Despite CVSS popularity (Scarfone and Mell, 2009) (Fang et al., 2020), incon-
sistency among reported scores for the same vulnerability instance does occur. Particu-
larly, when considering other CVSS temporal and environmental metrics, vulnerability
properties evolve across time and deployment environments. Hence, additional sources
of relevant data, including manufacturer-provided data as well as online reviews from
relevant security sources and forums, are expected to consolidate further existing CVSS
scores (Johnson et al., 2016b).

Figure 5.6: Potential time delay of scoring and inconsistent scores

Publication dates indicate the periodwhen vulnerabilities become public and provide es-
sential tracks for system protection prioritization. Nevertheless, inconsistencies of such
publication dates occur commonly due to disagreement betweenNVD publication dates
andpublic disclosure dates onother vulnerability databases and cybersecurity blogs (An-
war et al., 2020) (Jo et al., 2020).

CPE vulnerable version ranges for each NVD entry can be inconsistent with identified
vulnerable versions from third-party analysts and vendors (Dong et al., 2019). One ex-
ample is CVE-2019-5527 that refers to a use-after-free vulnerability in the virtual sound
device. According to the security advisory VMware, mitigation for this vulnerability is to
upgrade the vulnerable component VMware ESXi to ESXi670-201904101-SG (this is a
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patch package name and is linked with build number 13006603). And hence, VMware
ESXi versions later than ESXi670-201904101-SG are not affected by this vulnerability.
However, those later versions likeESXi670-202004001 are listed as vulnerable versions
in NVD.

5.4.2 DATA INCONSISTENCY ANALYSIS PROCESS

The process of data inconsistency analysis is composed of four main steps, as illustrated
in Figure 5.7.

Figure 5.7: Overview of the data inconsistency analysis process

Step 1: system configuration information collection and query tags generation

The first step is to collect system configuration information and component details. We
programmed an import filter to translate component information (usually documented
in a CSV file) into query tags. Data items like models, versions and the latest patching
update (e.g. cumulative security update KB, or knowledge base, package numbers) are
necessary for vulnerability retrieval from online public vulnerability data sources. For
instance, given description “TrendMicro ServerProtect for Storage 6.0”, the generated
query tags are type: software, vendor: Trend Micro, product: ServerProduct, vulner-
able function: Storage, version: 6.0 in a format similar to the CPEmatch-list metadata.

Step 2: extract component-based vulnerability instances

Secondly, the translated tags from the previous step were used in Python-based queries
in thePC terminal to extract component-based vulnerability instances. We thenmatched
these tags against the CPE metadata to retrieve corresponding vulnerability instances
from NVD. We also converted the downloaded disk-based JSON files from NVD into a
Python Dictionary data structure that organizes the data as key-pair values. Some val-
ues are scalars (e.g. CVSS entries), while others can be a list of other dictionaries (e.g.,
CPE entries). The query tags are thenmatched against CPE entries of each vulnerability
instance and return the instances that contain these tags. The description entry of CVE
JSON files is parsed to extract matching vulnerability instances. This manner is further
composed of multiple traditional text processing sub-steps such as tokenization and re-
moving stop-words (Zhu and Dumitraş, 2016), as well as word matching. We applied
similar data prepossessing process to crawled vendor reports in CSV or JSON format,
while using two ways to fetch vulnerability reports from vendor websites. The first ap-
proach refers to locating the vendor-related URL references of disclosed vulnerabilities
in CVE through reference maps, based on which the contents of the referred websites
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are fetched. The other method is that, given a vendor product, the vendor website is
requested to fetch vulnerability-related data. The union of all retrieved vulnerability re-

ports
N

⋃
i=1
{vi,j}, or VCV E ⋃VNVD⋃Vvendor is generated as the results.

Step 3: extract attributes for each vulnerability instance

In the third step, the attributes listed in Table 5.4 are extracted for each vulnerability
instance. By doing so, one vulnerability instance has a vector of six attributes
vi,j=[v

a1

i,j ,…,v
ap

i,j ,…,v
a6

i,j] (0 < p ≤ 6), where each attribute has a list of up to 3 values.

We directly parsed retrieved vulnerability reports to obtain the targeted attributes like
affected products and version ranges.

Step 4: assess inconsistencies of vulnerability data sources

The last step focuses on the comparison between the attribute sets of each vulnerability
instance set, in order to diagnose inconsistencies. The statistic patterns are extracted
that are based on vulnerability instances retrieved from different data sources, to assess
the degree of data inconsistencies. Finally, the impact of data inconsistencies ofmultiple
online vulnerability data sources is evaluated in supporting vulnerability analysis.

5.4.3 INVESTIGATED CI SYSTEM

The information regarding the investigated system is collected through 3 interviews and
also documents shared by the system owners.

The investigated IT system is composed of 3 major sub-systems, namely a DataCenter,
an application layer and a network layer, as depicted in Figure 5.8. DataCenter inte-
grates hardware components like physical servers with operating system software. Dat-
aCenter contains 14 components, including a middle-ware server that bridges multiple
partners’ systems and an USBHub server that works as a USB network gate. Addition-
ally, a hypervisor host deploys and serves virtual systems, which provides an abstraction
layer for virtualization. This virtualization layer supports multiple hypervisors (or vir-
tual machines), together with heterogeneous operating systems and applications that
run in isolation.

The application layer includes the configuration of 3 system packages supported by hy-
pervisors, namely the IoT system (containing 138 components), customer management
system (containing 137 components), and control system (containing 27 components).
Among these three systems, the control system enables monitoring and controlling the
physical system. The IoT system records physical process data and then sends collected
information to the customer management system through the middle-ware server. The
customermanagement system stores, analyses, andmanages consuming data. In an IoT
system, for example, 4 hypervisors are included to integrate guest operating system, ac-
cess control (AC) server, encryption key-store (EKM) server, database (DB) server and
application (APP) server. Note that servers within the same security zone are reachable
to each other. Servers in different zones can communicate through specific access lists.

Physical servers in the DataCenter are connected to switches through fibers. The net-
work layer represents the IT network’s wireless connections that contain 7 components.
Some of the critical components are firewall, network operating system and wireless
controller. These switches are further connected to the OT servers. The OT system com-
prises 16 components that collect information and directly monitor physical processes.
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Figure 5.8: Structure of the investigated IT and OT systems

5.4.4 DATA SOURCES

This case study aims to obverse and to compare inconsistencies between collectable data
from CVE, NVD, and vendor repositories. Three main types of vulnerability reposito-
ries are queried to retrieve related vulnerability instances of the investigated system,
namely CVE (or VCV E), NVD (or VNVD, and include CPE entries), and Vendor web-
sites (or Vvendor). This case study focuses on six attribute sets for vulnerability analysis
that are available in a minimum of two data sources, as depicted in Table 5.4. Descrip-
tion typically covers the applicable product, version range, the vulnerable function, and
sometimes the weakness type. CVE, NVD, and vendor websites provide access to such
vulnerability descriptions. The applicable product and version range are identified and
extracted from the CPE metadata or corresponding sections of vendor websites.

Table 5.4: Deployed vulnerability data sources in Study II

Attribute CVE NVD Vendors

Description Yes Yes Yes

Applicable Product Yes Yes Yes

Version Range Yes Yes Yes

CVSS Score N/A Yes Some

Impact Element Some Yes Some

Weakness Type Some Yes Some
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5.4.5 ANALYSIS OF RETRIEVED VULNERABILITIES

This case study focuses on cross-record data inconsistencies, especially between NVD
and vendor advisories. CNA discloses vulnerabilities further analysed by NVD, vendor
and other security analysts. CVE reports are deployed to provide ground truths in some
studies that perform inconsistency detection (Dong et al., 2019). In contrast, some other
studies employ NVD entries as ground truths (Nappa et al., 2015). Nevertheless, the
assumption of CVE or NVD as ground truth may not be valid. Instead, the purpose of
this study is to explore the impact of relying on a singular data source for vulnerability
analysis, especially between NVD and vendor repositories.

Investigated

System

Component

Amount
CVE

NVD

(CPE)
Vendor Union Intersection

IoT System 138 75 77 69 77 69

Customer

Management

System

137 309 319 311 319 309

Control System 27 50 53 28 53 28

OT 16 5 5 25 25 5

DataCenter 8 18 18 13 18 13

Network 7 105 75 11 105 11

Table 5.5: Retrieved vulnerability instances in Study II

The investigated system contains components provided by 18 different vendors, among
which ten vendors provide specific sections for security advisories. These ten vendors
also provide online security advisories to address vulnerabilities. For the remaining
eight vendor data sources, only three vendors have identifiable vulnerability records
in CVE or NVD. The distributions of vulnerability instances in different systems are
listed in Columns 3-5 in Table 5.5. The network has comparatively more vulnerabil-
ity instances per component, while DataCenter has the least vulnerability instances per
component. 562, 536, and 457 instances are separately extracted from CVE, NVD, and
vendors. The number is 597 when taking the union of all the identified vulnerabilities,
which changes to 435 when taking the intersection of the vulnerabilities, as listed in
Columns 6 in Table 5.5. Except for OT related vulnerabilities, the union of vulnerabil-
ities retrieved from CVE and NVD cover the vulnerabilities extracted from the vendor
websites. This observation only applies to this case study as the involved vendors are
limited. On average, the customer management system has the highest number of vul-
nerability instances per component in the intersection set. In contrast, the OT system
has the least vulnerability instances per component in the intersection set.

The inconsistencies between different vulnerability report sources are reflected in the
affected products and version ranges, weakness categorization, exploit correlation, and
vulnerability severity.

5.4.6 DATA INCONSISTENCIES IN AFFECTED PRODUCTS

Due to software upgrade versioning, version numbers directly extracted from computer
specifications are usually release versions. Yet, release versions may not reflect the in-
stalled update-package numbers of the component or the internal-version numbers from
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the vendors. One example is theVMware vCenter Serverwith internal version numbers
from the earliest version virtualCenter 2.5.0 GA to the latest version vCenter Server 7.0
update 1d (7.0.1.00300), till March 8, 2021. The release version vCenter Server 6.0 has
18 different internal version numbers, each ofwhich is related to various release updates.

The impact and cause of discrepancies in terms of affected products and version ranges
are reflected in the different amounts of identified vulnerabilities in Table 5.5. The net-
work has the highest rate of inconsistent vulnerabilities in the IT system, followed by the
IoT and control systems. These discrepancies mainly result from inconsistent product
names and different views on whether a specific component version is vulnerable. This
indicates an underlying problem of synonyms of the existing cybersecurity repositories,
which further suggests a need for a better mechanism to identify vulnerable products
by unified names. Table 5.6 lists the vulnerability instances found in NVD and vendor
entries, separately.

Table 5.6: Data inconsistencies in affected products and version ranges between
NVD and Vendors

IoT System
Component

Number

Consider NVD Only Consider Vendor Entries Only

Vulnerability
Component with The

Most Vulnerabilities
Vulnerability

Component with The

Most Vulnerabilities

Operating System 3 21 Directory Component 12 Database Tool-set Component

Access Control (AC) Server 16 48 Anti-malware Component 28 Run-time Library Component

Encryption Key-store (EKM) Server 36 75 SDK Component 55 Run-time Library Component

Database (DB) Server 40 66 Database Management Component 46 Run-time Library Component

Application (APP) Server 43 74 Database Management Component 46 Run-time Library Component

Customer Management System
Component

Number

Consider NVD Only Consider Vendor Entries Only

Vulnerability
Component with The

Most Vulnerabilities
Vulnerability

Component with The

Most Vulnerabilities

Operating System 4 20 Remote Desktop Component 19 Remote Desktop Component

Customer Management (CM) Server 64 253 Office Application Component 232 Office Application Component

Database (DB) Server 52 68 SDK Component 48 SDK Component

Web (WEB) Server 17 44 Run time Library Component 17 Run-time Library Component

Control System
Component

Number

Consider NVD Only Consider Vendor Entries Only

Vulnerability
Component with The

Most Vulnerabilities
Vulnerability

Component with The

Most Vulnerabilities

Operating System 4 12 Directory Component 8 Directory Component

Application (APP) Server 23 65 Database Management Component 45 Run-time Library Component

Other Systems
Component

Number

Consider NVD Only Consider Vendor Entries Only

Vulnerability
Component with The

Most Vulnerabilities
Vulnerability

Component with The

Most Vulnerabilities

Data Center 8 19 Hypervisor Component 11 Hypervisor Component

Network 7 75 Network Operating Component 11 Firewall Component

OT 7 5
Open Platform

Communications Component
25

Protection and

Control Component

The component with the most vulnerabilities of each investigated system differs when
involving different vulnerability data sources:

• The communication network system has the top data inconsistency rate among the
six investigated sub-systems, followed by the OT system. For example, in the OT sys-
tem, the open platform communication (OPC) component has the highest amount of
vulnerabilities when considering only NVD entries. When taking into consideration
only the vendor entries, the protection and control component contributes the most
vulnerabilities.
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• In the IoT system, the EKM server contributes the highest amount of vulnerabili-
ties. The five sub-systems of IoT system, namely operating system, AC server, EKM
server, DB server, and APP server, have different rankings of the most vulnerable
component after considering data inconsistencies. For instance, the database tool-
set component has the most vulnerabilities in the operating system, when consid-
ering only vendor entries. When accounting only NVD entries, the most vulnerable
component in the operating system is the directory component.

• In the customermanagement system, theweb server contributes an enormous amount
of inconsistent vulnerabilities. The inconsistencies betweenNVD and vendor entries
in the vulnerability sub-sets of customermanagement sub-systemdonot affectwhich
component has the most significant amount of vulnerabilities in each sub-system.

• In the control system, the application server has a higher rate of inconsistent vulner-
abilities compared to the operating system. When accounting only entries from the
vendor, the run-time library component has the most vulnerability instances in the
application server, which is rectified to the database management component when
accounting only entries from NVD.

5.4.7 DATA INCONSISTENCIES IN WEAKNESS TYPE AND CVSS
IMPACT

The inconsistencies between vulnerability report sources are reflected in weakness cat-
egorization, impact evaluation, and vulnerability severity. We visualize such discrepan-
cies in several graphs and discuss them next.

Figure 5.9 visualizes the influence of vulnerability data inconsistencies on exploitability
and impact levels of the whole investigated system. A decision with onlyNVD entries as
references may guide cybersecurity analysts to pay closer attention to threats with local
path based exploits, low access complexity, and no authentication requirement. Mean-
while, the analysis result based on NVD entries suggests that the investigated system is
suffered from a higher impact on confidentiality, integrity and availability.

The CVSS version 2 base-scores of the investigated systems are examined to check if
inconsistent vulnerabilities affect the average severity of these investigated systems. As
depicted in Figure 5.10, the customer management system and IoT system have similar
vulnerability severity score distributions no matter which cybersecurity data source is
used. In contrast, vulnerabilities fromNVD entries contribute more vulnerabilities with
higher severity scores (equal to or larger than 7) to Data Center, Network, and Control
System. This is particularly true for the communication network-related vulnerability
instances, whereby a large ratio of NVD vulnerability entries has a CVSS V2 base score
between 7.0 and 8.0. Another interesting observation is that vulnerabilities of the OT
system found in NVD contribute to lower CVSS scores compared to the instances found
in the vendor sites. To summarize,most discrepancies are found inNetwork andControl
System vulnerabilities.
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Figure 5.9: Data inconsistencies in exploitability and impact betweenNVD andVen-
dor. Exploitability and impact analysis are based on the assigned CVSS labels.
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Figure 5.10: Data inconsistencies in CVSS V2 scores between NVD and Vendor.

Inconsistent vulnerability data sources also have an impact on patch guidelines of the
major weaknesses exemplified by the weakness enumerations CWE of extracted vulner-
abilities. As shown in Table 5.7, the top 3 weaknesses with the highest occurrence fre-
quencies in all the investigated subsystems are partially changed or revised with rank-
ings, except for the control system. For instance, the most frequently appeared network
weaknesses when only accounting vendor entries are (i) exposure of sensitive informa-
tion to an unauthorized actor, and (ii) incorrect permission assignment for the critical re-
source. Among these two network weaknesses, the first weakness occurs due to direct or
indirect insertion of sensitive information, such as system environment, network status
and configuration, intellectual property, and private customer records, into resources
accessible to unauthorized actors. Excavation and fingerprinting attacks may be trig-
gered to exploit the information leak. Possiblemitigations against this weakness include
encryption and password-protection of sensitive data and appropriate compartmental-
ization that reinforces privilege separation functionality. The second network weakness
refers to incorrect permission assignment for critical resources, which impacts the con-
fidentiality and integrity of sensitive properties once successfully exploited through at-
tacks like signing malicious code. Environment hardening is one mitigation for proper
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permission assignment. The remaining network weaknesses that appear only once are
not listed in Table 5.7. Taking NVD as the only data source, then the major network
weaknesses are revised as (i) improper input validation, (ii) improper neutralization of
unique elements used in an OS command, and (iii) uncontrolled resource consumption.
These ambiguous weaknesses may address more attention towards protecting the sys-
tem against code execution, DoS, bypass protectionmechanism, and other similar cyber
threats, resulting in less budget in mitigating the existing weaknesses.

Table 5.7: Data inconsistencies in the assigned CWE between NVD and Vendor

Investigated System
Most Frequently Appeared Weaknesses

Consider NVD Only

Most Frequently Appeared Weaknesses

Consider Vendor Entries Only

DataCenter

1. Improper use of previously-freed memory.

2. Improper certificate validation.

3. Exposure of sensitive information to an

unauthorised actor.

1. Improper certificate validation.

2. Insufficiently protected credentials.

3. Improper use of previously-freed memory.

Network

1. Improper input validation.

2. Improper neutralization of special elements

used in an OS command.

3. Uncontrolled resource consumption.

1. Exposure of sensitive information to an

unauthorised actor.

2. Incorrect permission assignment for

critical resource.

IoT System

1. Improper privilege management.

2. Improper permissions and access controls.

3. Improper input validation.

1. Improper privilege management.

2. Improper input validation.

3. Improper permissions and access controls.

Customer Management

System

1. Improper restriction of operations within

the bounds of a memory buffer.

2. Improper input validation.

3. Exposure of sensitive information to an

unauthorised actor.

1. Improper restriction of operations within

the bounds of a memory buffer.

2. Exposure of sensitive information to an

unauthorised actor.

3. Improper input validation.

Control System

1. Improper neutralization of input

during web page generation.

2. Improper control of generation of code.

3. Improper permissions and access controls.

1. Improper neutralization of input

during web page generation.

2. Improper control of generation of code.

3. Improper permissions and access controls.

OT

1. Incorrect permission assignment for critical

resource.

2. Improper privilege management.

1. Out-of-bounds Read.

2. Out-of-bounds Write.

3. Incorrect permission assignment for

critical resource.

5.4.8 EVALUATION THROUGH INTERVIEWS

The interview-based evaluation includedherewas performed concurrentlywith this study.
It should be noted that this evaluation study differs from the three interviews performed
for collecting system information. This study composes of two interviews at the begin-
ning and the end of Study II. The objectives of these two interviews are three-fold: (i) to
know how the vulnerability assessment results relate to security protection in the orga-
nization; (ii) to analyze the quality of cybersecurity decisions made following the identi-
fication of data inconsistency issues; and (iii) to gain further knowledge on the current
usage of available cybersecurity data sources. We prepared a list of questions before
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these interviews, of which more details are presented in the Appendix II. These inter-
views are conducted in a semi-structured iterations. This means we read and analyzed
interview transcripts early, rather than waiting until all interviews have been completed.
Meanwhile, wemodified and added follow-up questions based on these early analytic re-
sults. The interview iteration also opens the opportunity to further discussions related
to CI cybersecurity and data quality requirements.

We interviewed three cybersecurity experts that are employed in the investigated organi-
zation or a cooperated stakeholder in Sweden to ensure the confidentiality of the studied
system and vulnerability data. These three experts cover the roles of IT administrator
(quoted as Expert A), IT security analyst (quoted as Expert B) and OT security operator
(quoted as Expert C). They hence have in-depth knowledge of the cybersecurity needs
and actual status of the investigated system.

The following text is a summary of somekeypoints obtained from the interviews, grouped
by subjects. Comments not related to the subject have been omitted. When multiple
people pointed out the same, the mentioned topic is included as one point.

(i) Vulnerability Assessment Brings Valuable Insights

Vulnerability assessment in this case study delivers a significant number of vulnerabil-
ity reports using public vulnerability repositories, and generates a broad picture of the
vulnerable level of the whole system. Expert B expressed that “Before the case study,
we had detailed and up-to-date information of some vulnerabilities, but mainly for
those regarding critical assets. This case study gives us a more comprehensive pic-
ture of the vulnerable status of the system”. Vulnerability management of a complex
and large-scale IT/OT infrastructure is challenging with respects to gain a full and up-
to-date overview of the vulnerability situation. This is particularly true for offensive
security works like penetration testing and some defensive security inspections. This
challenge is exemplified by the fact that many of today’s OT systems have most of their
cybersecurity-related tasks outsourced to other stakeholders, as quoted from Expert C
that “We cooperate with and rely upon some institutions for their IT services and IT
security.”.

Valuable references cover unknown weaknesses that fit the gap of vulnerability man-
agement. This is exemplified by quotations from Expert A that “Some vulnerabilities in
the embedded software of the customer management system and control system were
unknown”. “Office application components are regarded as low criticality, and do not
address enough attention in this organization’s cybersecurity perspective.”fromExpert
A suggests that the diagnosed substantial amount of vulnerability instances in the office
application components is not expected. These vulnerability instances also have a high
proportion of critical severity scores.

(ii) Diversity, Incompleteness and Inconsistencies of Cybersecurity Databases

The main objectives of using open-source security databases are in line with the survey
results in the previous section, namely to know the latest security status as well as to
compare and choose more secure products. One underlying challenge is to manage di-
verse security alert sources. Expert B stated that “We get informed of the latest security
status mainly by subscription to the vendors. Some vendors send out monthly vul-
nerability reports and patch suggestions to the customers. There are also vendors that
invite customers to privatemeetings for vulnerability alert discussions, before publish-
ing relevant vulnerabilities”. Such a subscription normally leads to hundreds or even
thousands of security reports to be reviewed. Manual auditing and checking vulnera-
bilities that are relevant to their systems are demanding. Expert A addressed that “We
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want both general security status and detailed information about vulnerabilities only
relevant to our system”.

Some known vulnerabilities in the OT system cannot be found using online cyberse-
curity repositories and are not published by the vendor. The lack of OT vulnerability
records also indicates the incompleteness of online cybersecurity data sources. Expert C
explained that “Wewere notified of someOT vulnerabilities through vendor emails, yet
those vulnerabilities are not seen in the case study results”. Expert B added that “We
mostly use vendors through subscriptions. Besides that, subscription of the national
CERT source brings extra value”.

Data inconsistencies are not uncommon for vulnerabilities’ affected products and ver-
sion range. However, “These data inconsistencies bring a higher level of uncertainty
in cybersecurity decision making with amendments in the ratios of major weakness
and threat types, and can be misleading in priority patching.”, according to Expert B.
Nevertheless, consistent data and indicators reassure conscientious and efficient patch
actions given a certain budget. This need is in compliance with the practices that “Some
vulnerabilities need to be patched immediately considering severity and exploit like-
lihood. Some non-critical vulnerabilities are patched following a monthly schedule.
PC-based vulnerabilities need to be patched normally within 2 weeks. There are also
vulnerability alerts that are related to critical enterprise processes, and are therefore
hard to be patched.”, quoted from Expert A.

(iii) CVSS Sub-Vectors are Valuable

Cybersecurity decision making is less dependent on CVSS scores, as quoted by Expert B
that “The mathematical score itself is not so meaningful. But the sub vectors, such as
the attack vector and confidentiality impact, are helpful in terms of root-cause analysis
and patch guiding.”. Expert A points out that “We need indicators to know the security
status of our products.”

5.5 CONCLUSION

This chapter starts with exploratory studies to investigate the characteristics of public
accessible vulnerability repositories. The variety of employed syntaxes of vulnerability
taxonomies suggests the heterogeneity of these repositories. CVE entries are used as
the sources for further vulnerability feature assessments. For example, NVD assigns
CVSS severity scores and CWE weakness categories to CVE unstructured data, and gen-
erates structure reports accordingly. CWE and CAPEC also map some of their entries to
CVE records. We also included a static analysis (Study I) of NVD historical records re-
trieved at November 3, 2021. Results of this study spotlights the diversity of NVD data.
Our static findings indicate some existing challenges in using public vulnerability data
sources, namely diversity and heterogeneity. The baseline study addresses the general
challenges in correlating and synthesizing diverse and heterogeneous data sources for
vulnerability assessment.

To understand better the specific challenges aligned with CI cybersecurity stakeholders,
we carried out a survey study (Study II) to collect these stakeholders’ preferences in
terms of using public vulnerability data sources and scoring standards like CVSS. More
than 70%of the 410 respondents embrace using these data repositories to know the latest
security status as well as to compare and choose more secure products.

We further carried out a vulnerability data quality assessment case study (Study III) us-
ing actual system configuration information from a data center located in Sweden. Re-
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sults of this case study indicate that cybersecurity budget allocationmay differ by relying
on only NVD vulnerability entries or vendor security bulletins. During this case study,
many vulnerability instances are extracted that contain some unexpected weaknesses
that decision-makers were unaware of before. The influence of inconsistent vulnerabili-
ties is systematicallymeasured in exploitability, impact levels, and the primaryweakness
types of the investigated system. This case study also showed that the number of incon-
sistencies could vastly differ depending on the type of software component. The high
rate of inconsistent vulnerabilities in the control system and the network components
are only valid in this case study. The rate of data inconsistency may differ in other orga-
nizations. Still, specific sub-systems can render a high percentage of data inconsistency.

Query generation, vulnerabilities retrieval, anddata inconsistencies evaluationwere con-
ducted in a semi-automatedmanner in the studies included in this chapter. Specifically,
query tags are generated through both automatic terminology extraction and manual
check. These query tags were matched against vulnerability data sources to obtain re-
lated vulnerability instances. The inconsistent vulnerabilities identified in Study II are
manually checked to filter out instances that do not apply to the system. The whole case
study process took around four weeks to complete, whichmay leave a gap between a vul-
nerability exploit occurrence and the deployment of an available patch. This is especially
true considering that some vulnerabilities need to be patched immediately or within two
weeks, according to our follow-up interviews after the case study. The root causes of the
inconsistencies are not investigated, i.e., which vulnerability instance was created first,
when it was updated, when or if duplicates were detected, and so forth. However, these
studies indicates that better workflows should be installed to synchronize and correct
vulnerability instances in the public and vendor repositories.

In summary, the systematic integration of vulnerability instances into a kind of data
warehouse offers the opportunity to detect inconsistencies and refer them to the main-
tainers of the original sources. Furthermore, vulnerabilities are reported in various stan-
dards, which increases the difficulty of vulnerability-related provisioning and sharing.
Vulnerability reporting standardization is one way to enhance the quality of shared cy-
ber threat intelligence. An approach that correlates various vulnerability data sources
and deploys trustworthiness data verification brings substantial benefits to vulnerability
identification and management.
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The data population size (nearly 1.68GB for baseline studies) and the data quality issues
detected in Chapter 5 make it respectively feasible and desirable to devise an integrated
database for the purpose of vulnerability analysis in a CI company.

However, when it comes to collecting, managing, and correlating vulnerability data from
a wide range of sources, several challenges arise. Some typical characteristics of vulner-
ability repositories, such as heterogeneity (Christey and Martin, 2013) and information
gaps (unreported vulnerability attribute instances) (Ladd, 2017), bring obstacles to em-
ploying these repositories for accurate assessments. The information regarding the same
vulnerability instance is expected to be integrated into a standard cross-linked structure
to support accurate vulnerability analysis (Mavroeidis and Bromander, 2017), as dis-
cussed in Section 3.1. A thorough vulnerability assessment requires the analysis of het-
erogeneous data streams to find interconnections between dependent vulnerability con-
cepts. These standalone objects of vulnerability, attack, and threat are currently stored
in separated standardized enumerations (Dong et al., 2019). Some of these object pools
have cross references with each other, but still lack thorough analysis of mapping intra-
features and inter-features (Christey and Martin, 2013). At the same time, some object
pools do not include marking information. Furthermore, one object may be defined in
more than one standalone enumeration, which increases the difficulty of filtering irrel-
evant information about this object. Nevertheless, further research that incorporates
heterogeneous data from different databases while providing structured and simplified
indicators is limited.

This chapter aims to answer the question of how to obtain and correlate data for vul-
nerability analysis, considering complex and heterogeneous sources of security alerts.
To investigate this question, we propose an approach that correlates various cybersecu-
rity data sources and converts these disparate repositories into a common data model
(CDM) to bring substantial benefits to vulnerability identification andmanagement. An
instantiation of the proposed CDM against 12 widely used cybersecurity data sources
and enumerations. Data obtained by crawling several security-alerts from online repos-
itories as well asmanufacturer websites is condensed into relevant views in this localized
and synchronized database, and is assistedwith aQueryMethod to retrieve vulnerability
instances.

The suitability of this suggested CDM is validated through practical vulnerability as-
sessment use cases that emerge from this instantiated databases. Two studies are in-
cluded in the validation studies: Study IV, in which we evaluate the feasibility of the
proposed CDM using general CIs vulnerability trend analysis; and Study V, in which we
validate the performance trade-offs of the proposed approach in comparison to other
similar works.

This chapter covers, but is not limited to results from Paper II and Paper V.
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6.1 ARTIFACT I: VULNERABILITY DATA MODEL AND
QUERY GENERATION METHOD

The structure of our proposed cross-linked and correlated vulnerability database is pre-
sented in this section, including the common data model and integration schema.

6.1.1 OVERALL STRUCTURE AND COMMON DATA MODEL

In data warehouse based studies, the design and maintenance of ETL (refers to extrac-
tion, transformation, and loading) processes are key factors (Luján-Mora, Vassiliadis,
and Trujillo, 2004). ETL processes are divided into extraction of data from heteroge-
neous data sources, transformation of data such as conversion and cleaning, and data
loading into a data warehouse.

We correlate vulnerability instances with information related to affected systems, con-
sidering attributes such asweakness, threat exploits andpotential attack scenarios. These
data objects were categorized and discussed earlier in Table 5.1 in Chapter 5. Figure 6.1
illustrates briefly the correlation between vulnerability instances and relevant security
information extension, whereby vulnerability instances can be retrieved from official
databases and also from manufacturer websites as well as other online sources such as
forums and blogs. Furthermore, cross references are collected from multiple reposito-
ries leading to standardized enumerations, using common keys like CVE ID as a unique
vulnerability identifier.

Figure 6.1: Bird view of vulnerability database overall structure

We further created a detailed semantically-grounded data model to ensure a clear map-
ping of the data sources to our data warehouse structures. Besides the source conceptual
schema diagram of Figure 6.2, this section contains several data mapping diagrams as
complementary documentations to capture the data flow and correlations of the involved
data sources, each of which is defined at a different level of abstraction.
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Figure 6.2 presents the proposed CDMmodel in an Unified Modeling Language (UML)
representation to outline the sources that feed our data warehouse and their attributes.

Figure 6.2: Common data model: source conceptual schema.
(Note that this is a simplified version to ensure readability)
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We defined two types of data classes, namely data entry class (e.g. NVDEntry and Ven-
dorEntry) that is usually a source of vulnerability instances, and data object classes (e.g.,
CWEObject and CVSS Objects) that is usually a language or evaluation metric for vul-
nerability assessment. And hence, the data object class can also be viewed as a dimen-
sion. For each entity from the CVE database, we find none or one entry from the NVD
database, and none or one or multiple entries from the correlated Vendor database, and
also entries from the third-party analyzer database (not shown in Figure 6.2). Note
that an entity from the VendorEntity can also be connected to those data object classes
like CVSSObject, which is not illustrated in the same figure to ensure readability. Fur-
thermore, each vulnerability entity from the NVD database can be mapped to eight di-
mensions to support vulnerability assessment. For instance, the dimension of CWEOb-
ject contains attributes like weakness description, PoC exploit example, exploit likeli-
hood, possible consequence and related attack(s). As vulnerability data sources are ei-
ther unstructured (e.g., CVE) or semi-structured (e.g.,NVD), this thesis chooses NoSQL
database to store vulnerability related information.

6.1.2 DATA CORRELATION USING COMMON TAGS

Data correlation using the combination of data feeds delivers more insightful indicators
compared to individual feeds. Such data integration procedure requires common tags
or entities, such as CVE ID, affected product name and affected version number, across
the ingested data feeds. This section presents a fusion method using CVE ID as a com-
mon tag for reports query, followed by correlation approach discussions usingCWE-IDs,
CAPEC-ID and ATT&CK-ID as common tags for weakness and attack features. Exam-
ples of the correlation processes are illustrated in Figure 6.3 and Figure 6.4.

Figure 6.3: Data correlation using CVE-ID as the common tag

Normally, CVE and NVD reports contain references to the affected vendors and third-
party analysts. These references contain URLs that can be fetched to scrap informa-
tion from vendors’ and security analysts’ websites. With the vulnerability CVE-ID, URL
links for additional third-party analysts are also accessible. Furthermore, scraped con-
tents are exported in CSV or XML formats for further cleaning and analysis. Figure 6.3
presents an example that usesCVE-IDs to crawl the specific linkwithin the cvedetails.com
domain, and then scrap vulnerability reports to fetch threat category information.

Simultaneously,CWE-IDs are fetched from the vulnerability reports and are used as tags
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to retrieve the CWE version 4.6 document for the matching attributes for these CWE-
IDs, particularly names, descriptions and correlatedCAPEC-IDs. These fetchedCAPEC-
IDs are further used as tags to query theCAPEC version 3.6 dataset for the corresponding
names, descriptions and ATT&CK-IDs. Similarly, ATT&CK names and descriptions are
extracted fromATT&CK version 10 document with the list of retrieved ATT&CK-IDs, as
shown in Figure 6.4. It is possible that differentCWE-IDs are assigned byNVD, vendors,
and other security analysts. And hence, labels are added to the features to differentiate
the feature sources.

Figure 6.4: Data correlation using CWE-ID(s) and CAPEC-ID(s) as common tags

Figure 6.5 illustrates the process of correlation and retrieval of extended features for
CVE-2021-36745, the original features of which are presented earlier in Table 2.2.

Figure 6.5: Example of data correlation for vulnerability CVE-2021-36745
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Table 6.1 shows the additional extracted features for vulnerability instance CVE-2021-
36745. An extended description of this instance is provided byZeroDay Initiative that is
maintained by the affected vendor Trend Micro. Features regarding weakness descrip-
tions, threats targeting this vulnerability, and potential attack techniques that may be
employed to exploit this vulnerability, are consolidated to enhance the accuracy of vul-
nerability assessment. Besides,CVSS scores andCWEs assigned by vendors and security
analysts other than NVD are also listed.

Table 6.1: Retrieved additional information for vulnerability CVE-2021-36745

Feature Name Source Value.

Analyst Report Zero Day Initiative

This vulnerability allows remote attackers to bypass authentication on affected

installations of Trend Micro ServerProtect. Authentication is not required to exploit

this vulnerability. The specific flaw exists within the ServerProtect console. The issue

results from the lack of proper validation prior to authentication. An attacker can

leverage this vulnerability to bypass authentication on the system.1

Vendor Report Date Zero Day Initiative 20210414

Public Release Date Zero Day Initiative 20210926

Vendor CVSS V3 Score Vendor: Trend Micro Base score is 9.8.

Vendor CVSS V3 Vector Vendor: Trend Micro CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H.

Vendor CVSS V3 Score Zero Day Initiative Base score is 9.8.

Vendor CVSS V3 Vector Zero Day Initiative CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H.

Threat Category CVEDetails Bypass a restriction or similar.

NVD CWE Name NVD, CWE Improper Authentication.

NVD Attack Category NVD, CAPEC

CAPEC-650: Upload a Web Shell to a Web Server.

CAPEC-94: Man in the Middle Attack.

CAPEC-22: Exploiting Trust in Client.

CAPEC-593: Session Hijacking.

CAPEC-633: Token Impersonation.

CAPEC-114: Authentication Abuse.

CAPEC-115: Authentication Bypass.

CAPEC-151: Identity Spoofing.

CAPEC-194: Fake the Source of Data.

CAPEC-57: Utilizing REST’s Trust in the System Resource to Obtain Sensitive Data.

NVD Attack Technique NVD, ATT&CK

T1505.003: Server Software Component: Web Shell

T1557: Man in the Middle.

T1550.001: Use Alternate Authentication Material: Application Access Token

T1134: Access Token Manipulation

T1548: Abuse Elevation Control Mechanism

Vendor Remediation Vendor: Trend Micro

Critical patch is available:

ServerProtect for EMC Celerra (SPEMC): Update to 5.8CP1577

ServerProtect for Storage (SPFS): Update to 6.0 CP1284

ServerProtect for Network Appliance Filers (SPNAF): Update to 5.8CP1299

ServerProtect for Microsoft Windows / Novell Netware (SPNT): Update to 5.8CP1575

We formalized the correlation process into Algorithm 1, while using a multidimensional
document-oriented database schema as an example. Let C be a collection of n vulnera-
bility documents, whereby C = {D1,⋯,Di,⋯,Dn} (0 < i ≤ n). Each vulnerability docu-
ment is defined by a set of pairs between an attribute and a value, and therefore we have
Di = {(Att1i , V

1
i ),⋯, (Att

j
i , V

j
i ),⋯, (Attmi , V m

i )} (0 < j ≤ m). The attribute value can be
either atomic, or compound as a nested document composed of pairs of sub attributes
and sub values. For instance, given a vulnerability document with only identity, report
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and reference attribute Dx = {(AttIDx , V ID
x ), (Att

Report
x , V

Report
x ), (Att

Reference
x ,

V
Reference
x )}, we can utilise the Algorithm 1 to extract values for (AttThreat

x , V Threat
x ),

(AttCWE
x , V CWE

x ), (AttCAPEC
x , V CAPEC

x ) and (AttATT&CK
x , V ATT&CK

x ). ValueV Threat
x

is atomic. The other 3 values (V CWE
x , V CAPEC

x , and V ATT&CK
x ) are nested documents.

Algorithm 1 Correlation between vulnerability instance and ATT&CK attributes

procedure VulnerabilityDataCorrelation(C,D,n)
▷ C is a collection of n vulnerability documents.
▷ Each vulnerability documentDi has identity, report and reference attributes.

C = {D1,⋯,Di,⋯,Dn} (0 < i ≤ n), where Di =

{(AttIDi , V ID
i ), (AttReport

i , V Report
i ),

(AttReference
i , V Reference

i )}

foreach vulnerability instanceDi (i = 1, . . . , n) do
Retrieve vulnerability CVE ID value V ID

i

Correlate V ID
i with cvedetails database to get V cvedetails

i

Set V Threat
i = V cvedetails

i

Correlate V ID
i with CWE database to get V CWEid

i and V CWEname

i

Set V CWE
i = {(AttCWEid

i , V CWEid

i ), (AttCWEname

i , V CWEname

i )}

foreach cweid in V CWEid

i do
Correlate cweid with CAPEC database to get capecid and capecname

Add capecid to V
CAPECid

i

Add capecname to V
CAPECname

i

Set V CAPEC
i = {(AttCAPECid

i , V CAPECid

i ), (AttCAPECname

i , V CAPECname

i )}

foreach capecid in V CAPECid

i do
Correlate capecid with ATT&CK database to get att&ckid and att&ckname

Add att&ckid to V
ATT&CKid

i

Add att&ckname to V
ATT&CKname

i

Set V ATT&CK
i = {(AttATT&CKid

i , V ATT&CKid

i ), (AttATT&CKname

i , V ATT&CKname

i )}

End procedure

6.1.3 DATA CONSOLIDATION

Various stakeholders, such as NVD, vendors, and third-party security analysts, may as-
sign different descriptions, CVSS severity scores and CWE weakness categories to the
same vulnerability instances. Comparing Table 2.2 and Table 6.1, for example, different
vulnerability descriptions are provided by NVD and Zero Day Initiative.

The features provided by different stakeholders for the same object category are consol-
idated into one class or a container, to support analytics for specific vulnerability-driven
security activities along the vulnerability lifecycle. Eight classes are designed for the cur-
rent stage of this thesis, while allowing flexible editing of existing containers or creation
of new classes, as illustrated in Figure 6.6. This data warehouse schema is built on top
of the CVRF framework. The current version of the CVRF language is 1.2 (latest checked
onOctober 30, 2021). CVRF schemata is structured with several required elements such
as Document Publisher and Document Tracking, and also multiple containers such as
Product Tree and Vulnerability that further contains elements like Threats, CWE, and
CVSS Score Sets.
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Figure 6.6: Data consolidation structure

More specifically, theVulnerabilityMetadata classwraps upbasic information likeCVE-
ID, CVE report description, references, and reports provided by vendors and other se-
curity analysts. Tracking class stores time-related information like publication dates
in various data sources, reflecting the vulnerability in the lifecycle. Affected Product
class takes in security-related software flaws, misconfigurations, and other vulnerable
configuration information. Threat class gathers threat types that the vulnerability may
be exploited, which are one or more categorical threat types in cvedetails.com. Weak-
ness class collects information concerning weakness patterns in terms ofCWE terminol-
ogy in the investigated vulnerability. Similarly, Attack class aligns the vulnerability to
the attack patterns using CAPEC identifiers and related tactics, techniques and possible
implementation procedures provided by ATT&CK. Severity class captures vulnerability
severity scores andmatching vectors under theCVSS V2andV3mechanisms. And lastly,
Remediation class provides mitigation suggestions provided by vendors and third-party
security analysts.

An example of our proposed database structure export is shown in Appendix III for vul-
nerability instance CVE-2021-36745. This vulnerability example documented in JSON
illustrates how we categorize cybersecurity information into our database schema.
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We utilize normalized data models that use references to describe relationships or map-
pings between documents, as illustrated in Figure 6.7.

Figure 6.7: Common data model: data warehouse conceptual schema
(Note that this is a simplified version to ensure readability)

6.1.4 QUERY TAG GENERATOR

Another problem of using multiple cybersecurity data sources is synonyms as discussed
earlier in Chapter 5. When query NVD database using tags based on vendors’ product
terminology, one may get incorrect vulnerability instances. It occurs when several data
sources describe the same (or overlapping) set of objects and assign them different iden-
tifiers (or in this case unique attributes such as product names). Such synonym issues
raise challenges when we need to query cybersecurity repositories while only holding
vendor defined product names. To solve this issue, we defined a query-keywords gener-
ator that automatically suggests query tags based on similarity between the investigated
product and CPE metadata, as illustrated in Figure 6.8.

The query generating process is composed of three major steps:

• In the first step, we parse the CPE metadata and extract vendor (e.g., “microsoft”),
product (e.g., “codeql”) and version (e.g., “1.0.0”) information from these metadata.
We canonize these extracted items into one entity as “Vendor Product Version”(e.g.,
“microsoft codeql 1.0.0”), which results in a dictionary of 816875 such entities. We
further generate a dictionary using a shortened CPEmetadata as key, and then using
our generated entity as value, which is stored in ProductDB shown in Figure 6.8.
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Figure 6.8: Generate query tags

• In the second step, we generate a list of query tags ranked by matching similari-
ties. To do so, we canonize system configuration information that is usually a result
of system scan into “Vendor Product Version”(e.g., “vmware woskstation player
15.0.3”) value pairs. We use the vendor information (e.g., “vmware”) to filter out
entities in ProductDB from other vendors, then we generate an initial query tag list
selected from the remaining entities if they partially share the tokens of software
and version information (e.g. “woskstation player 15.0.3”). Subsequently, we mea-
sure the similarities between the system information string (e.g., “vmware wosksta-
tion player 15.0.3”) and strings in the initialized query tag list. By doing so, we
generate a new dictionary using CPE metadata as key and similarity as value (e.g.,
’cpe:2.3:a:vmware:workstation_player:15.0.3’: 100). We rank this query tag list
from higher similarity to lower similarity, and send out the first five (can be cus-
tomized to other numbers) query tags as results. We summarize this query gener-
ation process in Algorithm 2. In our approach, we compute the Levenshtein dis-
tance to calculate the difference between two strings, and instantiated our method
by utilizing the python package fuzzy.ratio from FuzzyWuzzy: Fuzzy String Match-
ing in Python (2021). The Levenshtein distance refers to the minimum number of
the required single-character editing to change one string into the other (Haldar and
Mukhopadhyay, 2011).

• In the last step, we allowmanual check and query selection to decrease possible false
positives based on other keywords that distinguish them from CI-related concepts.
If we adopt one of the query tags and use CPE-based query, the correlated database
would return vulnerability instances that share the same CPE metadata. If we find
that all the generated query tags are not correct, we switch to report-based query and
retrieve reports that contain the system configuration information string.
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Algorithm 2 CPE query tag generation with system configuration information

procedure VulnerabilityQueryGenerator(D,S1, S2, S3,m)
▷ D is a size n dictionary that has one key K1 and one value V1, whereby K1 is
a string representing CPE metadata, and V1 is a string in the format of ”vendor
product version”.
▷ Three imported strings: S1 for vendor: S2 for product; S3 for version.
▷m is an imported number.

New query lists Qlist = []
Search term S4 = S2 + S3, S5 = S1 + S2 + S3

foreach all key-value pairs (Ki, Vi) in D, (i=1,…,n) do
if (S1 in Vi) And (S4 in Vi) then

Qlist.append(Ki, Vi)

New query dictionary Qdict = {}
foreach all key-value pairs (Kj , Vj) in Qlist, (j=1,…, len(Qlist)) do

Compute strings similarity Similarityj = fuzzy.ratio(S5, Vj)

Qdict[Kj] = int(Similarityj)

Sort dictionary Qdict(Kj , Similarityj) by value Similarityj
Export the firstm key-value pairs in Qdict

End procedure

6.1.5 PROTOTYPE DATABASE DEPLOYMENT

A prototype implementation is provided, which is built on top of open-source CVE-
Search Python API, as depicted in Figure 6.9. The data sources already correlated by
CVE-Search and the newly correlated ones are illustrated in different colors. Besides
NVD, CVE data is correlated to include the vulnerability instances that are disclosed but
not yet published in NVD. Manufacturer websites are also correlated for standardized
component names and patch updates. cvedetails.com website and CWE are correlated
for threat-category information and weakness-category information separately. Securi-
tyFocus and Shodan are also correlated to provide perspective from third-party security
analysts. Using CVE ID as vulnerability index, a database of vulnerability reports is set
up while bringing together base reports from CVE and cross-references from the above-
mentioned repositories into a local NoSQL MongoDB system specifically designed to
handle large unstructured information volumes. The proposed local MongoDB engine
is kept synchronized on an hourly basis with feeds from online data repositories. Here
one hour is selected as the interval by considering the vulnerability-disclosure schedule
and the time needed for scanning online vulnerability resources into one local database.
This localized database approach supports vulnerability analysis using queries, to re-
trieve structured information such as component-level vulnerability attribute values.
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Figure 6.9: Vulnerability-database architecture and query processing
(Figure reproduced from Jiang, Atif, and Ding (2019))

6.2 STUDY IV: CI VULNERABILITY TREND
ANALYSIS USING CORRELATED DATABASE

The proposed vulnerability-search technique provides insights into the threat landscape
in CI environments. Note that concrete information, such as the vendor, product and
version information of the specific CI components, is not available at NVD. And hence,
we first explored Shodan databases to understand some commonly used products for
several prominent CI assets, namely PLC, RTU, MTU, and HMI. This study was initially
conducted in 2019 July and was published in Paper II. Based on the original study, we
renewed some results using datasets updated till November 3, 2021.

6.2.1 STUDY SETUP

We first investigate in Shodan database to extract product names, versions and vendors
of industrial PLC, RTU,MTU andHMI equipments. The reason we started with Shodan
investigation is that Shodan contains open ports of connected ICS devices nearly in real
time. It also covers the most commonly used CPS-based CI equipments, and therefore
provides actual device names, versions and vendors for our case study analysis. For
example, using PLC as the query tag, we gather products like Mitsubishi Q PLC. We
use these 4 lists of CI product features as input for our query generator introduced in
Figure 6.8 in sub-section 6.1.4, to generate queries for our correlated database.

Vulnerability instances containing the aforementionedCI asset keywords (i.e., PLC,RTU,
MTUandHMI) in their documentations are retrieved and further cross-referenced against
a variety of sources. These sources include industry-standard CPE that is used to reveal
operating systems, hardware and software information. Other cyber-security sources
are also enclosed in the data fusion process, namely CWE that expands the information
set about the vulnerability regardless the affected product instance, andCAPEC that pro-
vides a dictionary of known attack patterns used by adversaries to exploit the discovered
vulnerabilities, as illustrated in Figure 6.10. The testing data set used as a case study
are retrieved till the November 3, 2021. The CVE database checked on the November 3,
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2021 contained 174 008 entries, CPE contained 357 664 entries, CWE entries included
1 234 elements from CWE, and CAPEC included 541 elements.

Figure 6.10: Vulnerability reports from synchronized cross-linked database
(Figure updated from Jiang, Atif, and Ding (2019))

6.2.2 STUDY RESULTS

By querying our correlated database, we obtain respectively 257, 445, 107, and 258 vul-
nerability reports related to PLC, RTU, MTU and HMI. These retrieved 1067 CI related
vulnerabilities extend till November 3, 2021. Note that some vulnerabilities appear in
more than one type of CI components. One example is the vulnerability instance CVE-
2019-0708 appearing in both PLC and HMI vulnerability groups. We removed dupli-
cated vulnerabilities and kept 767 instances in the analysis corpus when we need to as-
sess general CI vulnerability features. Although the amounts of encountered reports for
CI assets increase in recent ten years, still the total reports are limited compared to vul-
nerability instances for the commonly seen ones in other ICT (referring to information
and communications technology) systems.

(i) Characteristic Analysis of CI Vulnerabilities

We further analyze these identified CI vulnerabilities to get their CVSS V2 scores as-
signed by NVD. All these CI vulnerabilities are assigned CVSS V2 scores and relevant
labels like V2 access vector. These assigned CVSS V2 base scores are illustrated in Fig-
ure 6.11. We conduct an investigation of the CVSS V2 labels assigned by NVD to our
retrieved CI vulnerabilities.
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Figure 6.11: CVSS V2 base-score distribution of CI vulnerabilities (2000-2021)

Table 6.2: CI vulnerability measurement distribution of CVSS V2 base metrics

Metric Measurement PLC RTU MTU HMI CI CVE

AccessVector

Network 91.44% 93.03% 90.65% 87.21 % 91.00% 83.20%

AdjacentNetwork 1.95% 0.22% 0.93% 3.10% 1.41% 2.43%

Local 6.61% 6.74% 8.41% 9.69% 7.59% 14.37%

AccessComplexity

Low 64.20% 64.27% 65.42% 56.59% 62.51% 58.39%

Medium 32.30% 30.11% 28.04% 39.92% 32.80% 38.62%

High 3.50% 5.62% 6.54% 3.49% 4.69% 2.98%

Authentication

None 90.27% 95.06% 90.65% 92.25% 92.78% 85.20%

Single 9.73% 4.94% 9.34% 7.75% 7.22% 14.76%

Multiple 0% 0% 0% 0% 0% 0.04%

ConfidentialityImpact

None 50.58% 46.29% 42.05% 40.31% 45.45% 32.80%

Partial 43.58% 42.47% 50.47% 42.64% 43.58% 49.05%

Complete 5.84% 11.24% 7.48% 17.06% 10.97% 18.15%

IntegrityImpact

None 49.42% 48.76% 54.21% 43.02% 48.08% 29.76%

Partial 44.74% 40.90% 38.32% 41.09% 41.61% 52.64%

Complete 5.84% 10.34% 7.48% 15.89% 10.31% 17.60%

AvailabilityImpact

None 28.02% 30.34% 37.38% 33.33% 31.21% 36.23%

Partial 54.09% 55.73% 52.34% 44.57% 52.30% 42.67%

Complete 17.89% 13.93% 10.28% 22.09% 16.49% 21.10%

Table 6.2 lists the exploitability and impact distributions of these vulnerability instances
under CVSS V2 metrics. Vulnerabilities exist in the four types of CI show similar dis-
tributions in terms of access vector, access complexity, authentication, and availability
impact. There is a higher probability that exploiting PLC vulnerabilitiesmay bring lower
confidentiality impact, but higher availability impact. Generally, CI vulnerabilities have
higher exploitability compared to the overall reported vulnerabilities, especially in terms
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of required authentication and complexity of such exploits.

We correlated retrieveCVE-IDs against the threat categorizationprovided inwww.cvede-
tails.com to extract the threat types that a vulnerability instancemay be exposed to. Note
that a vulnerability could be exposed to more than one threat type. Three threat types,
namely Denial of Service, Overflow, and Execute Code, appear to be the most typical
ones that might materialize into attacks targeting CI assets, as shown in Figure 6.12.
These three threat types with the highest occurrences in CI exploits are in line with the
most common threat patterns in all the reported vulnerabilities shown in Figure 2.6.
The threat type with the least occurrence is File Inclusion that is assigned to one PLC
vulnerability instance. Actually, this threat-occurrence ranking also applies to HMI and
PLC vulnerabilities. For instance, more than half of PLC vulnerabilities may be exposed
toDenial of Service threats. In contrast, the top-3 threat types that RTU andMTU assets
are faced with are Denial of Service, Overflow, and Gain Information. These patterns
are valid for 553 CI vulnerabilities with assigned labels from www.cvedetails.com. Al-
though the extracted threat types are too general for this case, we show the usefulness
of correlating multiple vulnerability repositories includingwww.cvedetails.com.

Figure 6.12: Threat types targeting CI assets (2000-2021)
(Figure updated from Jiang, Atif, and Ding (2019))

The top-5 CWE-IDs of the retrieved CI vulnerabilities are CWE-119 (i.e., “Improper Re-
striction of Operations within the Bounds of a Memory Buffer”), CWE-20 (i.e., “Im-
proper Input Validation”), CWE-200 (i.e., “Exposure of Sensitive Information to an
Unauthorized Actor”), CWE-79 (i.e., “Improper Neutralization of Input During Web
Page Generation (’Cross-site Scripting’)”), and CWE-787 (i.e., “Out-of-boundsWrite”).
These selected CWE-IDs have the highest occurrences in CI vulnerabilities. Apart from
these common weakness patterns in CI vulnerabilities, CWE-125 (i.e., “Out-of-bounds
Read”) is a typical pattern for RTU, MTU and HMI vulnerabilities. Note that among all
the 767 de-duplicated vulnerabilities, 248 instances have no assigned CWE categories.

Similarly, we compare the top-5 CAPEC-IDs to analyse the possible attack scenarios of
our investigated four CI assets, including CAPEC-10 (i.e., “Buffer Overflow via Envi-
ronment Variables”), CAPEC-14 (i.e., “Client-side Injection-induced Buffer Overflow”),

127



CHAPTER 6 VULNERABILITY DATA CORRELATION AND CONSOLIDATION

CAPEC-24 (i.e., “Filter Failure throughBufferOverflow”),CAPEC-42 (i.e., “MIMECon-
version”), and CAPEC-22 (i.e. “Exploiting Trust in Client”). Attack patterns are more
varies for different CI assets. For instance, CAPEC-79 (i.e., “Using Slashes in Alternate
Encoding”) is one common attack scenario for RTU specific vulnerabilities. CAPEC-588
(i.e., “DOM-Based XSS”) targets on PLC and HMI vulnerabilities more than the other
two CI assets. These attack patterns are applicable for a subset of 394 vulnerabilities
that are assigned both CWE and CAPEC categories.

Attack technique patterns of retrieved CI vulnerabilities are in line with CAPEC pat-
terns. These attack techniques are pinpointed from ATT&CK standards. Note that
since we correlated ATT&CK-ID(s) from CAPEC-ID(s) which are further tracked back
to CWE-ID(s), the presented tactic and technique patterns do not cover the CI vulner-
abilities without assigned CWE-ID(s). We ranked attack techniques with highest fre-
quencies, from which the top-5 attack techniques are T1574.007 (i.e., “Hijack Execu-
tion Flow: Path Interception by PATH Environment Variable”), T1562.003 (i.e., “Im-
pair Defenses: Impair Command History Logging”), T1574.006 (i.e., “Hijack Execu-
tion Flow: Dynamic Linker Hijacking”), T1134.001 (i.e., “Access Token Manipulation:
Token Impersonation/Theft”), and T1134.002 (i.e., “Access Token Manipulation: Cre-
ate Process with Token”).

We also retrieve exploit patterns to identify whether the extracted CI vulnerabilities have
public accessible exploits, which hints higher exploitability of those vulnerabilities. We
found that 178 out of 1089 vulnerability instances (or 137 out of 767 instances after re-
moving duplicated CVE-IDs) have PoC exploits published in ExploitDB. Some vulnera-
bilities share the same EDB-ID(s). For example, CVE-2011-4875, CVE-2011-4876, CVE-
2011-4877, CVE-2011-4878, and CVE-2011-4879 were disclosed in EDB-ID: 18166.

(ii) Some Examples of CI Vulnerabilities

Vulnerability in CI devices’ endpoint communication, such as using unencrypted pro-
tocols, may expose the critical data to unauthorized threat actors, and can be exploited
by attacks like MiTM attacks. Vulnerability CVE-2021-22779 illustrates such improper
network segmentation weakness that has been identified inModicon M580 PLCs from
Schneider Electric. VulnerableModicon PLCs employ Schneider Electric UMAS proto-
col that operates over the Modbus protocol which lacks encryption and proper authen-
tication mechanisms. This vulnerability allows spoofing attacks to happen against the
Modbus communication between the PLC controller and the EcoStruxure software in
the engineering workstation.

Another common weakness in CPS based CI devices is improper memory access control
that allow read or write operations ofmemory locations, whichmay cause out-of-bounds
read and/or write. One example of such vulnerabilities is CVE-2020-15782 (2020) that
exemplifies weakness of improper operation restrictions within the bounds of amemory
buffer (or CWE-119 (2022)). This vulnerability has been identified in a list of Siemens
SIMATIC firmware, which allows attackers with network access and download rights
to a PLC to bypass existing protections in the PLC, such as PLC sandbox, and obtain
read-write memory access remotely while staying undetected. A PLC sandbox refers to
a protected area of memory where engineering code could run.

Outdated firmware also leaves back-doors for threat actors. Bugs in programming li-
braries allow more input than the assigned storage space, which may allow attackers to
inject program code and overwrite original data.
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(iii) CI Vendors and Affected Products

We distinguish some specific CI manufacturers or vendor vulnerabilities reported by
Schneider Electric SE, Siemens AG, andMitsubishi. These instances are used as vendor
data corpus to draw out relevant vulnerabilities. We discovered 29 vulnerabilities from
Schneider Electric SE products and 39 vulnerabilities from Siemens AG products. We
also identified 12 vulnerabilities fromMitsubishi.

We also observe some frequently published products that are affected by CI vulnerabil-
ities. One typical example is OpenSSL that appears in 120 CPS vulnerability instances.
openSSL (2022) is a library implementing the SSL/TLS protocol. SSL (referring to se-
cure sockets layer) is the old name of TLS (referring to transport layer security). We
also found 51 vulnerability instances related to Simatic PLCs and HMIs developed by
Siemens AG.

6.3 STUDY V: PERFORMANCE TRADE-OFF BETWEEN
THE INSTANTIATED VULNERABILITY DATABASE
AND THE STATE-OF-THE-ART

This study is to compare our proposed cross-linked vulnerability database against two
types of repositories: (i) public standalone vulnerability data sources, namely CVE and
NVD; and (ii) state-of-the-art open-access correlation solutions such asCVE-Search and
Security Database. The aim of this comparative study is to evaluate the performance
trade-offs of our data correlation approach with other similar solutions, especially on
usefulness and feasibility. Some other related solutions (e.g., VERCASM-CPS North-
ern et al., 2021) do not provide code sources or data sources, and could not be directly
compared with our approach. Another example is vFeed that could not be thoroughly
assessed the limited free features in its Github project page. Note that SecurityDatabase
provides part of their features for free. We only consider these free features here, and
exclude those features that require business licenses in our comparative studies. The
major results of our study are listed in Table 6.3.

CVE and NVD provide reference hyperlinks to third-party cybersecurity analyzers and
vendors, but do not cross-link CVE vulnerability instances to other sources. In com-
parison, the other three databases correlate vulnerability instances published in CVE to
other vulnerability repositories such as textitUS-CERT, ExploitDB, CERT/CC VND and
vendor security advisories such asRedHat,Microsoft andDebian. The free trial version
of Security Database only partially supports vendors’ source correlation. For instance,
Security Database only updates the vendorMicrosoft bulletin and KB till 2017.

Only Security Database and our approach draw attention to and provide workarounds
for inconsistencies in vulnerability data sources. More specifically, Security Database
addresses modifications in vendors’ descriptions from CVE reports in their alerts his-
tory. In comparison, we extract vulnerability features from diverse sources and group
these features into eight classes, allowing further record-level and cross-record incon-
sistency assessment (see details of inconsistency metrics in Chapter 5). Inconsistency
root-cause analysis is also possible by combining inconsistent data attributes and vul-
nerability tracking information (i.e., vulnerability creation and modification timeline).
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All the five databases in Table 6.3 enclose vulnerability instances with assigned CVE-
ID. This means these five databases, including our approach, do not bring additional
vulnerability input than the instances disclosed in CVE.

CVE-ID, CVE report and references to vendors are the basic components shared by all
these five databases. Besides, NVD, CVE-Search, Security Database and our proposed
approach distinguishweakness category, affected product and severity, and tracking fea-
tures by integrating cybersecurity standards CWE, CPE, and CVSS, separately. In ad-
dition to these four features, CVE-Search and our cross-linked database assign attack
features to vulnerability reports through correlating CAPEC standards. Our database
also allocates attack technique and procedure features from ATT&CK and threat cat-
egory features from cvedetails to the related CVE reports. Yet, CVE-Search presents
the mapping between vulnerabilities and CAPEC attack features only on their Web in-
terface, but not within its database. Another issue of CVE-Search database is that it
takes away the logical reasoning (in the form of AND and OR) within the CPE metadata
set. More specifically, after importing CVE and CPE into theMongoDB based database,
CVE-Search generates a summary report for each vulnerability. However, CVE-Search
removes the logical correlations between CPE metadata, which dramatically decrease
the accuracy of vulnerability retrieval. This can be exemplified by the vulnerability ex-
ample CVE-2021-1361 (2021) that affects Cisco Nexus 3000 Series Switches and Nexus
9000 Series Switches in standalone NX-OS mode that are running with Cisco NX-OS
software with release version 9.3(5) or 9.3(6). TheCPEmetadata shown inNVD is in the
format like cpe:2.3:o:cisco:nx-os:9.35 running on/with cpe:2.3:h:cisco:nexus_3000.
However, this system configuration information is removed in CVE-Search that regards
Cisco Nexus 3000 Series Switches alone as the affected product.

All the databases in Table 6.3 support text-based search queries that match the query
words against vulnerability collections and retrieve the instances with these query words
in their reports. Except for CVE, the other four databases also support CPE based vul-
nerability searching. Our approach provides supplementary support on query tags gen-
eration, which is also a workaround of inherent synonyms on product names used by
CPE and vendors.

In summary, our proposed cross-link vulnerability database approach contributes to
clear data model and correlation algorithms, and also enhances the level of automation
through a query generator. While the other databases are beneficial in their own rights,
our approach sets up a basis for further vulnerability attribute assessment and future
simulation opportunities in various cybersecurity dimensions.

6.4 CONCLUSION

In this chapter, the need for, and the promises driven by correlated database manage-
ment approaches to deal with unstructured and semi-structured vulnerability data are
presented. We attempted to answer the research question of how to obtain and correlate
vulnerability information from diverse and heterogeneous data sources. We contribute
standard data models that clarifies a mapping of data sources and a data warehouse
schema in UML format. We provide a correlation algorithm and multiple diagrams
to illustrate attribute cross-link processes. Additionally, we designed a query genera-
tor that takes system configuration information as input and exports the best matching
query tags in the format similar to CPE metadata. We proposed a local vulnerability
database artifact, that is inherently synchronized with heterogeneous online security-
related repositories using information fusion techniques to extract relevant information.
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This proposed artifact is evaluated throughStudy IV that investigates vulnerability trends
at both CI asset-level and component-level. Study IV investigates vulnerability trends
of four industrial CPS devices widely used CI asset types, namely RTU, PLC, MTU and
HMI. Further evaluation of retrieved vulnerabilities on actual CI assets is out of this
thesis scope, yet we managed to locate information for vendors, products and version
numbers from Shodan and vendor repositories. This case study indicates some major
trends in CI vulnerabilities. It shows the potential of using the correlated vulnerability
database for actual CI vulnerability assessment.

We carried out a comparative study Study V to compare the performance of the pro-
posed correlated database against the baseline singular data sources and some existing
data fusion solutions like CVE-Search and Security Database. This comparative study
shows that our approach is beneficial compared to relatedmethods, particularly in terms
of data features, structured schema and query generation support. Meanwhile, our cor-
related database provides a workaround for data inconsistencies solutions at this stage.
Instead of selecting one value from a set of options that represent stakeholders’ vari-
ous perspectives, the workaround solution is to provide a container that stores all these
options, to allow the decision makers to select a preferable perspective. The correlated
database cross-links multiple vulnerability data sources and brings the base for future
detection and validation of data trustworthiness.

We also observed that our database allocates vulnerability features only when these fea-
tures are already identified by one of the cross-linked data sources. This limitation
may leave an information gap in our vulnerability database, which is usually manu-
ally assessed and assigned by cybersecurity analyzers. However, relying on individual
experts’ knowledge could introduce recurrent costs, subjective evaluations and contra-
dicting outcomes. Improving the level of automation supports a timely vulnerability-
analysis life-cycle. It allows mitigation within the time interval that spans the disclosure
and patch of vulnerabilities. We discuss and address the limitations of information gap
and manual assessment in our next chapter.
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CHAPTER 7

VULNERABILITY DATA GAP ANALYSIS

The previous two chapters discuss some commonly used public vulnerability reposito-
ries and standards, where we also realized a cross-link database model that correlates
these standalone data sources. In our correlated database, we categorize vulnerability-
related information into eight classes that bundle together semantically related labels
assigned by multiple stakeholders. Yet there are still some challenges in the direct de-
ployment of our integrated database due to missing information (or information gap)
in the original vulnerability sources. Missing information describes the fact that dis-
closed vulnerability instances are only partially allocated with categorical labels such as
CVSS-metric labels that support vulnerability severity scoring and CWE-IDs that infer
vulnerability weakness categorization. This is an obstacle that remains to be solved for
a systematic and accurate vulnerability analysis and trend prediction.

This chapter focuses on answering the research question of how to bridge the missing
information gap in the curated vulnerability database (as presented in Chapter 6). To
answer this question, we propose two ML approaches for vulnerability assessment that
infer CVSS severity scores and CWE weakness categories of reported vulnerability in-
stances, separately. The first proposed technique also addresses compatibility issues
of CVSS scores using a majority voting machine learning model. Vulnerability assess-
ment and related parameters’ evaluation for CI-based infrastructures use the proposed
machine-learning models to provide a level of automation in vulnerability analysis. We
use the correlated vulnerability database presented in Chapter 6 to get input data forML
model training and testing. For instance, we utilize the vulnerability descriptions in the
class of Vulnerability Metadata in our database as a training input. The vulnerability
entries with inconsistent scores are de-duplicated with majority voting before using it
as training grounds. In doing so, ground truths for our ML-based vulnerability-severity
computing algorithm are generated. We use these instances to train our ML model that
is later validated with reported vulnerabilities in existing public repositories, such as
NVD and SecurityFocus.

Different ML models may perform better than others for different types of cybersecu-
rity management tasks. However, the entire group of models bundled together should
hypothetically be more efficient in responding to cyber incidents, as introduced in sub-
section 3.2.2. Hence, this research investigates this hypothesis where multiple models
are combined into a unique knowledge structure that subsumes patterns of threats, vul-
nerabilities, attacks, as well as their correlations. On top of the ML-based vulnerability
score computing and weakness categorization approaches, we also suggest a selective
ensemble model that improves the performance of ML-based algorithms based on the
predefined cybersecurity task. This proposed selective ensemble meta classifier model
contains aML pipeline that processes embedded security indicators in reliable data sets,
and then uses multiple ML-based components to improve predictive accuracy over indi-
vidual learning algorithms. We validate this method by processing embedded security
indicators across reliable data sets for severity score computation and threat categoriza-
tion. The experimental analysis of actual vulnerability data sources shows some interest-
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ing trade-offs of the proposed selective ensemble method, which improves the accuracy
of predictions over individual ML algorithms.

This chapter covers, but is not limited to results from Paper III, Paper V, and Paper VII.

7.1 INTRODUCTION

Enterprises are increasingly facing cybersecurity flaws caused by intermittent vulner-
abilities. Although recent advances in data analytic prompt dynamic data-driven vul-
nerability assessments whereby data contained in, and produced by complex systems
include thousands of reports in different formats, still current vulnerability assessment
processes are mostly conducted manually. The huge volume of data requires a high ca-
pability of information processing and analytical reasoning, which could not be satisfied
considering the imprecise nature of manual vulnerability assessment. Modern security
practices promote quantitativemethods to provide prioritization insights and predictive
analytic supported by vulnerability databases. This chapter presents multiple mecha-
nisms based on ML and natural language processing (NLP) techniques to bridge the
information gap in the vulnerability database introduced in Chapter 6. These mecha-
nisms learn distinctive patterns from historical vulnerability data, based on which new
vulnerability instances are predicted. In doing so, the proposed approach infers missing
security information to enhance further cybersecurity awareness.

7.1.1 BRIDGING VULNERABILITY INFORMATION GAPS

CVSS and CWE are widely adopted to assess vulnerability severities and weakness ex-
ploitability across enterprises and academic research (Gawron, Cheng, andMeinel, 2017)
(Johnson et al., 2016b) (Spanos, Angelis, and Toloudis, 2017). According to our static
analysis in Section 5.2, around 48.08% and 5.76% vulnerability instances disclosed in
NVD have no assigned CVSS V3 and V2 scores, separately. Similarly, around 27% of
disclosed vulnerabilities in NVD have no weakness category that is needed for further
assessment like PoC analysis. The missing of CWE categories leads to lower awareness
of the root cause of disclosed vulnerabilities, and contributes to a generally longer time
of vulnerability patching (Yuan et al., 2021). Actually, both CVSS and CWE exhibit some
challenges when used in practice (Scarfone and Mell, 2009) (Fang et al., 2020), which
are discussed next.

CVSS-scores are essentially influenced by individual experts, whomay spend some time
to rank the severity of a vulnerability since disclosed in CVE. This incurred time delay
in evaluating vulnerabilities increases the chances of threats to materialize into actual
cyber-attacks (Ruohonen, 2019). Several shortcomings need to be investigated to de-
velop such an automatic scoring system, like inferring relevant measurements used to
regulate vulnerability metrics at an appropriate scale for reported vulnerabilities. Fur-
thermore, discrepancies among existing CVSS versions generate incompatible metric
measurements. These issues were not fully addressed in previous research. Various or-
ganizations employ different CVSS versions to score vulnerability instances (Scarfone
and Mell, 2009), resulting in conflicting outcomes. For example, NVD adopted CVSS
version 2 in 2007 June, and then added CVSS version 3 scores to rate vulnerability in-
stances reported only from 2015 December onwards. All CVEs have CVSS version 2
scores, but there are flaws in CVSS version 2 that CVSS v3 should address.

The hierarchical structure of CWE increases the challenge of vulnerability categoriza-
tion. CWE version 4.6 list covers multiple views that focus on various security per-
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spectives such as software development, web-based cybersecurity, and hardware weak-
nesses. These categorical views adopt different descriptive terms to group lower-level
weaknesses. Different security communities utilize different CWE views when assign-
ing weakness categories to vulnerability reports. Meanwhile, security researchers assign
CWE weaknesses at different abstraction levels such as Base, Variant, and Category to
vulnerability records. Due to the complex hierarchical structure ofCWE, security experts
need to navigate this structure to allocate weakness types for reported vulnerabilities.
Such a process is complicated and time-consuming, resulting in weakness identification
time delays.

It is desirable to define vulnerability indexes to help with a better categorization and
analysis of vulnerabilities, as well as to automate the analysis process by translating nat-
ural language statements found in vulnerability reports into machine-readable formats,
as a supplement to automatically generate prevalent topics in vulnerability disclosure
(Hafiz and Fang, 2016). Advances in ML-based security solutions are expected to shift
the burden of managing large volumes of vulnerability information away from security
experts and onto some automated digital alternatives, as introduced in sub-section 3.2.1.
Recently published findings report successes in applyingML techniques to improve effi-
ciency and productivity in security activities like vulnerability alert management and re-
lated incident analysis (Edkrantz and Said, 2015) (Spanos, Angelis, and Toloudis, 2017)
(Bullough et al., 2017) (Fang et al., 2020) (Sarker et al., 2020).

There is a consensus among cybersecurity experts that ML techniques does support the
assessment of vulnerability data sources and hence it does alleviate some of the afore-
mentioned cybersecurity challenges (Almukaynizi et al., 2017). In doing so, these ML
approaches significantly contribute to improving the effectiveness and productivity of
security activities like alert management and incident analysis. The retrieved informa-
tion fromvulnerability data sources supports further pattern recognition and trend anal-
ysis (Sarker et al., 2020). Using ML techniques, large amounts of such open-source vul-
nerability data can be analyzed (Spanos, Angelis, and Toloudis, 2017).

This thesis suggests twoMLmodels to assign labels ofCVSSmetrics orCWEweaknesses
to vulnerability instances. We use the correlated vulnerability database presented in
Chapter 6 to get input data for ML model training and testing. For instance, we utilize
the vulnerability descriptions in the class of Vulnerability Metadata of our database as
a training input. The vulnerability entries with inconsistent scores are de-duplicated
with majority voting before using it as training grounds. In doing so, ground truths for
our ML-based vulnerability-severity computing algorithm are generated. We use these
instances to train our ML model that is later validated with reported vulnerabilities in
existing public repositories, such as NVD and SecurityFocus.

7.1.2 ENHANCING VULNERABILITY ANALYSIS

ML approaches are underutilized to streamline diverse cybersecurity tasks, such as vul-
nerability categorization and severity evaluation. For example, multi-label and multi-
class classifications may require different ML techniques to improve prediction perfor-
mances, and adopt different validation metrics (Aly, 2005) (Tsoumakas and Katakis,
2007). Since there is no single-size-that-fits-all ML-based solutions to automate cyber-
security operations, the selection of a suitable option becomes an overwhelming decision
due to potential cybersecurity risks that may result from adopting the wrong ML model
(Heelan, 2011). The problem addressed in this chapter is the dilemma to choose the
most appropriate ML model that automatically alleviates the increasingly sophisticated
threats. The objective is to assist cybersecurity professionals in keeping up with con-
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stantly evolving attack tactics. The problem addressed here can be formally specified as
follows:

ML = ArgMax
0<i≤N

(ML
D
i , Sp) (7.1)

That is, given a set of vulnerability instances D and a set of N available ML baseline
modelsMLi (0 < i ≤ N) (e.g., a support vectormachine (SVM)model), find an optimized
model or ensemble of several baseline models, from an input of given classifiers MLi

trained using D labels, for analyzing multiple targeted vulnerability-analysis purposes
Sp, such as categorizing vulnerability severity or threat profile.

As fact-checkers and champions of ML solutions (Veksler et al., 2018), security special-
ists continue to play a crucial role, devoting their intuition, ingenuity, and prior expe-
rience. This brings up the question of how to implement a ML-based security strategy
that enables security management roles (e.g., operators and executives) to evaluate the
risks resulting from the integration of many vulnerability sources and their combination
across CI networks.

On top of the vulnerability data curation process introduced in Chapter 6 and the gap-
filling ML mechanisms presented in Section 7.3 and Section 7.4 of this chapter, we fur-
ther propose an ensemble approach in Section 7.5 that combines independent classi-
fiers while taking data input from heterogeneous vulnerability sources. This approach
improves the performance of vulnerability classification activities while increasing the
adaptability of vulnerability analysis missions. More specifically, we suggest an op-
timization algorithm that selects the best ML base algorithm(s) to construct effective
ensemble models for diverse cybersecurity mission targets. In addition, a variation of
cross-validation is implemented to reduce the likelihood of over-fitting across classifi-
cation tasks (Van der Laan, Polley, andHubbard, 2007). The optimization algorithm an-
alyzes all possible combination schemes for pickingML-based exampleswith the highest
performance.

Figure 7.1: Vulnerability analysis method using ensemble ML
(Figure reproduced from Jiang and Atif (2021))

Figure 7.1 illustrates the overall architecture of the proposed selective ensemble vulner-
ability analysis framework. A crawler module regularly scrapes and crawls data from
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numerous online public vulnerability alert and record repositories. The collected data
are then correlated and consolidated into a local database, which serves as the foun-
dation for the subsequent ML model training and testing procedures. Particularly, a
pipeline of selectiveML ensemblemodels generates classifiers based on the enteredmet-
ric sets, including vulnerability-severity metrics (e.g., confidentiality impact) and threat
profile metric (e.g., DoS). The term “pipeline”denotes a number of ML-integrated steps
chained together. Each of these ML cycles involves acquiring the data, pre-processing
it, training/testing it on a chosen ML algorithm, generating some output (in the form
of a prediction), and then evaluating the performance of this ML technique. In order to
optimize the classification of security indicators, the proposedmethod also incorporates
an ensemble of ML classifiers that have been trained. This ensemble model, as opposed
to a single ML model, incorporates numerous algorithms under a standard knowledge
framework that encompasses vulnerability patterns and their connections. Security op-
erators participate in the validation procedure to choose and prioritize classification-
performance indicators such as precision and accuracy. End-to-endoptimization through-
out the entire pipeline is difficult, however this chapter discusses the orchestration archi-
tecture that realizes the processes from vulnerability data curation through information-
gap filling and then to pattern prediction.

Our ensemble approach combines separate classifiers that utilize information from a va-
riety of sources, resulting in improved performance for vulnerability classification tasks
and more adaptability for multiple cybersecurity missions. A form of cross-validation is
utilized to reduce the likelihood of overfitting across classification jobs. Different sets of
evaluation metrics are combined by our vulnerability analysis method revealed next, to
select ensemble machine-learning that optimizes vulnerability severity-score computa-
tion. The classification validity for these selected ensemble machine-learning classifiers
is asserted in the subsequent performance evaluation section.

7.2 TEXT MINING

This section introduces some text mining basics that are used in the proposed vulnera-
bility reports assessment methods.

7.2.1 TEXT MINING PROCESS

Normally a text mining process includesmodules for data selection, data pre-processing
and cleaning, feature selection, and alsoMLmodel training, validation andoptimization.
In addition, some data pre-processing like tokenization and feature engineering are con-
ducted on the textual reports and other extracted data of targeted vulnerability sets to
classify new vulnerability instances, as illustrated in Figure 7.2.

Step 1: textual data preprocessing

Textual data preprocessing refers to the preprocessing and normalizing of returned raw
textual reports, which comprises numerous typical text processing processes such as
tokenization, removal of extraneous punctuation and stop words, word-stemming, and
word-lemmatization (or grouping together different forms of a word into a shared item
using some dictionary). Preprocessing is a crucial step in the text analysis process.
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Figure 7.2: Example of data preprocessing, feature extraction and feature selection
(Figure reproduced from Jiang and Atif (2021))

Step 2: feature extraction

This step focuses on extracting relevant features from the cleaned textual reports con-
sidering the corresponding cybersecurity objective. Common textual features are cate-
gorized into indirect features and direct features. Indirect features include word counts
anduniquewords, which are combined to forma vocabulary and term-documentmatrix.
Each column of the matrix represents a word in the vocabulary, while each row repre-
sents a document from the dataset under investigation. In this situation, the values are
the word counts (i.e., indirect feature). Direct features are those that are inherently gen-
erated from words or phrases, such as word frequency and vector distance mapping of
words (e.g., withWord2Vec).

This thesis utilizes four ways to extract direct features, namely Count-based, Binary-
based, Term Frequency-Inverse Document Frequency (TF-IDF) based, andWord2Vec-
based feature weighting approaches (Trstenjak, Mikac, and Donko, 2014). Count-based
feature extraction assigns weights to words based on the term frequency of these words
in a document. One commonly used text feature extractionmethodnamedBagofWords
belongs to this category, which constructs a document into a vector ranked by the fre-
quency of words. Similar to Bag of Words, another example of count-based feature ex-
traction isN-gram approach that counts words by selecting them in groups ofN. Binary-
based weighting assigns ’1’ or ’0’ to a word depending on whether the word is presented
in a document or not. TF-IDF based weighting approach assigns more weight to the
words that are unique to a particular document than the words that are commonly used
across all the documents (Debole and Sebastiani, 2004). TF-IDF is usually employed to
extract important keywords from a document to help envisage the distinct characteris-
tics of that document. Word2Vec employs clustering techniques to generate vectors for
each word considering the similarities between these words.
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Table 7.1: Data features, sources, types and modeling

(Table reproduced from Jiang and Atif (2021))

Feature Feature Source Feature Type Feature Modeling

Vulnerability Description CVE Text Word and N-Gram Character Embedding

Vulnerable Component Name CVE, CPE Text Word Embedding into Vectors

Vulnerable Component Version CVE, CPE Number Numeric Feature Embedding

Vulnerable Component Type CPE Category One-Hot Encoding

Vulnerable Component Vendor CVE, CPE Text Word Embedding into Vectors

Weakness Category ID CWE Number One-Hot Encoding

Weakness Category Name CWE Text Word and N-Gram Character Embedding

Weakness Category Description CWE Text Word and N-Gram Character Embedding

Attack Category ID CAPEC Number One-Hot Encoding

Attack Category Name CAPEC Text Word and N-Gram Character Embedding

Attack Category Description CAPEC Text Word and N-Gram Character Embedding

Threat Category CVE Details Category One-Hot Encoding

Access Vector (Exploitability) CVSS V2 Category One-Hot Encoding

Access Complexity (Exploitability) CVSS V2 Category One-Hot Encoding

Authentication (Exploitability) CVSS V2 Category One-Hot Encoding

Confidentiality Impact CVSS V2 Category One-Hot Encoding

Integrity Impact CVSS V2 Category One-Hot Encoding

Availability Impact CVSS V2 Category One-Hot Encoding

CVSS V2 Base Score CVSS V2 Number Scaled to (0,10)

Attack Vector (Exploitability) CVSS V3 Category One-Hot Encoding

Attack Complexity (Exploitability) CVSS V3 Category One-Hot Encoding

Privileges Required (Exploitability) CVSS V3 Category One-Hot Encoding

User Interaction (Exploitability) CVSS V3 Category One-Hot Encoding

Confidentiality Impact CVSS V3 Category One-Hot Encoding

Integrity Impact CVSS V3 Category One-Hot Encoding

Availability Impact CVSS V3 Category One-Hot Encoding

CVSS V3 Base Score CVSS V3 Number Scaled to (0,10)

Extra Reports
Manufacture Websites;

Security Blogs; etc,.
Text Word and N-Gram Character Embedding

Table 7.1 summarizes the data features, feature sources, feature types and somebrief fea-
ture modeling information employed in the proposed method. Taking the vulnerability
description as an example, textual features are captured and translated into vectors and
embeddings representing similarities between words and n-gram characters. Another
example is the numeric feature extracted from CPE to indicate vulnerable component
type, namely hardware-, software-, and operating-system categories. We model such a
numeric feature through a one-hot encoded vector to distinguish each word in the doc-
ument from every other word.

Step 3: feature selection

The purpose of this stage is to identify the most relevant features of the researched cy-
bersecurity issue. Instead of evaluating all of the candidate features retrieved in the
preceding phase, the candidate features are distinguished by pre-processing the origi-
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nal feature space and prioritized by characteristics such as processing time. Moreover,
different weights are provided to features based on the targeted vulnerability-analysis
objectives. For example, script, web, uri, html, xss are given higher feature weights
than plc, simatic when targeting threat-pattern analysis, as shown in Figure 7.2.

Step 4: ML model training and validation

Previous steps utilize NLP methods to convert vulnerability reports’ content into a nu-
merical format (Zhu and Dumitraş, 2016). This process simultaneously picks and trains
machine learning algorithms with extracted features. The objective is to use ML ap-
proaches to classify new incoming reports based on prior observations in order to extract
significant TVA patterns and create accurate forecasts of vulnerability score severity. As
indicated previously, the most significant obstacle is the question of ML selection. In
this method, MLmodels are trained, evaluated, and validated. Then, we select the mod-
els with the best performance as component models for subsequent ensemble forma-
tion. We deploy a simple model of data distribution parallelism to balance statistical
efficiency and hardware efficiency, following the framework suggested in Jiang et al.
(2018a). The training data (referring to historical incidents and reports of vulnerability)
is partitioned. Each partition (or certain fields within the partition) is utilized to train
a MLmodel. Meanwhile, model replicas are used to update and store parameter values.
Multiple MLmodels are trained and evaluated offline in this manner. Once the training
and testing processes are complete, the candidate model database is updated withmeta-
data and learned model configuration parameters such as the embedding dimensions,
word-occurrence threshold.

7.2.2 MACHINE LEARNING ALGORITHMS

This section introduces several ML algorithms used in the experiments to demonstrate
the proposed text-mining approaches. We utilize five supervised ML models, namely
Logistic Regression (LR), Naive Bayes Support Vector Machine (NBSVM), Long Short-
TermMemory (LSTM)RecurrentNeuralNetwork (RNN),Multi Layer Perceptron (MLP),
as well as K-Nearest Neighbor (KNN). The detailed implementation and parameters af-
ter tuning are clarified in the experiment sections later in this chapter.

• LR works as a discriminative supervised-learning classifier that learns to assign a
high weight to document features, and then assigns a class c to a document d by di-
rectly computing the likelihood P(c∣d) (Almukaynizi et al., 2017) (Zhang, Caragea,
and Ou, 2011). In more details, we utilize the LR text-mining method training us-
ing stochastic gradient descent and the cross-entropy loss, which returns a predicted
class for a given document in the test set.

• NBSVM combines both NB and SVM models. SVM creates optimal hyperplanes, or
decision boundaries, to distinctly separate observations into different classes, mean-
ing data points falling on either side of a hyperplane can be attributed to different
classes (Joachims, 2001). Methods using SVM calculate the maximum margin be-
tween the data points of different classes. Maximizing the margin distance provides
some reinforcement to improve themodel performance, which is usually done by ac-
quiring support vectors where data points are closer to the hyperplanes. NB is based
on Bayes theorem, and classifies text categorizations of an observation by computing
the conditional probability values P(d∣c) for each class c, given an observation d.

• LSTM-RNN works by recursively feeding the output of a previous network into the
input of the current network, and take the final output after X number of recursions
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(Zhou et al., 2016). RNN refers to Recurrent Neural Network and is commonly used
in NLP and speech recognition. It has an internal memory which allows the neural
network to perform the same function for every data input. The output is copied and
sent back into the recurrent network, to be used in the current computation step. And
hence, it is beneficial to use RNN for sequential data analysis. LSTM is adopted for
short term memory learning and improves RNN performances in terms of potential
vanishing gradient.

• MLP is one type of NN where all the units of the previous layer are connected with
the units of the next layer (Zanaty, 2012). Between the input layer and the output
layer, the hidden layer would adjust network weights through supervised learning.

• KNN works by comparing distances between unknown samples with distances be-
tween the closest known k-samples (Trstenjak, Mikac, and Donko, 2014).

7.2.3 VALIDATION METRICS FOR CLASSIFICATION ALGORITHMS

This thesis employsmultiple classification and clustering algorithms to facilitate the vul-
nerability report analysis process. A single instance is classified into one of two cate-
gories using binary classification. One occurrence is classified into one ofmultiple (more
than two) categories during multi-classification. In multi-label categorization, a sin-
gle instance is assigned numerous labels, denoting various categories (Tsoumakas and
Katakis, 2007). Typically, the assessmentmetrics for single-label are distinct from those
formulti-label. Inmulti-label classification, amisclassification is no longer a hardwrong
or right (Sorower, 2010). A prediction comprising a subset of the actual classes should
be judged superior to one containing none of them, i.e., correctly predicting two of the
three labels is preferable to predicting none. Therefore, the prediction of multi-label
cases can be completely accurate, moderately accurate with varying degrees of accuracy,
or completely inaccurate.

Different evaluationmetrics are discussed next, with the details of themetric computing
listed in Table 7.2.

(i) Binary-class evaluation metrics

To validate the accuracy of a categorization, we employ the confusion matrix. Compute
the number of correctly classified class instances (true positives, or TP), the number
of correctly classified instances that do not belong to the class (true negatives, or TN),
and instances that were either incorrectly assigned to the class (false positives, or FP)
or were not recognized as class instances (false negatives, or FN). On the basis of the
aforementioned definitions, metrics such as accuracy, precision, recall (or sensitivity),
and F-score (or F1) are calculated. Accuracy is a measure of a classifier’s overall efficacy.
Precision, on the other hand, refers to the proportion of true positives among all expected
positives. Recall demonstrates the capability of a classifier to identify positive labels. F-
score maintains a balance between precision and recall, respectively. The performance
of the learning algorithm is enhanced by increasing values of accuracy, precision, recall,
and F-score.

(ii) Multi-class single-label evaluation metrics

Themulti-class single-label evaluation contains validations at both themacro- andmicro-
average levels. Themicro-average differs from themacro-average in that it combines the
weighted contributions of all classes. In contrast, the macro-average is calculated by av-
eraging the contributions of all classes. And therefore, micro-average is preferable for
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multi-class categorization problems with class imbalance. Macro-average evaluation of
anC-class (C > 2) classification problem is given by the average of per class evaluation, to
compute macro-accuracy (maACC), macro-precision (maPRE), macro-recall (maREC),
and macro F-score (maFS). Alternatively, micro-average classification is evaluated by
summing up the amounts of TP, FN, TN, and FP to aggregate the contributions of all
classes to compute the average metric. When using micro-average metrics, the value of
micro-precision (miPRE),micro-recall (miREC) andmicro F-score (miFS) are the same.
Cohen’s Kappa also applies tomulti-class assessment, which represents the performance
of the accepted classifier relative to the performance of a classifier that makes random
classification assumptions. (Sokolova and Lapalme, 2009) (Aly, 2005)

(iii) Multi-label evaluation metrics

Multi-label classification utilizes a different set of metric formulations for accuracy, pre-
cision, recall and F-score (Sorower, 2010). For each instance, multi-label accuracy (or
mlACC) is defined as the proportion of the predicted correct labels to the total number
(both predicted and the ground-truth) of labels for that instance. Multi-label precision
(mlPRE) is the proportion of predicted correct labels to the number of predicted labels.
Multi-label recall (mlREC) is the proportion of predicted correct labels to the number of
ground-truth labels. Multi-label F-score (mlFS) is the harmonic mean of mlPRE and
mlREC. The exact-match-ratio (EMR) calculates the percentage of samples that cor-
rectly predicted all the labels. The hamming-loss (mlHLS) measure is also employed
in our evaluation of security data classification. This metric is the fraction of incorrectly
predicted labels, including the prediction error (an incorrect label is predicted) and the
missing error (a relevant label is not predicted). I is the indicator function. Yi is the
ground truth. Zi is the prediction. The lower the value of the hamming loss, the better
the classifier’s performance.

(iv) CVSS Score Evaluation Metrics

The standard mechanism CVSS is widely used to support quantitative vulnerability-
severity assessment in both academic research(Khazaei, Ghasemzadeh, and Derhami,
2016) (Johnson et al., 2016b) (Spanos, Angelis, and Toloudis, 2017) and security-critical
industrial domains (Stine et al., 2017). As part of the validation, we compare the pre-
dicted severity labels to their corresponding original severity labels and apply the ac-
curacy assessment metrics to assess the performance of the ML model. We apply an
alternative scores’ distance metric to evaluate the performance of CVSS-characteristic
classification across ML models. First, CVSS scores are computed by applying CVSS
mechanism onto predicted counterparts (Scarfone and Mell, 2009). The existing score
(true score, or TS) and a predicted score (or PS) are correlated as a two-dimensional vec-
tor space into one Cartesian coordinate system. We use the distance of the two vectors
tomeasure the performance of our vulnerability score prediction system using Equation
7.2, where δ is a threshold value. According to the documentation of CVSS, the accept-
able deviation of CVSS score is a value of 0.5 in CVSS Documentation (2022) under the
section “A Word on CVSS v3.1 Equations and Scoring”. We also consider that a devia-
tion of 0.05 indicates better score prediction. Therefore, two values (δ equals to 0.5 or
0.05) are used to evaluate the accuracy of our severity-score computing.

ScoreAccuracymacro =
∑n

i=1{i∣TSi−PSi

TSi
< δ}

n
,where is a predicted CV SS score.

(7.2)
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7.3 ARTIFACT II-A: DISCOVERING VULNERABILITY
SEVERITY UNDER CVSS METRICS

This section describes a ML-based technique for discovering CVSS scores for reported
instances of vulnerability for which no score has been assigned. This proposed method
creates severity scores for instances of vulnerability automatically, which reduces the
possibility of human error and reduces the effort required of human specialists. Follow-
ing a brief description of the system architecture, each component of the vulnerability-
severity computing system is introduced in details.

7.3.1 SYSTEM OVERVIEW

As seen inFigure 7.3, we acquire vulnerability data fromopen-source vulnerability sources.
Simultaneously, we apply majority voting techniques (Tao et al., 2018) to deal with in-
consistent scores retrieved from different CVSS scored reports across multiple reposi-
tory sources. We employ these reconciled scores as the training ground for our proposed
ML models, together with vulnerability reports. Then, we optimize the score predic-
tion by employing a ML pipeline that classifies these occurrences based on a variety of
CVSS-metric labels. Meanwhile, we store CVSS metrics from different CVSS versions
in a knowledge base. Thus, the corresponding metric-set is retrieved through the user’s
query. The same goes for measurements and severity scales. In doing so, one can se-
lect any CVSS version to compute the corresponding score and vector for vulnerability
instances. This suggested vulnerability severity computing system consists of a number
of ML computational cycle-linked phases. Each integrated ML cycle generally consists
of three phases. Step 1 is the collection of data. Step 2 does data pre-processing to pre-
pare the data for training/testing processes involving an algorithm for machine learn-
ing. In Step 3, a predicted severity score is ultimately supplied. Data that has been pre-
processed includes training/testing examples and classification measurements. Note
that training and testing processes are not differentiated in Figure 7.3 to facilitate read-
ability.

Figure 7.3: High-Level Structure of Vulnerability Severity Computing System
(Figure reproduced from Jiang and Atif (2020)). More details of the correlated

database shown in this figure can be found in Chapter 6
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7.3.2 MAJORITY VOTING FOR INCONSISTENT SCORES

Relying upon NVD scores alone as the model training ground can bring bias in vulnera-
bility assessment (Anwar et al., 2020) (Jo et al., 2020). This is because a small percent-
age of score records inNVD is assumed to have errors due to themanual scoring process
(Scarfone and Mell, 2009). Besides statistical vulnerability patterns mined from CVE
reports, other data sources like vendors and third-party security analysts (e.g., CERT)
provide different perspectives for vulnerability scoring, as we discussed in Chapter 5 and
Chapter 6. In fact, our proposed database presented inChapter 6 correlates these diverse
sources and bundle scores and otherCVSS attributes assigned by these stakeholders into
one class (i.e., Severity class).

We set up a majority voting (Tao et al., 2018) module using Python whereby the score
that the majority of data sources ([V1, . . . , Vd, . . . , VD] where 0 < d ≤ D,D > 2) in the
pipeline agree on is delivered as true score or ground truth score. In the cases where
only two score sources are found, or [V1, V2], and these two scores are inconsistent, the
average of these two scores are taken.

Taking the vulnerability instance CVE-2018-7791 as an example, a CVSS V3 base-score
of 9.8 is assignedbyNVD and vendorSchneiderElectricwith the vectorAV:N/AC:L/PR:N
/UI:N/S:U/C:H/I:H/A:H. Nevertheless, ICSCERTassigns this vulnerabilitywith a score
of 7.7 with the vectorAV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:L. Similarly, the incon-
sistency comes from different measurements for attack complexity. The proposed ma-
jority voting approach suggests a final score of 9.8 as the true score. Another example
of score inconsistencies is the vulnerability instance CVE-2014-0754which is assigned a
CVSS V2 base-score 10.0 byNVD, VulDB and ICS CERTwith a vectorAV:N/AC:L/Au:N
/C:C/I:C/A:C. Yet, a different score 9.3 is assigned by the vendor Schneider Electric
with a vector AV:N/AC:M/Au:N/C:C/I:C/A:C. The inconsistency occurs due to differ-
ent measurements for Access Complexity of this instance, whereby Schneider Electric
assigns medium complexity, while the other three parties assign low complexity. We
chose a final score of 10.0 as the true score using our majority voting approach.

7.3.3 VULNERABILITY SEVERITY COMPUTING

Vulnerability data is classified using a pipeline of ML algorithms to fill CVSS score gaps.
We compare the retrieved vulnerability reports from existing vulnerability repositories
against vulnerability descriptors, using text-mining approaches (Spanos, Angelis, and
Toloudis, 2017). Subsequently, we classify new vulnerability reports along with CVSS-
metric property groups, using a ML algorithm that is trained from a set of historical
instances of reported data V . Considering N vulnerability instances from this data set,
(vi, Yi) (0 < i ≤ N) represents a mapping between a vulnerability report vi and a vector
Yi describing the ground truth employed by the ML algorithm.

Algorithm 3 shows the base score computation of vulnerability severity.
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Algorithm 3 Vulnerability CVSS base-score computing

procedure SeverityComputing(ML,m,M,V,V ′)
▷ML is a machine learning model f().
▷ fBase() is the CVSS calculator, as shown in Expression 2.1
▷ [V1, . . . , Vd, . . . , VD] (0 < d ≤ D,D > 2) is a list of data sources, each of which
has N vulnerability instances. Each vulnerability instance vi (0 < i ≤ N) is as-
signed a list of severity scores as [si,1, . . . , si,d, . . . , si,D] and a list of CVSS vectors
as [Yi,1, . . . , Yi,d, . . . , Yi,D].
▷ V ′ is a set of vulnerability instances vp (0 < p ≤ N ′) that have no severity score or
CVSS measurements.
▷ m is a set of CVSS metrics mj (0 < j ≤ M) where each metric mj has a set of

Kmj classes as maps to a value Y
(mj)
i ∈ {C

1(mj) , . . . ,Ck(mj) , . . . ,CK(mj)} (0 < k
(mj) ≤

K(mj)).
D = ∣[V1, . . . , Vd, . . . , VD]∣,N = ∣Vd∣,N

′ = ∣V ′∣,M = ∣m∣,K(mj) =

∣{c
1(mj) , . . . , ck(mj) , . . . , cK(mj)}∣

foreach vulnerability instance vi (i = 1, . . . ,N) do
foreach CVSS metricmj (j = 1, . . . ,M) do

Set Y
(mj)
i = arg max

K(mj)
[card({c

1(mj) , . . . , ck(mj) , . . . , cK(mj)}∥Y
(mj)
i,d )](0 <

d ≤D) as ground truth for CVSS measurement

Yi = [Y
(m1)
i , . . . , Y

(mj)
i , . . . , Y

(mM )
i ] (j = 1, . . . ,M)

Set si = fBase(Yi) as ground truth for severity score

foreach j = 1, . . . ,M CVSS metricmj (j = 1, . . . ,M) do
Train(ML) ▷ MLmodel training and testing for historical dataset

f (mj)(vi) = arg max
k(mj)

f
(mj)
k(mj)(vi)

foreach vulnerability instance vp (p = 1, . . . ,N
′) do

foreach CVSS metricmj (j = 1, . . . ,M) do

Z
(mj)
p = f (mj)(vp) ▷ Get the resultingML predicted CVSS

measurement

Zp = [Z
(m1)
p , . . . , Z

(mj)
p , . . . , Z

(M)
p ] (j = 1, . . . ,M)

The resulting predicted score zp = fBase(Zp)

End procedure

CVSS metrics m = [m1, . . . ,mj , . . . ,mM ] (0 < j ≤ M), determine the M classes Yi =
[Y (m1)

i , . . . , Y
(mj)
i , . . . , Y

(mM )
i ]where eachmetric class Y (mj)

i has a set ofmeasurements

Y
(mj)
i ∈ {C

1(mj ) , . . . , Ck(mj ) , . . . , CK(mj )} (0 < k(mj) ≤ K(mj)). For example, CVSS V3 is
employedwith the set ofmetricsm = [AV,AC,PR,UI, S,C, I,A] (whereM = 8), with the
correspondingmeasurementsYi = [Y (AV )

i , Y
(AC)
i , Y

(PR)
i , Y

(UI)
i , Y

(S)
i , Y

(C)
i , Y

(I)
i , Y

(A)
i ]

such as, Y
(AV )
i ∈ {N,A,L,P} (where K(AV ) = 4), Y

(AC)
i ∈ {L,H} (where K(AC) = 2),

Y
(PR)
i ∈ {N,L,H} (whereK(PR) = 3), Y (UI)

i ∈ {N,R} (whereK(UI) = 2), Y (S)i ∈ {U,C}
(whereK(S) = 2), Y (C)i ∈ {H,L,N} (whereK(C) = 3), Y (I)i ∈ {H,L,N} (whereK(I) = 3),
Y
(A)
i ∈ {H,L,N} (where K(A) = 3). More information regarding the CVSS metrics can
be found in sub-section 2.2.1. This definition is illustratedwith the vulnerability instance
introduced earlier, namely CVE-2021-37172, which can be written as (CVE-2021-37172,
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[N, L, N, N, U, N, H, N]).

Considering the vulnerability computing illustration shown in Figure 7.3, Lines 3-9 in
Algorithm 3 represent the procedure for Step1. Lines 10-13 show the process for Step2.
And finally, Lines 14-20unfold the procedure for Step 3. The classesmj withK

(mj)(K(mj)

> 2) amount of measurements , such as AV , is simplified into multiple binary classifica-
tion problems, to differentiate between classes. Assume the employed ML model (e.g.,
SVM) is f(), multi-class categorization is achieved through a ”one-against-all” method
whereby f(mj)(vi) = arg max

k(mj )
f
(mj)
k(mj )(vi).

The classification ofCVSSmeasurements into class labels calibrates severity scores from
property attributes. A high label of AttackComplexity (AC) for example, pertains to the
attribute value of 0.44, and 0.77 attribute score pertains to low label. We use these
numerical values in the CVSS calculation process.

7.3.4 STUDY VI: EXPERIMENT ON CVSS CATEGORIZATION
EVALUATION

Weutilize the contrast between severity predictions and originally labeled ones for train-
ing and testing the classification performance. Note that the experiment described in
this section was conducted in 2020 and published in November of that same year. We
compare our model mostly to prior publications in the same field. Accuracy, balanced
accuracy, and the F1-score are utilized to evaluate this comparison. The performance
implication accounts for unbalanced classes, such as AccessVector (AV) classes for ex-
ample, where Network category has much larger sample size than Physical category,
as depicted earlier in Figure 5.3. AccessVector (AV) classification may involve multi-
class relationships, where micro-average is employed to get the mean of value across
class affiliations. We employ the same strategy for all additional multi-class instances.
For instance, a vulnerability occurrence is classified into one of three non-overlapping
Integrity-impact measurements, i.e., high, low, or none. Binary classifiers, such as the
one used for UserInteraction (UI), use a confusion matrix to determine the classifica-
tion’s balanced accuracy and F1-score.

We retrieve 156 040 vulnerability records corresponding to 2002 to 2020 range from
NVD (November 3, 2021 release), and remove the reports that are marked as REJECT
from further consideration. We set up a corpus of CVSS V2 reports by excluding re-
ports that are not scored underCVSS V2. 148 803 vulnerability reports are subsequently
filtered out, which are then correlated against trusted data sources like ICS-CERT (as-
serted by cybersecurity experts). We also use manufacturer data sources to resolve dis-
parate scores. The proposed ML model uses these scores as ground truths for training
purposes. Following the same approach, reports that are not rated under CVSS V3 are
taken out to set up 75 265 instances of CVSS V3 corpus data. CVSS V3 scored reports
are fewer from 2015 and earlier, with a total of 4 958 reports. Themodel also crawls vul-
nerability reports from SecurityFocus and map the reports to the corresponding CVE
indexes. We add these external descriptive reports as text features for model training,
together with NVD reports.

We implement our ML pipeline including features extraction and other data processes
with the Python package pipeline in Scikit-learn library. Severity scores from different
CVSS versions are thus transformed in a streamlined way. Processing NVD vulnera-
bility reports’ data starts from tokenization and subsequent feature extractions using
CountVectorizer (2022) and TdidfTransforer (2022) utilities. Subsequently, TF-IDF
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values are calculated, to generate a TF-IDFmatrix fromword features. Train_test_split
procedure is used to randomly divide data records into training (75%) and testing (25%)
datasets, following a random distribution.

Table 7.3: Performance of CVSS-metric categorization TF-IDF LR ML model

CVSS-Metric NVD and SecurityFocus Text Features NVD Text Features Only

Micro F1-Score Balanced Accuracy Accuracy Micro F1-Score Balanced Accuracy Accuracy

V2 AccessVector(AV) 84.97 % 81.05% 95.76% 80.87% 79.53% 95.09%

V2 AccessComplexity(AC) 71.18% 64.01% 83.63% 63.68% 63.64% 84.02%

V2 Authentication(Au) 56.34% 56.21% 95.00% 57.47% 55.34% 93.92%

V2 ConfidentialityImpact(C) 81.03% 80.42% 82.98% 80.66% 79.88% 82.45%

V2 IntegrityImpact(I) 82.40% 82.04% 84.60% 82.34% 81.85% 84.43%

V2 AvailabilityImpact(A) 80.12% 80.09% 81.08% 79.44% 79.19% 80.53%

V3 AttackVector(AV) 75.92% 68.33% 93.68% 75.86% 67.93% 90.36%

V3 AttackComplexity(AC) 81.94% 75.53% 95.58% 78.78% 74.83% 95.31%

V3 PrivilegesRequired(PR) 78.79% 73.25% 90.71% 77.40% 72.50% 85.77%

V3 UserInteraction(UI) 93.45% 93.05% 94.13% 91.41% 91.00% 92.11%

V3 Scope(S) 93.65% 92.64% 97.48% 93.08% 90.66% 96.29%

V3 ConfidentialityImpact(C) 88.36% 87.74% 91.46% 84.37% 82.33% 86.67%

V3 IntegrityImpact(I) 90.58% 90.33% 92.02% 86.91% 85.79% 87.45%

V3 AvailabilityImpact(A) 75.75% 71.55% 93.01% 77.84% 70.41% 89.18%

ML classifiers predict new vulnerability reports within predicted severity patterns. Our
case study uses LR classifier, besides a 5-fold stratified cross-validation applied to the
CVSS training dataset to reduce overfitting occurrences. Table 7.3 illustrates CVSS clas-
sifier prediction performances for the testing datasets. CVSS V3 metric classifications
reach an overall higher performance than CVSS V2 counterparts. However, the larger
set of metrics offsets the CVSS V3 error rate. Table 7.3 also compares the results of
using only NVD entries, against using both NVD and SecurityFocus entries as training
features. By adding more text features, the performance of our CVSS scorer improves.

The outcomes assure satisfactory performances when contrasted to closely related CVSS
classification researches from Gawron, Cheng, and Meinel (2017) as well as Yamamoto,
Miyamoto, andNakayama (2015). Gawron, Cheng, andMeinel (2017) applyNaive Bayes
and Neural Networks algorithms onto CVE vulnerability reports published before and
within 2016 to train CVSS version 3 classifiers. Their training dataset is adjusted to
uneven the influence from data imbalance. The performance of the model proposed by
Gawron, Cheng, andMeinel (2017) uses only an accuracymetric thatmay not adequately
capture unbalanced classification instances. Nevertheless, our accuracy is higher on av-
erage. For example, the accuracy for the Attack Vector classifier is 90.36% when us-
ing onlyNVD vulnerability entries, or 93.68% when using bothNVD and SecurityFocus
entries. In comparison, Attack Vector classifier based on Neural Network in Gawron,
Cheng, and Meinel (2017) has an accuracy of 88.9% on testing data and 80.3% on vali-
dation data. The other Attack Vector classifier based on Naive Bayes in Gawron, Cheng,
andMeinel (2017) achieves an accuracy of 90.8%on testing data and92.3%on validation
data. Yamamoto,Miyamoto, andNakayama (2015) train theirCVSS version 2 classifiers
on vulnerability instances disclosed inNVD from 1999 till 2014. They employed several
ML algorithms, including Naive Bayes, LDA, SLDA (referring to supervised LDA), and
Latent Semantic Indexing.
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7.3.5 STUDY VII: COMPUTING SEVERITY SCORES FOR CI
VULNERABILITIES

Here, we give a vulnerability analysis of four key CI components: PLC, RTU, MTU, and
HMI. This study consists of two primary steps. First, we compute the CVSS V3 base
scores and vectors for vulnerability occurrences that have been retrieved. Sadly, some
of these vulnerabilities are not assessed or categorized until they are retrieved. Before
doing further analysis, we employ our suggested approach to fill in missing or inconsis-
tent ratings. Second, we perform an analysis to explore the statistical patterns of existing
CI vulnerabilities.

We use the vulnerability datasets from Study IV presented in Chapter 6, whereby we
extracted 257, 445, 107, and 258 vulnerability instances for PLC, RTU, MTU and HMI,
separately, from our correlated database updated till November 3, 2021. We identified
CVSS V2 scores for all the 1067 CI vulnerabilities, and also diagnosed multiple incon-
sistent scores for these instances. In contrast, 319 (71.69%) RTU vulnerabilities, 121
(47.08%) PLC vulnerabilities, 47 (43.93%) MTU vulnerabilities, and 121 (46.90%) HMI
vulnerabilities are not assigned CVSS V3 scores.

We first adopt the scoring system shown in Algorithm 3 to re-compute reported vulner-
ability scores, as more than 57% of extracted CI vulnerability instances are not scored
under the CVSS V3 mechanism. The scoring system is used to compute scores for these
vulnerabilities, in order to bridge the gap of missing CVSS V3 information. We also
calculate CVSS V3 scores for the vulnerabilities with inconsistent scores assigned. We
design this re-computation step considering two factors, (i) CVSS V3 is only applied to
vulnerabilities disclosed within and after 2015 in some data sources like NVD, and (ii)
inconsistent scores are provided by multiple score sources. Subsequently, the diver-
sity of their sub-scores is inspected to reflect CVSS V3 metric scores through property
vectors evaluations. Exploitability, Scope and Impact base metric attributes for CI vul-
nerabilities are contrasted against actual values and illustrated in Table 7.4. CI compo-
nent attributes are evaluated individually in Columns 3-6 (or Columns PLC, RTU,MTU,
HMI), and averaged in Column 7 (or Column CI). Column 8 (or Column CVE) shows the
overall rate of published CVE reports that have assigned CVSS V3 scores, by dividing
the vulnerabilities with certain labeled measurement (e.g., Network) against all the dis-
closed vulnerabilities till November 3rd, 2021. By doing so, we show how the significant
characteristics of CI vulnerabilities divergewhen considering different vulnerability data
sources.

Exploitability property attributes of CI vulnerability contrast with CVE counterparts in
average, showing that a significant amount (90.48%) of attacks originate fromNetwork-
based sources, particularly for RTU vulnerabilities. There are limited occurrences of ad-
jacent network-based attacks against CI.However, local attacks occurmore frequently in
CI. A large amount of CI vulnerabilities (98.72%) are prone to exploitability bymalicious
actors without privilege or user interaction. Change of scope is observed in 7.69% in-
stances of CI vulnerabilities, resulting in severe consequences. A higher diversity among
possible impact values is observed compared to exploitability and scope property at-
tributes. Confidentiality and availability are more impacted than the integrity of vul-
nerable CI components. Nevertheless, impact of CI vulnerabilities show polarization
distributions when using CVSS V3 as assessment metrics, which is the opposite when
using CVSS V2 as metrics. Impact of CI vulnerabilities are mostly none or partial under
CVSS V2mechanisms. In contrast, CVSS V3 suggests that CI vulnerabilities exploitation
result in either low or high compact.

CVSS V3 is used to rate CVSS severity base scores of retrieved CI vulnerability reports.
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Table 7.4: CI vulnerability characteristics using CVSS version 3 base metrics

Metric Measurement PLC RTU MTU HMI CI CVE

AttackVector

Network 90.27% 94.38% 93.46 % 84.11% 90.48% 74.35%

AdjacentNetwork 1.17% 0.45% 0.93% 3.10% 1.43% 22.57%

Local 8.17% 5.17% 5.61% 12.79% 7.96% 2.01%

Physical 0.39% 0% 0% 0 % 1.30% 1.06%

AttackComplexity
Low 87.16% 85.39% 80.37% 91.09% 88.79% 91.21%

High 12.84% 14.61% 19.63% 8.91% 11.21% 8.79%

PrivilegesRequired

None 85.60% 89.44% 84.11% 85.66% 88.01% 69.55%

Low 12.84% 9.89% 15.89% 13.18% 10.69% 25.18%

High 1.56% 0.67% 0% 1.16% 1.30% 5.28%

UserInteraction

None 84.82% 91.46% 91.59% 76.36% 84.49% 62.80%

Required 15.18% 8.54% 8.41% 23.64% 15.51% 37.20%

ScopeChange
Unchanged 90.27% 96.18% 96.26% 87.21% 92.31% 83.64%

Changed 9.73% 3.82% 3.74% 12.79% 7.69% 16.36%

ConfidentialityImpact

None 44.36% 41.12% 41.12% 30.62% 36.77% 22.15%

Low 11.67% 5.62% 12.15% 13.95% 9.39% 19.10%

High 43.97% 53.26% 46.73% 55.43% 53.85% 58.75%

IntegrityImpact

None 52.92% 50.56% 54.21% 44.96% 46.81% 31.14%

Low 10.89% 5.62% 5.61% 13.18% 8.60% 17.20%

High 36.19% 43.82% 40.19% 41.86% 44.59% 51.66%

AvailabilityImpact

None 29.18% 32.58% 36.45% 30.23% 29.86% 38.22%

Low 3.11% 1.57% 3.74% 4.26% 2.22% 2.30%

High 67.70% 65.84% 59.81% 65.50% 67.93% 61.19%

HMI, RTU and PLC vulnerability instances show high base scores at 6.5 and 8.5, respec-
tively. MTU vulnerabilities vary within the range [4.5-8.5]. Average scores of 7.54, 8.00,
6.88 and 7.51 in CVSS V3 Base-Scores are observed respectively for PLC, RTU,MTU and
HMI. Considering CVSS V3 Documentation (2022) qualitative scales, CI vulnerability
severities are ratedmedium ([4.0-6.9]) to high ([7.0-8.9]).

7.4 ARTIFACT II-B: CATEGORIZING WEAKNESS

This section introduces somemethods to deal with the complex CWE hierarchical struc-
ture, and an updated top-level CWE abstract list. We utilize this list as label input for a
ML-based approach that automatically assign CWE categories to vulnerability reports.

7.4.1 HANDLING CWE TREE HIERARCHICAL STRUCTURE

Security analysts assign historical vulnerability instances various CWE-ID(s) with dif-
ferent abstract levels along the CWE hierarchical tree structure, which brings obstacles
in weakness categorization automation. We first map all the pre-assigned CWE-ID(s)
labels to their top-level abstracts, by tracking all the ParentOf relationships of the in-
vestigated CWE-ID(s). A CWE-ID may be mapped to multiple higher-level abstracts
due to various Views. In this research, we choose the CWE Research Concept View (or
CWE-1000) (checked on November 3, 2021). We select this view for two reasons. First,
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CWE-1000 view contains all the singular weaknesses published in CWE and groups
these weaknesses based on the abstraction of behaviors. In contrast, some other views
like the Architectural Concepts view (or CWE-1008) only includes the architectural or
design weaknesses. Secondly, CWE-1000 view utilizes more levels of abstractions to or-
ganize weaknesses with a goal of less overlapping between these categories. In contrast,
CWE-1003 and CWE-635 include weaknesses used by NVD security analysts, and are
therefore useful for vulnerability report analysis, but are both organized in a shallow
hierarchy.

We correlate historical vulnerability instances published inNVD (checked onNovember
3, 2021) to the CWE-1000 Research Concept View list, by using their assigned CWE-
ID(s) to fetch the corresponding names and child-parent relationships. The fetched par-
ent CWE-ID(s)within the relationships are then used as query words to fetch the higher
level CWE-ID(s). We repeat this correlation process till the identified parent CWE-ID
is in the top-level CWE-ID(s) entries in Table 7.5. The top-level CWE-ID(s) that are re-
trieved in the last recurrent step are the Top CWE Abstract(s). For the CWE-ID with
no parent relationship, the original CWE-ID is kept. Table 7.5 lists these pinpointed
CWE-ID(s) in order of the highest occurrence to the lowest occurrence in the generated
corpus. In the Column of Abstraction, Category and Pillar are used by CWE to group
weaknesses, as discussed earlier in sub-section 2.2.2.

Table 7.5: Relocating the CWE-IDs for NVD vulnerability entries

(CWE-IDs in the 1st Column are the top categorical CWEs that are mapped from
the original CWE-IDs assigned to NVD vulnerability instances)
CWE-ID Abstraction Covered by CWE-1000 Name

CWE-707 Pillar Yes Improper Neutralisation

CWE-693 Pillar Yes Protection Mechanism Failure

CWE-691 Pillar Yes Insufficient Control Flow Management

CWE-710 Pillar Yes Coding Standards Violation

CWE-682 Pillar Yes Incorrect Calculation

CWE-435 Pillar Yes Interaction Error

CWE-361 Category No Time and State

CWE-264 Category No Permissions, Privileges, and Access Controls

CWE-20 Category No Improper Input Validation

CWE-399 Category No Resource Management Errors

CWE-310 Category No Cryptographic Issues

CWE-388 Category No Error Handling

CWE-189 Category No Numeric Errors

CWE-199 Category No Information Management Errors

CWE-255 Category No Credentials Management Errors

CWE-320 Category No Key Management Errors

CWE-19 Category No Data Processing Errors

CWE-254 Category No Security Features

CWE-16 Category No Configuration

CWE-371 Category No State Issues

CWE-895 Category No Information Leak

Among all the identified CWE-ID(s) listed in Table 7.5, 16 entries are used by NVD but
are not in the Research Concepts View. We manually analyze these 16 weaknesses and
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map them to one of the Pillars at the highest level, or organize several weaknesses in
the lower levels to a higher-level abstract, as presented in Table 7.6. One example is
thatNVD assigns both CWE-200 and CWE-895 to the vulnerability instance CVE-2017-
12734. CWE-200 implies “Exposure of Sensitive Information to anUnauthorized Actor
”. CWE-895 infers “SFP Primary Cluster: Information Leak ”. In fact, the documen-
tation of CWE-200 covers the instruction of CWE-895. We then map the vulnerability
instances assigned CWE-895 to CWE-200, further cross-links to its parent CWE-668.
Another example is thatNVD assigns CWE-371 to the vulnerability instance CVE-2019-
1977. CWE-371 has five members, namely CWE-15, CWE-372, CWE-374, CWE-375 and
CWE-1265. Among these five child members, CWE-15 (or “External Control of Sys-
tem or Configuration Setting”) matches with the vulnerability description of CVE-2019-
1977, which replaces CWE-371. There are also 4 CWE entries that we keep on the list,
namely CWE-19, CWE-264, CWE-16 and CWE-254. These 4 entries are generalized,
and their assigned vulnerability instances may map to any one of the top Pillar entries
in CWE-1000.

Table 7.6: Remapping of some CWE-IDs

CWE-ID Re-Assigned CWE-ID Parent CWE-ID(s) Mapping Summary

CWE-895 CWE-200 CWE-664 CWE-895 -> CWE-200 -> CWE-668-> CWE-664

CWE-19 N/A N/A N/A

CWE-264 N/A N/A N/A

CWE-255 CWE-522 CWE-664 CWE-255 -> CWE-522 -> CWE-668-> CWE-664

CWE-16 N/A N/A N/A

CWE-254 N/A N/A N/A

CWE-399 CWE-664 N/A CWE-399 -> CWE-664

CWE-310
CWE-710 N/A CWE-310 -> CWE-710

CWE-693 N/A CWE-310 -> CWE-693

CWE-388
CWE-703 N/A CWE-388 -> CWE-703

CWE-691 N/A CWE-388 -> CWE-691

CWE-275
CWE-284 N/A CWE-275 -> CWE-284

CWE-664 N/A CWE-275 -> CWE-664

CWE-320 CWE-284 N/A CWE-320 -> CWE-284

CWE-189 CWE-19 N/A CWE-189 -> CWE-19

CWE-199 CWE-19 N/A CWE-199 -> CWE-19

CWE-361 CWE-691 N/A CWE-361 -> CWE-691

CWE-417 CWE-664 N/A CWE-417 -> CWE-664

CWE-371

(Only assigned to

CVE-2019-1977)

CWE-15

CWE-610 CWE-371 -> CWE-15 -> CWE-610 -> CWE-664

CWE-642 CWE-371 -> CWE-15 -> CWE-642 -> CWE-668 -> CWE-664

CWE-15 CWE-371 -> CWE-15 -> CWE-20 -> CWE-693

7.4.2 STUDY VIII: EXPERIMENT ON WEAKNESS CATEGORIZATION
EVALUATION

We retrieved 167 532 vulnerability records from NVD with index year values ranging
from 2000 to 2021 (updated till November 3, 2021), and then removed the items that
match the following scenarios: (i) 5 962 reports marked as REJECT ; (ii) 26 534 records
that are assigned NVD-CWE-Other only; (iii) 16 308 records that are assigned NVD-
CWE-noinfo only; and (iv) 224 records that have no CWE related information. The
remaining 107 362 vulnerability reports construct a corpus for vulnerability analysis.
We retrieved the reserved CWE-IDs of these vulnerability reports, and map them to the
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CWE abstract list in Table 7.6. Till this step, we generated a corpus with 107 362 records.
Each record has one CVE-ID, one vulnerability report, originally allocated CWE-ID(s)
and the corresponding Name descriptions, and our assigned Abstract CWE-ID(s) and
their descriptions.

Table 7.7: List of CWE-IDs for weakness categorization ML training labels

CWE-ID Occurrence Name

CWE-707 58756 Improper Neutralization

CWE-664 48193 Improper Resource Control

CWE-284 9425 Access Control (Authorization) Issues

CWE-693 8139 Protection Mechanism Failure

CWE-264 5322 Permissions, Privileges, and Access Controls

CWE-691 4533 Insufficient Control Flow Management

CWE-703 4364 Improper Input Validation

CWE-710 2404 Coding Standards Violation

CWE-682 1911 Incorrect Calculation

CWE-19 1529 Data Processing Errors

CWE-254 419 Security Features

CWE-16 267 Configuration

CWE-435 104 Interaction Error

CWE-697 41 Insufficient Comparison

The resulting dataset contains groups of vulnerability reports that are classified into dif-
ferent weakness types. Each class type refers to one weakness label in the format of
CWE-IDs, i.e. one cluster of the whole data set. Table 7.8 presents one such example of
the generated corpus. The report of this vulnerability instance is “The parse_data_node
function in bplist.c in libimobiledevice libplist 1.12 allows local users to cause a denial
of service (memory allocation error) via a crafted plist file ”.

Table 7.8: Example of the generated CWE experiment corpus

CVE-ID Report NVD CWE-ID NVD-Assigned CWE Name Our CWE-ID Our Assigned CWE Name

CVE-2017-6440
Report

(in text)

CWE-20

CWE-190

CWE-787

Improper Input Validation;

Integer Overflow or Wraparound;

Out-of-bounds Write

CWE-707

CWE-682

CWE-664

Improper Neutralisation;

Incorrect Calculation;

Improper Control of a Resource

Through its Lifetime

We randomly split the vulnerability dataset with assigned parent CWE categories with
75% training and 25% testing scale. We adopt Tensorflow and Keras deep learning
API for text preprocessing, ML model construction and model training. These python
packages are commonly used for NLP and text classification tasks. More specifically,
we import Tokenizer and pad_sequences libraries from keras.preprocessing.text and
keras.preprocessing.sequence, separately. We apply Tokenizer to all the words in our
corpus (vulnerability reports) with unique indexes, and use pad_sequences to enable
padding sequences of encoded data for further neural network consumption. We use
a maximum of 20 000 unique words from the tokenized vulnerability report vocabu-
lary. We utilize the pre-trained 50-dimensional GloVe vectors to transform each word
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in a given textual data into a position in a high-dimensional space, and finally create our
embedding matrix. Each line in the pre-trained GloVe file consists of a word and 50 nu-
merical values. Each numerical value describes the vector of the word’s position. For the
words not found in the GloVe vectors, we randomly initialize them with the same mean
and standard deviation of embeddings for the GloVe.

Subsequently, we utilize the built-in keras.layers to set up our model. We built a simple
two-layer bidirectional LSTM with return-sequences set to True, a dropout-layer with
probability = 0.5, and its first layer has a density of 50 classes and activation function as
relu. Its second layer has a dense of 14 classes and uses the activation function of sig-
moid. We defined an embedding layer that maps the words to their embedding vectors
from the embedding matrix, two fully connected LSTM layers that use these vectors as
input, and a Dense layer with sigmoid activation mode. The remaining parameters of
the LSTM layers are shown earlier in sub-section 7.2.2. We selected the LSTM model
to initialize our proposed weakness categorization approach, considering that LSTM is
commonly used for NLP tasks for its eligibility of handling long sequence dependencies
well. We get an accuracy of 81.5% after training for 4 epochs using the training set of 80
523 vulnerability reports.

We then use the trained model to predict the validating dataset of 26 841 vulnerability
reports to evaluate ourmodel performance. WeutilizemlACCmeasurements fromTable
7.2, namelymlACC (97.1%), mlPRE (82.2%), mlREC (82.3%),mlFS (81.5%) andmlEMR
(75.5%) for model performance validation.

Our weakness categorization method using text categorization techniques investigate
the missing CWE entries in vulnerability data sources, and also assign CWE categories
to vulnerability instances automatically. We compare our model performances against
two recent and relevant works include a NN based ThreatZoom by Aghaei, Shadid, and
Al-Shaer (2020) (also see the earlier version in Aghaei and Al-Shaer (2019)) and a tree-
based XGBoost classification model by Aivatoglou et al. (2021).

Table 7.9 shows that our proposed methodology predicts CWEs more or as precisely in
comparison with the previous related work.

Table 7.9: Performance of CWE categorization LSTMML model

(Ourmodel performance is validated against ThreatZoomsuggested byAghaei, Sha-
did, and Al-Shaer (2020) and XGBoost proposed by Aivatoglou et al. (2021). Note
that our model is validated using multi-label classification metrics, while the other
two models are using multi-class single-label classification metrics. )

Model Our Model ThreatZoom XGBoost

Accuracy 97.1% 94% 79%

Precision 82.2% 78% 73%

Recall 82.3% 75% 53%

F-Score 81.5% 77% 57%

Aghaei, Shadid, and Al-Shaer (2020) discussed both coarse-grain and fine-grain catego-
rization of CVEs to CWE classes, whereby coarse-grain classification utilised top CWE
nodes, and fine-grain categorization predicts the full path along the CWE hierarchical
structure to the lower nodes. The coarse-grain performances of their adaptive hierarchi-
cal NN model tested with NVD dataset are listed in Table 7.9. Inspired by their works,
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Aivatoglou et al. (2021) apply a set of 9CWE-IDs fromMITRE for classification purposes
and used NVD vulnerabilities disclosed till 2021 to train three tree-based ML models,
namely Random Forests, Decision Trees, and XGBoost. XGBoost achieved the best per-
formances in their experiments. We implemented both of these works, namely a one
layer NN model with 9 neurons, and an optimized gradient boosting model with 200
gradient boosted trees.

7.5 ARTIFACT II-C: A SELECTIVE ENSEMBLE FOR
VULNERABILITY ASSESSMENT

This section presents the proposed ensemble approach that employs ML techniques to
streamline cybersecurity knowledge transfer.

7.5.1 OVERVIEW

The proposed approach includes three steps that connect unstructured collections of
data tomeaningful information, which further leads tomeaningful indicators and know-
how at the knowledge layer level, as illustrated in Figure 7.4. Firstly, we collect hetero-
geneous data from public online cybersecurity repositories, periodically. Then, we clas-
sify and label curated data objects according to standard cybersecurity-related enumer-
ations. These tagged objects are collected into a localized database with cross-linking.
Chapter 6 introduces this first step in detail. Secondly, we set up an ensemble struc-
ture in the form of a pipeline while employing a set of text-classification models (Liao,
Gruen, andMiller, 2020) to classify and predict relevant threat, vulnerability and attack
patterns, based on data retrieved from the constructed localized database. In the final
step, security experts are enabled to analyze cybersecurity indexes created by machine
learning models. Their responses are fed back into the ML-based ensemble pipeline to
maximize the performance of the model. This section’s research focuses primarily on
the second stage.

Figure 7.4: Machine learning pipeline based cybersecurity knowledge generation
(Figure reproduced from Jiang and Atif (2021))
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In the first step of the selective ensemble pipeline, we fuse diverse data streams into
a local repository in a structured manner, and then combine them to trigger correla-
tion instances. Subsequently, a ML pipeline classifies the retrieved instances to assign
threat-, vulnerability-, and attack-labels accordingly. This pipeline applies text-mining
(Kowsari et al., 2019), NLP, feature extraction and word embedding techniques (Zhu
and Dumitraş, 2016) to bridge the gap of missing information that is prevalent in tex-
tual vulnerability records, and also to predict cybersecurity trends.

7.5.2 CANDIDATE METRICS

This study applies different validationmetrics for various classification tasks, namely bi-
nary classification tasks, multi-class classification tasks, multi-label classification tasks,
as well as CVSS score evaluation metrics, as introduced before.

Multi-label accuracy (mlACC) evaluation is shown as an example to illustrate the vali-
dation process of the candidate MLmodels. The prediction performance PmlACC of the
candidateMLmodel is generated through Algorithm 4. LetD be a k-label dataset with n
instances (xi, Yi) where Yi ∈ Y = {0, 1}k is the ground truth vector of labels for ith sam-
ple with a label-set ∣L∣ = k. h is a multi-label classifier with Zi = h(xi) = {0, 1}k be the
set of predicted label memberships for instance xi. Given a set ofM related evaluation
metricsmj (0 < j ≤M), a performance vector P=[Pm1 ,…,Pmj ,…,PmM ] is generated for
the candidate ML model.

Algorithm 4 Performance evaluation for multi-label accuracy

procedure EvaluatePerformance(ML, m)
▷ML is a candidate machine learning model
▷m is a given machine-learning metric, which is illustrated below:
▷m←Multi-Label Accuracy metric (i.e. mlACC)
▷ Considering a K-label ground truth dataset G with total instancesD, where:

D = ∣{(Yi, Yj) ∈ G, Yj ∈ {0,1}
K
}∣

▷ Z is the resultingML labeled data set:
Z = {(Zi, Zj) ∈ML,Zj ∈ {0,1}

K
}

foreach j = 1, . . . ,D do
foreach k = 1, . . . ,K do

if Z(j,k) == Y(j,k) & Y(j,k) == 1 then
SACC
j + = 1, STotal

j + = 1

else
if Z(j,k)! = Y(j,k) then

STotal
j + = 1

SmlACC
j =

SACC
j

STotal
j

PmlACC = 1
D∑

D
i=1 P

mlACC
j

End procedure
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7.5.3 MODEL SELECTION AND ENSEMBLE

The selected baseline component models build an ensemble model to aggregate the pre-
dictions of each component model and create a final estimate of the risk level associated
with a single reported vulnerability. Following is additional information regarding the
suggested Ensemble construction technique.

Given datasetD,NMLmodelsMLi (0 < i ≤ N), and a set ofM related evaluationmetrics
mj (0 < j ≤M), the following algorithmic steps construct the base ensemble of classifiers.
N individual models requires N rounds of training tasks, which leads to a construction
of [(N1 ),(

N
2 ),(

N
3 ),…,(

N
N−1),1] amounts of ensemble models in each round. For example,

in the first round, there are N ML ensemble models, of which each ensemble has only
one base classifier. The second round involves (N2 ) ensemble models, of which each
ensemble has two base classifiers.

• Step 1: In the first round, every given individual ML model ML
(1)
i (0 < i ≤ N) is

trained with the dataset D. The performance metric values are measured for each
resulting classifier using every input metric mj (0 < j ≤ M). At this stage, a vec-

tor of N prediction performances [P
(1)
1 ,…,P

(1)
i ,…,P

(1)
N ] corresponding to the first

round of the framework algorithm is generated, where the prediction performance

P
(1)
i =[P

(1)
i,1 ,…,P

(1)
i,j ,…,P

(1)
i,M ]. Therefore, the overall first round produces the follow-

ing prediction performancematrix(1):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P
(1)
1,1 P

(1)
1,2 ... P

(1)
1,M

P
(1)
2,1 P

(1)
2,2 ... P

(1)
2,M

. . . . . . . . . . . .

P
(1)
N,1 P

(1)
N,2 ... P

(1)
N,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• Step 2: Compute rating scores S
(1)
i (0 < i ≤ N) for eachmodelML

(1)
i . This is done by

rewarding best performing ML modelsML
(1)
k = arg max

ML(1)
i
(0<i≤N)

P
(1)
i,j under varying

metricsmj where j = 1 . . .M , with score increments.

• Step 3: Determine the best rated ML model with the highest scoreML(1) =
arg max

ML(1)
i
(0<i≤N)

S
(1)
i in the first algorithm round, and assert the corresponding clas-

sifier’s performance vector P
(1)
k =[P

(1)
k,1 ,…,P

(1)
k,j ,…,P

(1)
k,M ].

• Step 4: Repeat Step 1 to Step 3 for the remaining (N − 1) rounds which results in N

best performing ensemble models from each round ML(1), ML(2),…,ML(N), with
respectively performance vectors P (1), P (2),…,P (N). By the end of this iterative se-
lection process, the following performance matrixmatrix(final) is obtained:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P
(1)
1 P

(1)
2 ... P

(1)
M

P
(2)
1 P

(2)
2 ... P

(2)
M

. . . . . . . . . . . .

P
(N)
1 P

(N)
2 ... P

(N)
M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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• Step 5: Repeat Step 2 to Step 3 to determine scores S(i) (0 < i ≤ N) for each model
ML(i), and determine the best performing model with the highest scoreML =
arg max

ML(i)(0<i≤N)
S
(i)
, and assert the corresponding classifier’s performance vector

Pk=[Pk,1,…,Pk,j ,…,Pk,M ]

The formal algorithm outlined through the previous steps to optimize Ensemble clas-
sifiers selection for cybersecurity analysis is depicted in Algorithm 5, where the perfor-
mance evaluation for each model is depicted in Algorithm 4 explained earlier.

Algorithm 5 Selective Ensemble

procedure SelectEnsemble(ML,m)
▷ML is a set of individual machine learning modelsMLi (0 < i ≤ N), and m is a
set of related evaluation metricsmj (0 < j ≤M)

N = ∣ML∣,M = ∣m∣
foreach Round r = 1, . . . ,N do

foreach i = 1,…,(N
r
) do

ML
(r)
i = Ensemble(ML, r)

S
(r)
i = 0 ▷ Initialize rating scores for each model at each round

foreach j = 1,…,M do

foreach i = 1,…,(N
r
) do

P
(r)
i,j = EvaluatePerformance(ML

(r)
i,j ,mj)

Set ML
(r)
k = arg max

ML
(r)
i

P
(r)
i,j , (0 < k ≤ (

N
r
))

S
(r)
k + = 1 forML

(r)
k (0 < k ≤ (N

r
)) ▷ Reward best performing models

SetML(r) = arg max
ML

(r)
i

S
(r)
i ▷ Assert the best ensemble model of Round r

S(r) = 0
foreach j = 1,…,M do

Set ML(k) = arg max
ML(r)

P
(r)
j , (0 < k ≤ N)

S(k)+ = 1 forML(k) (0 < k ≤ N)

Set ML = arg max
ML(r)

S(r) as the best ensemble model

End procedure

It is also critical to identify an appropriate combination scheme for a selected set of in-
dividual classifiers and a given dataset (Onan, Korukoğlu, and Bulut, 2016). Soft voting
ensemble and hard voting ensemble are two examples of clustering ML models for a
multi-label classification task. These two ensemble mechanisms are depicted further in
Algorithm 6 and Algorithm 7. Soft voting and hard voting ensemble approaches only re-
quire ML model training for the initial round, from which performance predictions for
subsequent rounds can be derived. Nonetheless, the proposed ensemble paradigm can
be extended to include other strategies, such as stacking methods that need numerous
rounds of model training. For such applications, these models are trained offline and in
parallel to best use computational resources.
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Algorithm 6 Soft voting ensemble scheme

procedure SoftVoting(ML,D,K,L)
▷ML is a set of individual machine learning modelsMLi (0 < i ≤ N)
▷ K-label dataset has D instances (Dj , Yj) (0 < j ≤ D) with ground truth Yj ∈ Y =

{0,1}
k

N = ∣ML∣,D = ∣(Dj , Yj)∣

foreach i = 1,…,N do
Train(MLi)
Prob(i) = ∅

foreach j = 1,…,D do
foreach i = 1,…,N do

Prob
(i)
j =MLi(Dj)

Probj =
1
N∑

N
i=1 Prob

(i)
j

End procedure

Algorithm 7 Hard (majority) voting ensemble scheme

procedureHardVoting(ML,D,K,L)
▷ML is a set of individual machine learning modelsMLi (0 < i ≤ N)
▷ K-label dataset has D instances (Dj , Yj) (0 < j ≤ D) with ground truth Yj ∈ Y =

{0,1}
k

N = ∣ML∣,D = ∣d∣
foreach i = 1,…,N do

Train(MLi)

foreach d = 1,…,D do
foreach i = 1,…,N do

Z
(i)
j =MLi(Dj)

Zj = argmax
k
[card(L∥Z

(i)
j )]

End procedure

7.6 STUDY IX: EXPERIMENT ON THE SELECTIVE
ENSEMBLE METHOD EVALUATION

This section describes the experimental methodology’s implementation and the associ-
ated analysis outcomes. Data sources are utilized to train and validate the performance
of candidateML models. The goal of the studies is to automatically infer a severity score
for a new occurrence of a vulnerability and a threat type to which it is primarily vulner-
able.

7.6.1 DATA SETS

The resulting dataset contains groups of vulnerability reports that are classified into dif-
ferent exploiting threat labels and CVSS labels such as access-vector types and access-
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complexity levels. The goal is to concentrate attention and resources on certain acute
risks deriving from threat-exploitability with varied degrees of impact-severity. Each
class type refers to one label, i.e., one cluster of the whole data set. The second stage
is to construct a pipeline consisting of various ML algorithms applied to distinct data
class groups. Conventional methods for measuring quantitative similarity require the
extraction and analysis of features. These are low-level text features that may consist
of words or their compound morphology using the CHARM algorithm (Zaki and Hsiao,
2002). Both word and CHARM compound features are utilized for threat classifica-
tion. At the same time, only word-features for CVSS-metric categorization are used.
The experiments consider CVSS V2. These two sub-steps are conducted in tandem, to
train ensembles for threat classification respectively, and to train ensembles for CVSS-
categories.

We extract 140 818 vulnerability records with index year values ranging from 2000 to
2019 using our localized database (updated till November 30, 2020) and eliminate the
reports tagged as REJECT that would otherwise skew the experiment results. The re-
maining 132 371 reports of vulnerabilities provide a corpus for vulnerability analysis.

We generate a stop-word list in the context of vulnerability reports to remove them from
further consideration. We utilize PorterStemmer (2022) from the Natural Language
Toolkit (NLTK) for word stemming implementation. Meanwhile, we employ the bi-
gram functionality in Gensim.models to group together common bigram phrases. Some
Python lemmatisation tools are applied to convert a word to its root form. A TF-IDF
sparsematrix is created following the dataset process using n-gramor sequence of words
features. More specifically, we use CountVectorizer and TdidfTransforer utilities from
Scikit-learn library for vectorization and TF-IDF value computation. Simultaneously,
root words are sorted in descending order of TF-IDF values to extract the top-k features.

We then check these 132 371 data records in terms of threat labels, and find 39 060 or
29.5% un-labeled data. These un-labeled vulnerability reports are not categorized to any
existing threat category. A vulnerabilitymay be exposed tomore than one sort of danger;
therefore, a vulnerability instance may have numerous threat labels. We employ the
remaining 93311 records for threat classification training and validation as ground truth.
This dataset includes 20 reports without CVSS V2 scores and therefore removed, which
left 132 351 scored reports as ground truth for CVSS V2 metrics classification training
and validation.

7.6.2 EXPERIMENT SETUP

The experiment setup includes aMLpipeline by using the existing package pipeline from
the Scikit-learn library, to automate the ML workflow. This pipeline utilizes different
techniques in the ML stack, such as data processing and feature extraction, according
to the classification tasks and data subsets. This experiment considers five supervised
ML models, namely LR, NBSVM, LSTM-RNN, MLP and KNN. These five ML models
have been adopted in multi-class classification tasks towards CVSS prediction. For in-
stance, Wen et al. (2015) used SVM in CVSS V2 classification. Le, Sabir, and Babar
(2019) utilized Logistic Regression, SVM, KNN, Naive Bayes and three tree-based en-
semble methods including Random Forest. While these five models are used individ-
ually in cybersecurity and text-mining applications, the proposed ensemble paradigm
extends their potential capabilities together with other ML techniques in a range of vul-
nerability analyses. We set up two experiments on top of the ML pipeline, one for threat
categorization, and the other for CVSS metric categorization.
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We utilized several python libraries to implement the five supervised ML models. More
specifically, we adopt LogisticRegression,MLPClassifier, and KNeighborsClassifier
packages from the Scikit-learn library to implement LR,MLP and KNN algorithms, sep-
arately. Our model based on a NBSVM algorithm was inspired by Wang and Manning
(2012) that uses the NB log-count ratios as feature values, and was implemented from
scratch. We uses python library LSTM from keras.layers to build a simple two-layer
bidirectional LSTM with return-sequences set to True, a dropout-layer with probability
= 0.5, and its first layer has a density of 50 classes (or 50 neurons). Its second layer
has a dense of 13 classes for threat categorization, or a density of 2/3/4 classes for CVSS
categorization.

(i) Threat categorization

Threat categorization modeling is a multi-label classification problem. This experiment
applies the “one-to-rest”strategy to solve themulti-label problemby decomposing it into
multiple independent binary classification problems (one per category). We divide the
retrieved 93 311 data records into a 75% (or 69 983 records) training dataset and a 25%
(or 23 328 records) validation dataset, randomly. The following validation applies 3-
fold stratified cross-validation using cross-val-score from the sklearn package on the
five previously mentioned ML models for training and testing threat classification. The
performances of these five learning algorithms are evaluated on an unseen validation
dataset, of which the model with the best performance is chosen. In the first round of
training, these independently trained models produce five files with the projected prob-
ability of various labels for each event. Instead of training multi-round ML models, this
experiment uses a soft-voting technique to aggregate the projected probability of indi-
vidual base ML models to calculate predictions for ensemble models.

(ii) CVSS categorization

Similarly, this experiment simulates an efficient vulnerability scoring system based on
the CVSS V2 mechanism, in order to automatically assess the severity and exploitabil-
ity of a vulnerability instance. We generate the experimental dataset by correlating the
existing CVSS scores of vulnerability instances in NVD to other data sources, such as
vendor websites and technical reports from third party reviewers, to adjust scores and
better describe the actual severity of vulnerability instances. We employ these resolved
scores and corresponding counterparts as the training ground for our ML models. We
then divide these retrieved 132 351 data records into a 75% (or 99 263 records) training
dataset and a 25% (or 33 088 records) validation dataset, randomly. Then, the exper-
iment applies 5-fold stratified cross-validation on the training dataset to train the five
afore-mentioned ML models that learn and test CVSS v2 categorization. Five files con-
taining the anticipated labels of distinct CVSS v2 features are generated by these five
trained models. The ensemble models utilize the labels with the majority of votes.

7.6.3 THREAT CATEGORIZATION RESULTS

Evaluation of the classification algorithms is ameasurement of how far the classification
systems’ predictions are from the actual class labels, tested on some unseen data.

We validate the performances of the learning algorithms on unseen validation datasets
following six multi-label classification metrics introduced earlier in Section 7.4.3. The
first five measurements, namely mlACC, mlPRE, mlREC, mlFS and mlEMR, are calcu-
lated by applying the corresponding equations. The last hamming_loss metric utilises
the sklearn.metrics package to calculate mlHLS.
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After five training cycles, we generate 31 performance files to evaluate the performance
of the pipeline algorithms and select the best model from the base Ensemble models.
As further indicated in Figure 7.5, the individual models KNN and LR perform less ef-
fectively than LSTM, NBSVM, and MLP. However, the performance of the ensemble
remains relatively steady when these poorer base learners are included. This is the ben-
efit of soft-voting that considers the confidence of each base learner and not just binary
choices. Except for mlHLS, the average performance of models is calculated in each
round. All the other five metrics have better performance when the amount of partici-
pating base learners increase, as illustrated further in Figure 7.6.

Figure 7.5: Performance of individual ML models for threat classification
(Figure reproduced from Jiang and Atif (2021)). LSTM, NBSVM and MLP models

have better performance than LR and KNNmodels.

Figure 7.7 lists best-performingmodels of each round. In all configurations, the pipelined
ensemble model provides the best performance. In the first round, individual model
MLP reveals the best performance. In the second round, the LSTM and MLP ensemble
achieves the highest performance. The ensemble of LSTM, SVM, and MLP gets the best
performance in the third round. The ensemble of LSTM, SVM, KNN, and MLP gets the
best performance in the fourth round. And finally, the fifth round has only one ensem-
ble model, therefore no comparative counterparts. The combination of LSTM and MLP
delivers the best overall performance. But the ensemble of LSTM,NBSVMandMLPpro-
vides very close performance. Most of the predictive performances like mlACC, mlPRE,
mlFS reach their peak value for the ensemble model with base learners LSTM andMLP.
Interestingly, mlHLS has the best performance among individual models, suggesting
that ensemble models may create greater loss in the class label bit string during pre-
diction. To our knowledge, there is no comparable threat classification in the literature.
Nonetheless, amlEMRscore of 91.63%by the ensemble of LSTMandMLPdemonstrates
the predictive capability of our model.
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Figure 7.6: Average threat-classification model performance in each training round
(Figure reproduced from Jiang and Atif (2021))

Figure 7.7: Best performing model of each training round for threat classification
(Figure reproduced from Jiang and Atif (2021))

7.6.4 CVSS SEVERITY CATEGORIZATION RESULTS

This experiment involves six separate classification tasks for all the CVSS v2 character-
istics. Each classification task applies 5-fold stratified cross-validation for selectedmod-
els. The evaluation process applies 6metrics that are implementedwith the sklearn.met-
rics packages, i.e., balanced_accuracy_score package for baACC; confusion_matrix
and sklearn.utils.multiclass for maPRE, maREC, and maFS; cohen_kappa_score for
maCKS;hamming_loss formaHLS. Thesemetrics are introduced earlier in Section 7.4.3,
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and are chosen considering the imbalanced classes of CVSS metrics.

Hard voting, or majority voting, is used for CVSS-characteristic classification and score
prediction, in contrast to the soft voting technique used for threat classification. Majority
voting works when the amount of base learners is equal to or bigger than three. In four
rounds, we generate 21 performance files for each CVSS characteristic classification or
score prediction. Figure 7.8 illustrates the main results, i.e., the best performingmodels
of each training round. Figure 7.9 presents more details of the average performances
of the trained models of each round. The narrative evaluation of the acquired results
follows.

• InAccessVector classification (Figure 7.8(a) and Figure 7.9(a)), the individual model
NBSVM has the best prediction performance overall. Hence, NVSVM classifier is a
strong classifier for AccessVector classification, and the other four classifiers as weak
classifiers. The ensemble of these four weak classifiers performs much better than
their individual performances. The average performance increases when the amount
of base learners increases from1 (orRound 1) to 3 (orRound2), and from3 (orRound
2) to 5 (or Round 4), but drops when the amount is 4 (or Round 3).

• In AccessComplexity classification (Figure 7.8(b) and Figure 7.9(b)), the individual
model NBSVM and the ensemble of LSTM, NBSVM and MLP deliver very close per-
formance, both of which outperform the other models. For metrics baACC, maFS,
maCKS, maHLS, the average performance of the models increases when the amount
of base learners increases from 1 to 3, and from 3 to 5, but drops when the amount is
4. Metric maPRE has better average performance when the amount of base learners
increases. MetricmaREChas the best average performancewhen the amount of base
learns is 3.

• In Authentication classification (Figure 7.8(c) and Figure 7.9(c)), it is clearly seen
that the ensemble of base learners LSTM, NBSVM and MLP has the best prediction
performance. Most of the metrics have better performances when the amount of
participated base learners increases.

• In ConfidentialityImpact classification (Figure 7.8(d) and Figure 7.9(d)), the indi-
vidual model NBSVMhas the best prediction performance. But the ensemble of base
learners LSTM, NBSVM and MLP also shows a strong performance.

• In IntegrityImpact classification (Figure 7.8(e) and Figure 7.9(e)), the ensemble of
base learners LSTM, NBSVM and MLP has the best prediction performance. Indi-
vidual models in Round 1 has the weakest average performance, while the ensemble
model in Round 4 has the strongest average performance.

• In AvailabilityImpact classification (Figure 7.8(f) and Figure 7.9(f)), the ensemble
of base learners, LSTM, NBSVM and MLP, has the best prediction performance. In
general, the ensemble models in Round 2 have a sharp improvement in average per-
formance compared to the individual models in Round 1.

The experimental results of threat and CVSS characteristic categorizations emphasize
the need to utilize the multi-round ensemble paradigm, since it is unknown beforehand
which round can deliver the best ensemble model, as illustrated in Figure 7.7 and Fig-
ure 7.8. Round2provides the best ensemblemodel for the authentication-categorization
problem, for example. The best ensemble model for the confidentiality-impact cate-
gorization challenge is found in Round 1. In the threat categorization task, ensemble
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Figure 7.8: Best performing ML model of each training round for CVSS-
characteristic classifications

(Figure reproduced from Jiang and Atif (2021))
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Figure 7.9: Average model performance in each training round for CVSS-
characteristic classifications

(Figure Reproduced from Jiang and Atif (2021))
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models from Rounds 2 and 3 fared better than models from earlier rounds. The exper-
imental study demonstrates that our ensemble model selects relevant algorithms from
five standard classifiers in order to improve their individual performance in the context
of cybersecurity analysis.

The accuracy of CVSS v2 score prediction is computed considering the results of the
above six classification tasks, using Equation 7.2 and using two values for δ (0.5 and
0.05). And hence, the CVSS score accuracy is a harsh metric similar to Exact-Match-
Ratio, which reflects the proportion of complete correct predictions of all the previous six
classifications. Using the CVSS score accuracy metric, the ensemble of LSTM, NBSVM,
and MLP has the best performance, as shown in Table 7.10.

Table 7.10: Evaluation of CVSS V2 score prediction on untrained dataset

(Table reproduced from Jiang and Atif (2021))

Model CVSS-ACC(δ = 0.05) CVSS-ACC(δ = 0.5)

NBSVM 64.58% 92.93%

LSTM+NBSVM+MLP 64.75% 93.05%

LSTM+NBSVM+MLP+LR 63.27% 92.81%

LSTM+NBSVM+MLP+KNN+LR 64.06% 92.90%

7.7 CONCLUSION

This thesis contributes to bridging the information the gap of missing data in vulnera-
bility data sources, especially missing CVSS severity scores, CWE weakness classes, and
cvedetails threat classes. Our proposed approaches also enhance the level of automation
in the vulnerability assessment process and points out some limitations.

Identifying and assessing vulnerabilities are vital and challenging processes. We pro-
posed increasing the efficacy of vulnerability-severity scoring systems that utilize CVSS
standards to determine the severity of a reported occurrence of vulnerability. Our ap-
proach reconciles inconsistent vulnerability severity rankings contributed by multiple
cybersecurity researchers and reduces potential conflicts originating from diverse CVSS
techniques. We usedmajority voting to determine the score for inconsistent reporting of
the same vulnerabilities in several vulnerability repositories. We then used these com-
patible vulnerability instances as ground truth to train a machine-learning model as a
scoring basis. It is demonstrated in StudyVI that the suggestedmodel achieves excellent
accuracy and micro F1-score thresholds in comparison to other studies. In addition, we
applied ourmodel in Study VII involving CI applications to demonstrate the automation
of the suggested vulnerability scoremechanism, which is used tominimize cybersecurity
issues.

Furthermore, we suggest a ML-based weakness categorization method that predicts ab-
stract weaknesses for vulnerability reports. The suggested weaknesses with high-level
abstractions reduce the burden of navigating the whole CWE hierarchical tree structure
for weakness allocation. Instead, security analysts can investigate the CWE entries that
are members of the pinpointed classes. We initialized our approach with a bidirectional
LSTMmodel together with GloVe embeddings. Our initialized model outperforms sim-
ilar works towards CWE allocation automation in Study VIII.
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Based on the vulnerability scorer and weakness categorizer, we further suggest a se-
lective ensemble model that streamlines data integration, information processing and
knowledge generation, to enable cybersecurity intelligence. This proposed ensemble
mechanism uses a combination of different ML models, subsets of which are special-
ized in diverse vulnerability assessment tasks. We discuss the detailed process of how
our proposed ML pipeline automatically finds out the best ensemble model for differ-
ent vulnerability classification tasks. More precisely, our ensemble-based approach en-
ables context-aware data analysis that aids situation awareness. In doing so, we em-
power security operators involved at various SOC levels with a localized and synchro-
nized database that fetches data from several online vulnerability information sources.
We resolve conflicting vulnerability-severity scores and diverse terminologies used by
different parties, before adopting the discovered vulnerability instances as the training
ground truth. We evaluate the proposed ensemble paradigm through an experimental
analysis (Study IX) that involves five commonly used text-mining models for vulner-
ability description analysis and classification. This comparative study shows that our
ensemble model has better performances than singular baseline ML models in the cy-
bersecurity scenario of threat categorization and CVSS severity scoring. Our model is
novel in terms of threat type categorization using security description and cvedetails
threat labels. This exercise provides also means to adjust security investments at vari-
ous organizational levels.

To summarize, this chapter presents methods that utilizes ML algorithms to automati-
cally predict CVSS score and sub-metrics such as authentication, attack vector and con-
fidentiality impact, as well as threat type labels and abstract CWE labels. In doing so, we
discover missing labels in the vulnerability data sources. Next, we discuss how to com-
bine our vulnerability database and CI system knowledge to serve vulnerability analysis
of such intricate systems.
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CHAPTER 8

MODELING CRITICAL INFRASTRUCTURE
FOR VULNERABILITY ANALYSIS

The need to improve the cybersecurity of CIs, through holistic systemmodeling and vul-
nerability analysis, cannot be overstated. This is challenging since a CI incorporates
complex data from multiple interconnected physical and computational systems. Ex-
ploiting vulnerabilities in different systems leads to various cascading effects due to in-
terconnections between systems. The previous chapters present data-driven methods
that help find and analyze vulnerabilities in individual components. Thesemethods pro-
vide a solid foundation for a vulnerability assessment of the whole system.

This chapter addresses the research question about how to model CIs to allow vulner-
ability assessment, considering the cyber-physical interconnections and dependencies
within CIs.

This thesis delivers an extensible taxonomy and its usage in modeling such intercon-
nections and the implied dependencies within complex CIs, bridging the knowledge gap
between IT security and OT security. More specifically, the complexity of CI depen-
dence analysis is harnessed by partitioning complicated dependencies into cyber and
cyber-physical functional dependencies. These defined functional dependencies further
support cascademodeling for vulnerability severity assessment and identification of crit-
ical components in a complex system. In addition to the proposed taxonomy, this thesis
suggests power-grid reference models that make the proposed taxonomy easier to use
and reproduce.

Study X validates the structural, functional adequacy, compatibility, operability, relia-
bility, andmaintainability characteristics of the proposed artifacts using the instantiated
power-grid models. These evaluationmetrics are presented in sub-section 4.3.5. Comb-
ing these instantiatedmodules, the proposed taxonomy can be used as a domain-specific
language for dependence analysis and vulnerability exploit cascading modeling.

This chapter covers, but is not limited to results from Paper I and Paper VI. Partial
results from Paper VIII are also covered.

8.1 ARTIFACT III-A: A TAXONOMY FOR CRITICAL
INFRASTRUCTURE VULNERABILITY ANALYSIS

Figure 8.1 illustrates the interconnections betweenour proposed taxonomyand instanti-
atedmodels. We categorize the various levels of ourmodels based on themeta-modeling
layers described by Jeusfeld, Jarke, and Mylopoulos (2009). A meta-model consists of
formal assertions that clarify semantically connected model classes. Our vulnerability-
driven CI taxonomy includes high-level classes such as Component and Vulnerability,
along with shared class-level methods, properties, and constraints. Following generic
constructions, constraints, and rules for each application domain, we developed mod-
els for the power grid and manufacturing application domains based on the taxonomy.
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Then, we employ these models to generate instances that adhere to the same constructs.

Figure 8.1: Connections between taxonomy and the instantiated models

Figure 8.2 provides on overview of our proposed taxonomy that fulfills critical infras-
tructure vulnerability assessment. This UML based overview builds on top of our cy-
bersecurity meta model presented earlier in Figure 2.1 in Chapter 2, and links across
three main types of objects, namely CI, Security and Actor objects, as discussed in the
following text. Note that properties of modeled objects are partially shown in Figure 2.1
to allow readability. We focus on CI and Security objects in this thesis.

• CI object aggregates CI assets and related components. Systems and software com-
ponents of various assets in the digitalis ed industry are interconnected. Vulnerabil-
ities emerge due to these interconnections. A component can be either a software
(e.g., a CAD program), a hardware (e.g., a milling machine), an Operating System
(OS), or a network (e.g., a TCP/IP protocol).

• Security object accumulates threat, vulnerability, attack and remediation informa-
tion and their relationships. Vulnerabilities may be exploited by an attacker (i.e.,
threat agent) in various ways using exploits. Each vulnerability instance has specific
impact, scope and exploitability properties. Each exploitmay be used to maliciously
disrupt a targeted component in CI infrastructure in different ways.

• Actor object includes CI staff and attacker. Each instance of Actor object may fur-
ther have a profile including identity information (e.g., role and responsibility) and
character (i.e., grouping and sophistication). Attacker has specific technique, pro-
cedure and tactic used to trigger attack instances, by adopting enumerations like
ATT&CK.

Next, we expand models of CI, System and Actor objects.
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Figure 8.2: Overview of critical infrastructure vulnerability taxonomy
(Figure reproduced from Jiang et al. (2019))

8.1.1 MODELING CYBER-PHYSICAL SYSTEM BASED CRITICAL
INFRASTRUCTURE

Taxonomy is a representation of a domain that describes the objects within it. In the tax-
onomy of the CPS domain, component types constituting a cyber-physical system fabric
can be identified as concepts. This taxonomy categorizes CPS elements into semantic
modules that are used to construct a CPSmodel as a network of cyber and physical com-
ponents.

Figure 8.3 illustrates the top-level structure of our taxonomy that starts with “Com-
plexObject”. ComplexObject is the most general class, and can subsume any object. For
instance, we define a sub-class Component. ComplexObject has a relation objProperty
to Proposition, which is used to attach various properties to power-grid components.
Meanwhile, ComplexObject may further contain another ComplexObject. A component
has two relations, namely data connections and sub-component configuration. Data
connections refer to specific flows like data flows or control flows that bridge two given
components. Besides, a component is decomposed into sub-components. For example,
a RTU device is decomposed into the hardware and the embedded firmware.

Figure 8.4 depicts the taxonomyof components, includingphysical-, cyber-, andnetwork-
components. Cyber components are integrated into physical components that are lo-
cated in specific geographic areas. Consequently, both physical and embedded cyber
components share the same physical connections. A network component is an organiza-
tion where a specific collection of components adhere to a shared set of access andman-
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Figure 8.3: Top level cyber-physical taxonomy and instantiation example
(Subclass relations are denoted by blue arrows with white arrow heads.

Instantiating relations are visualized by green broken links. Figure reproduced
from Jiang, Jeusfeld, and Ding (2022))

agement rules. Our taxonomy includes facts, constraints, types, and attributes pertain-
ing to security. For example, we define each component’s properties to clarify its vendor,
product model, version, build number, and protocol. We may instantiate aMELSEC-Q
PLC (2022), provided by the vendorMitsubishi Electric, with adopted protocolModbus.

Figure 8.4: Cyber, physical and network components in the taxonomy
(Figure reproduced from Jiang, Jeusfeld, and Ding (2022))

Our taxonomy further extends the physical component to include a variety of IT and
OT components employed by SCADA and security information and event management
(SIEM) services at the cyber and control layers. The embedded cyber components distin-
guish IT, OT, and power-grid components. The SCADA control system is supported by
RTU, MTU, HMI, and sensors, as well as routers and optical networks (Humayed et al.,
2017), as introduced in sub-section 2.1.2. We categorize these components as OT com-
ponents. Firewalls and endpoint security tools support SIEM’s data analysis and cor-
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relation, both of which belong to IT components (Vielberth et al., 2020). In particular,
MTU periodically begins and acquires RTU data and enables remote control activities
to be performed by operators. RTU takes field data such as process data and variables
directly from sensors and deploys commands via actuators. HMIs may be freestanding
terminals or incorporatedwithin other devices, such asMTUs. RTU andMTU are linked
to other SCADA components, such as SCADA servers, via routers, fiber optic cables, and
switches (Boyer, 2009)(Stouffer, Falco, Scarfone, et al., 2011).

Cyber components subsume computer code and data sets captured at the cyber-layer
level. SCADA programs are integrated in microcontrollers to monitor physical power-
grid processes, for instance (Boyer, 2009). Components of computer code represent the
actual code being executed and embedded in physical components. Additional examples
of computer code components include firmware code, operating system code, hypervi-
sor code, and so on. Firmware code typically runs on the chip’s bare metal and supports
low-level hardware control. One example is HMI firmware that has graphical libraries
in which graphical symbols with tag names are associated with particular devices and
parameters of the devices, such as a specific switch and its ON/OFF status. An operat-
ing systemmanages the central hardware of the host computer and supports hardware-
software interactions. The code of the hypervisor virtualizes the hardware that executes
kernel-model processes. The setup between an operating system and a hypervisor can
also be specified as bare-metal or hosted hypervisors.

Figure 8.5: Unidirectional and bidirectional data stream example
(Figure reproduced from Jiang, Jeusfeld, and Ding (2022)

Cyber components further subsume the data stream illustrated in Figure 8.5. In addi-
tion, the data stream subsumes both bidirectional and unidirectional data streams. Data
stream is a critical concept in our taxonomy through its contribution to the system de-
pendencies. A data stream object must include at least two components as participants,
with one of those components serving as the initiator. Typically, two parties commu-
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nicate using a master-slave method, with a master device initiating queries and a slave
device responding with requested data to complete transactions. One participant acts
as the sender and the other as the receiver for a unidirectional data stream. In contrast,
the sender of a bidirectional data stream operates as the receiver in the opposite direc-
tion. The data stream specifications are particularly relevant for the study of SCADA
automation and cybersecurity (PES, 2008).

A corporate or communicationnetwork consists of relay stations such as routers, switches,
and firewalls, as well as endpoints such as computing servers. Routers and switches typi-
cally have access to themajority of network segments and occupy prime data exfiltration
positions. Switches are responsible for processing andmanaging numerous Layer 2 pro-
tocols, which are often enabled by default on all accessible ports. A network component
adheres to a particular protocol, which is a set of rules, syntax, and semantics that en-
ables the exchange of data between two or more entities. Wide area network (WAN),
local area network (LAN), and virtual private network (VPN) are also network compo-
nents.

8.1.2 MODELING VULNERABILITY ANDOTHER SECURITY RELATED
OBJECTS

On top of the security data source objects and their attributes brieflymentioned earlier in
Figure 6.2 and Figure 6.7 in Chapter 6, we further defineVulnerability that is subsumed
under ComplexObject.

Figure 8.6: Taxonomy of Security Objects

Vulnerability exists in Component that matches the product configuration affected by
this Vulnerability. Vulnerability further has attributes, including metadata, tracking,
weakness information, severity, threat, related attack and corresponding remediation.
Figure 8.6 illustrates these related attribute of Vulnerability as well as an instantiated
examplewithCVE-ID asCVE-2016-8370. This vulnerability instance is assigned aweak-
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ness CWE-327 that further follows or is resultant from CWE-208 and may be exploited
by attack CAPEC-20.

8.1.3 MODELING STAKEHOLDER ACTORS

As introduced earlier, ActorObject includes CI-Staff, and Attacker, as illustrated in Fig-
ure 8.7. CI-Staff instantiatesSecurityOfficer, SecurityManager, SecurityOperator, Soft-
wareAdministrator, ApplicationEngineer, NetworkAdministrator, etc,. SecurityOp-
eratormonitors corresponding Assets. SecurityManagermonitors CI Indicators. Con-
ceptually, SecurityOfficerneeds to gauge budget investments through adopting an expert-
system interpretation of numerical vulnerability-indicators to carry out mitigation de-
cisions like vulnerability-patching. SecurityEngineer rank assets by using following
vulnerability-indicators : (i) their Criticality evaluated byOperationManager; (ii) their
vulnerability exploitability Likelihood identified by SystemAdministrator, SoftwareAd-
ministrator, and NetworkAdministrator, as well as (iii) the impact Severity of threats
defined by ApplicationEngineer (Kure, Islam, and Razzaque, 2018). By distributing dy-
namic vulnerability-management tasks throughout CI organisation, we argue that it im-
proves the level of communication between vulnerability-handling stakeholders.

Figure 8.7: CI security user interaction model
(Figure reproduced from Jiang et al. (2019))

For example, SecurityOperator, SecurityManager andOperationManager are involved
to measure temporal or environmental metrics. Vulnerability instance CVE-2015-0997
has a CVSS V2 base score of 3.3. According to the v2 documentation introduced earlier
in Section 2.2.1, relevant actors are involved in the analysis process, as shown in Figure
8.8. Taken into consideration of the given temporal and environmental measurements,
a final CVSS v2 score of 3.2 is assigned. Application specialists can also provide valuable
information such as potential costs for system recovering once success attacks happen.
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Figure 8.8: Quantitative vulnerability assessment involving stakeholders
(Figure reproduced from Jiang et al. (2019))

8.2 ARTIFACT III-B: CYBER AND CYBER-PHYSICAL
FUNCTIONAL DEPENDENCE

We further propose a model-based security engineering method that has our taxonomy
in the central role, to support dependence analysis and vulnerability assessment.

8.2.1 DEPENDENCE RULE

Here we define functional dependencies (or FD) as: If component Ci depends on com-
ponent Cj to complete its functional activities properly, then we say that component Ci

has functional dependence FD(i,j) on component Cj . We further define seven FD rules
as depicted below, which are employed to describe the complexity of a software com-
ponent. These seven rules can be used to define system dependencies using the static
system configuration information.

1. FDVertical Rule V 1: If a cyber componentCi is embedded in an IT or OT component
Cj , then Ci is functionally dependent on Cj , or FDV 1

(i,j).

2. FD Vertical Rule V 2: If hypervisor or operating system componentCi contains cyber
component Cj , then Cj is functionally dependent on Ci, or FDV 2

(j,i).

3. FD Horizontal RuleH1: If an OT component Ci contains a cyber component Ck that
collects process data from a physical component Cj , then Ck is functionally depen-
dent on Cj , or FDH1

(k,j).

4. FD Horizontal Rule H2: There exists control data from a cyber component Ci (em-
bedded in an OT component Ck) to a physical component Cj , then Cj is functionally
dependent on Ci, or FDH2

(j,i).

5. FD Data Rule D1: There exists data stream between two cyber components Ci and
Cj , andCi is the receiver of the data stream, thenCi is functionally dependent onCj ,
or FDD1

(i,j).

6. FD Data Rule D2: There exists data stream that listens to dataset Cj , and Ci is the
receiver of the data stream, then Ci is functionally dependent on Cj , or FDD2

(i,j).
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7. FD Network Rule N1: If a server computer Ci is connected to a network through a
router component (or a switch component) Cj , then Ci is functionally dependent on
Cj , or FDN1

(i,j).

All rules are implemented as deductive rules in the ConceptBase system. Following these
dependence rules, we conduct some static analysis on SCADA and Substation based on
the aforementioned reference models. The red dashed lines highlight the functional
dependence. Partial SCADA network contains SCADA_Historian and SCADA_Server,
SCADA_FE workstation and a RTU in one substation, as illustrated in Figure 8.9.

Figure 8.9: Dependence analysis example of a substation RTU

Hardware components connect with operating system applications andmanage PC stor-
age on the physical server. In themeantime, a hypervisor host deploys and serves virtual
systems, providing a virtualization abstraction layer. The hypervisor in SCADA Server,
for instance, provides virtual machines for three system packages: SQL, Control and
Office systems. The SQL system contains a database engine that processes queries and
manages database files. The Control system stores and retrieves power-grid process and
control data using queries. The Office system provides maintenance and service to the
power-grid software, firmware, and configurations. According to the vertical FD rules,
the application (APP) server in the Office system is vertically dependent on the guest
operating system (marked as V 3) and the physical server (marked as V 1). The database
(DB) server in the SQL system is vertically dependent on the hypervisor host (marked as
V 2). H1 and H2 represent the dependencies between RTU and CircuitBreaker that are
caused by process and control data.

Figure 8.9 highlights the historical analysis data stream example marked as D1 and
D2. D1 illustrates the dependence of the data stream receiver, the Event system in
SCADA_Historian, towards the data stream sender, the application server in Control
system of SCADA_Server. D2 presents the dependence of the same receiver on the lis-
tened database.

We discuss another example to illustrate functional dependencies inmanufacturing sys-
tem, as presented in Figure 8.10. Programming instructions (e.g., G-code or M-code
files) are transmitted from the computer aided manufacturing (CAM) server to the con-
trol server in the control center, which is marked asD1−1. Themachining data is further

181



CHAPTER 8 MODELING CRITICAL INFRASTRUCTURE FOR VULNERABILITY ANALYSIS

sent to the PLC controller for production purpose, reflecting dependence D1−2. Mean-
while, process data and duplicatedmachining data are sent to and stored in the historian
server, labeled as dependence D2. The historian server manages a database of time-
tagged data points about the production system. PLC controller is directly connected
with the PLC gripper, the monitoring and controlling processes of which reflect depen-
denciesH1 andH2. Meanwhile, CAM servers is connected to the control server through
switches and routers, which shows dependence N1−1.

Figure 8.10: Dependence analysis example of manufacturing system

On top of defined correlations between component nodes, we further define dependency
matrix FD(i,j) betweenCi andCj . Such a dependencymatrix supports analyzing nodes’
centrality and influence levels. Meanwhile, dependence rules assist CPS cascade mod-
eling, which is introduced next.

8.2.2 CASCADING MODELING AND CRITICALITY ANALYSIS

Cascading is the propagation behavior exhibited by a series of system events or failures.
Failure is the state or condition of not achieving a desired or intended goal, and it can
be caused by external forces such as an attack or the failure of neighboring components.
Failure might occur on any component or on many components. A cascading failure be-
gins someplace in the system, causing a subsequent failure in another component (Guo
et al., 2017) (Vaiman et al., 2012). We further define the following rule to support cas-
cade modeling, which are extended to the transitive closure: “There exists a failure or
compromise of a component Ci that a component Cj is functionally dependent on, then
the failure would probably propagate to Cj ”.

Here, we assert that the transmission of a failure fromCi toCj has a specific probability,
given that system configurations or network structures with adequate security compli-
ance lower this probability. In Study VI and Study VII, we assume that this probability
is equal inside the system and leave weighted probability analysis for future research..

We calculate the number of components that have direct functional dependence on com-
ponent Ci, and define it as N

FD
i,j where 0 < i, j < M (M is the number of components).
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Such a component is a critical function point with higher criticality.

8.3 ARTIFACT III-C: REFERENCE MODELS OF
POWER GRIDS

Our taxonomy can be expanded to increase expressiveness within a particular domain.
We follow the Purdue (Williams, 1994) enterprise reference architecture model when
instantiating objects in the cyber and control layers. The PurdueModel is adopted in in-
ternal standards such as IEC/TS 62443-1-1:2009(E). Even though the Purdue Model is
used more in manufacturing architectures (Boyes et al., 2018), its structure still applies
to the similar cyber and cyber-physical layers in smart grid. We also incorporated our
knowledge about the smart-grid architecture, especially the physical layer and its related
components and processes, that are gained through our organized workshops, newspa-
per articles, and discussions with a municipal electricity grid company in Sweden.

The figures and code samples included in this section are based on ConceptBase (Jarke
et al., 1995), respectively the O-Telos dialect of the Telos knowledge representation lan-
guage (Mylopoulos et al., 1990) (Koubarakis et al., 2021).

Figure 8.4 illustrates some partial examples of cyber and physical components in our
power-grid taxonomy. We specify that physical components further encompass power-
grid components that are employed for electric power generation, transmission, trans-
formation, and distribution by taking into consideration the functionality of power-grid
systems. A physical component has a geographical location or a particular position.
Meanwhile, components of the power grid have power connections. A circuit breaker
is an example of a power-grid component that is used to disconnect a power transmis-
sion. Another example is a transformer that transfers electric power between two electric
circuits. In addition, we specify functional criteria for power-grid components such as
voltage and connected power lines.

Figure 8.11: Instantiated power-grid substation

Figure 8.11 shows a power substation as an instance of our power-grid taxonomy. The
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instances are partially shown to ensure readability. Green dashed arrows represent in-
stantiating. Grey solid lines and purple solid lines represent data connections and power
connections, separately. Light grey lines marked with ”part” represent system configu-
rations, meaning one component is subsuming the other component. A power genera-
tor Generator1 has power connection with Busbar01 which is connected to the second
busbar Busbar02 through a transformer Transformer1. Busbar02 also has power con-
nection with power line PowerLine02_03. On top of Substation1, an operation network
Sub1 covers the power process control and monitoring. IT components (i.e., Sub1_RTU
and Sub1_Workstation) are connected to the power-grid components (i.e., Busbar01
and Busbar02) through data connections (i.e., fibre). Sub1_RTU and Sub1_Worksta-
tion are also connected through a data stream for localmaintenance. This unidirectional
data stream has access to the maintenance data store embedded in Sub1_RTU.

Cyber, control, and physical network levels are modeled to uncover inter-dependencies
between CIs. Each layer of CI networks comprises distinct functional portions or zones.
Network zones are connected through routers and are protected by firewalls, as dis-
cussed in the next sub-section.

8.3.1 PUBLIC INTERNET AND OTHER NETWORKS

The cyber layer includes a general internet area and the power-grid enterprise network.
The wide internet area contains a CustomerService network, an Analyser network, a
Vendor network and an EnergySupplier network, as illustrated in Figure 8.12.

Figure 8.12: Public Internet and other networks

The CustomerService network contains a server computer embedded with two software
packages, namelyCustomerManage software that regulates customers’ power consump-
tion, andAnalyser software that works for load prediction (Abubakar et al., 2017). These
two packages may alternatively be combined into a single module, such as ABB Energy
Manager (2022). Multiple vendors provide separate software and hardware tomeet the
diverse access, operational, and technological requirements of the smart grid. Some of
these companies require privileged remote network access or VPN tunnels to support,
manage, or debug particular smart grid technologies and systems (Zeinali and Thomp-
son, 2021).
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EnergySupplier network refers to external power suppliers’ business administration
and marketing management. Sometimes energy suppliers employ VPN or remote desk-
top protocol (RDP) access to remotely log into distributed energy resource (DER) sub-
stations formonitoring and operating purposes (Ying, Yirong, andNing, 2014). Updater
refers to the software package, input and output (I/O), cumulative update file, and other
programs required to manage the updating of hardware, software, and firmware com-
ponents. TheMaintenance package includes the programs required to manage system
configurations.

Typically, the Vendor, CustomerService, and EnergySupplier networks belong to sepa-
rate stakeholders. These stakeholders gain access to the power-grid enterprise network
via an intermediary, namely the PublicInternet network, which facilitates internet ap-
plications such as web browsing.

8.3.2 OFFICE, ENGINEERING, AND SECURITY OPERATING CENTER
NETWORK

The enterprise network contains an ITAdministration network for IT administration
management, an Engineering network for system maintenance and configuration up-
date, a SOC (security operation center) network for security-related analysis and safety
inspection, as well as an Office network for local office operation (see Figure 8.13).

Figure 8.13: Office, engineering and security operating center networks

The ITAdministrationnetwork is connected to public internet servers via firewalls. ITAd-
ministration network is further connected to Engineering network, SOC network and
Office network through router and firewalls. The ITAdmin, or IT administration net-
work, is responsible for network operation as well as preventing and resolving network
issues locally or via RDP. In addition, network administration and mail administration
are used individually tomaintain and setup network andmail routing. The SOC network
involves system monitoring and risk management, as well as control and digital foren-
sics. A typical tool used in SOC is SIEM, which leverages advanced analytics for incident
response and SOC automation (Vielberth et al., 2020). A local office server manages
mail setup, remote desktop software, and the web browser on the Office network. En-
gineering network contains a local server that undertakes business-driven investigation
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and SCADA statistic analysis. Engineering network also includes a workstation that
oversees system software maintenance and updates.

8.3.3 CONTROL CENTER NETWORK

The control layer includes two networks, namely a control center and a SCADA WAN.
Control Centremainly involves SCADA for process data monitoring, control command
distribution, and power process synchronization, as illustrated in Figure 8.14. The con-
trol center is connected to a variety of intelligent grid devices originating from power
generation substations, high and low voltage transformation substations, distribution
assets, and distributed controlling workstations. The SCADA_Servermonitors and con-
trols these distributed substations (Knapp and Samani, 2013). The real-time power
process data is virtually presented on SCADA_HMI and then further transmitted from
SCADA_Server to SCADA_Historian for statistical analysis. Furthermore, system up-
date and maintenance data is transferred to and stored in SCADA_FTP before direct
usage in the controlling servers. SCADA_Timer is in charge of the time synchronization
of the whole system (Boyer, 2009) (Stouffer, Falco, Scarfone, et al., 2011).

Figure 8.14: Control center network

SCADA WAN is a network shared by the SCADA-FrontEnd (FE) server and dispersed
substation networks. The SCADA-FE server manages event-based communication with
field devices and is therefore responsible for data processing and transfer management.
Specifically, SCADA-FE functions similarly to a master station and frequently requests
data from field devices such as RTUs.

8.3.4 SUBSTATION NETWORK

Figure 8.15 shows substation network includes LANs between RTUs and local worksta-
tions, as well as Bay network that lies in the interface of the control layer and physical
layer. Bay control IEDs provide flexible control and backup protection for physical com-
ponents such as circuit-breakers and earthing switches (Brand,Wimmer, and Lohmann,
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2003), which normally follows the IEC 61850 communication protocol (Brand, Brun-
ner, and Wimmer, 2011). In the physical layer, IEDs (intelligent electronic devices) and
SIS-PLCs (safety instrumented system PLC that can enable emergency shutdown) are
connected to RTUs. The data connections construct the link between control units and
physical units, enablingRTUs at local substations to remotely control andmonitor power
processes. These control and monitoring features include devices switch, set-points for
generators, and sequential control.

Figure 8.15: Substation network

8.3.5 POWER-GRID SUBSTATION

The transmission substation is connected to a power generator. This substation contains
six circuit breakers, two transformers that convert between two transmission voltages,
as well as several transmission lines, busbars, and switches. To be more explicit, two
high-voltage switches enable the neural line designated as NLine1 to be disconnected
from the rest of the network and linked to a grounding system such as a ground fault
neutralizer (see Figure 8.16 (a)).

Figure 8.16 (b) presents similar structures between the transmission and distribution
substations (Ruland et al., 2017), namely two ormore transmission lines as power input,
feeders as power output, and one or two transformers in the middle. Meanwhile, smart
meters are deployed to record electric energy consumption, voltage levels, and other
physical process data (Korman et al., 2016). In addition, a communication network sup-
plies this electrical grid with supervisory process management. Such a communication
network consists of many dispersed LANs connected to the power substations and con-
trol center networks individually.
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Figure 8.16: Power generation and distribution substations

8.3.6 DATA ASSET IDENTIFICATION

Identification of information assets is a vital step in the risk management process high-
lighted in ISO 27000 series (Disterer, 2013). The power system produces data that can
be turned into valuable information when appropriately processed and encrypted. This
information is a valuable asset that benefits optimized investments, accurate problem
analysis, and safe utilization of the power system. This thesis focuses on the critical
data assets of a power-grid system and the containers where the assets are stored, trans-
ported, and processed.

(i) Process data and process control data

Process data are measurements of power processes gathered by dispersed sensors. Fig-
ure 8.17 displays the process data frequently queried by the process liaison, SCADA
FE, to the centralized system platform SCADA. In order to generate commands for the
SCADA SystemServer, SCADA application servers, including the Analyzer server, simul-
taneously compute process data from real-time and historical databases. Then, these
commands are communicated to distributed actuators to ensure optimal power flow. In
the meantime, process data are transmitted to the safety-inspection server for inspec-
tional analysis, such as evaluation of voltage stability. After acquiring and validating an
unstable power status, the safety-inspection server sends SCADA alarms to the SIS-PLC
for emergency power-grid shutdown.

(ii) Historical analysis and load-prediction data

Figure 8.18 illustrates SCADA process data that is inserted into the historical database
with timestamps. Several servers, including an HMI server, file transfer protocol (FTP)
server, historian server, and SCADA system server, are required for historical data anal-
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Figure 8.17: Process data and control commands stream

ysis in order to extract power generation and transmission trends. SCADA operators get
historical data from historians and display the information on SCADA HMIs.

Figure 8.18: Historical analysis and load-prediction data streams

(iii) Time synchronization data

Figure 8.19 presents time-synchronization data organized into synchronized instances
sampled from several sources and involves a range of current sensors (Fang et al., 2011).
RTUs andotherOT components transport telemetry data fromsensingdevices to SCADA
and generate time-synchronization data flows. The control loop is then completed by
communicating commands from the master supervisory system’s Timer server to the
linked physical power components. Meanwhile, phasor measurement units (PMUs)
measurements provide another common time data source for synchronization. These
PMUs measure the magnitude of power signal wave (called phasors) across the smart
grid, which is generally retrieved from a global positioning system (GPS) receiver (Cho,
Shin, and Hyun, 2001).
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Figure 8.19: Time-synchronization data stream

(iv) System update data and configuration data

Local hosts and remote PCs are used to configure and update the system. System up-
date refers to the updating and patching of software, firmware, and operating system
components in this context. System configuration comprises configuring or altering the
input/output signal binding parameters of RTUs, IEDs, and workstations. This section
focuses mostly on remote configuration and update methods. Multiple parties are in-
volved in these two data communications, including software and hardware providers,
power companies, and maybe outsourced IT businesses.

Figure 8.20: System updating data stream

More specifically, Figure 8.20 presents a remote updating process starts with an update
request sent out from the Updater hosts in EnergySupplier network or Engineering
network, towards the HWSWUpdater host in Vendor network. Software and firmware
updates arrive in the FTP server of either EnergySupplier network or Engineering net-
work, before being transferred to the live systems in the SCADA zone and substation
zones. Subsequently, theUpdater hosts of Engineering network may remotely upgrade
substations such as Substation_RTU. The Updater hosts of EnergySupplier network
can also remotely upgradeDER substations throughVPN tunnels. Similarly, the config-
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uration server of either the EnergySupplier or the Engineering network support remote
configuration of substation software or operating systems. To decrease the network ex-
posure of directly connected hardware like IEDs and SIS-PLCs, usually, these devices
are maintained or upgraded through maintenance servers and configuration databases
embedded in locally connected workstations or RTUs.

(v) Remote login data

Figure 8.21 depicts a scenario for remote login data in which remote operators in the
offices of the smart grid utility gain remote access to SCADA workstations by sending
a remote login request from the remote desktop in the LocalOffice to the HMI server
in the SCADA center. Logging onto servers such as CitrixServer from the engineering
offices enables remote access to the local workstations. Routers and VPNs are typically
used for this purpose. Sniffing malware might discover the office users and passwords,
allowing attackers to construct VPNs and get access to the control networks.

Figure 8.21: Remote login data streams

(vi) Web browsing data and mail Data

Figure 8.22 depicts Internet data, which typically consists of online browsing and e-mail
communications and is transmitted over local office servers. Incorrect configuration and
lack of authorization are potential risks for web servers. Misconfiguration vulnerabili-
ties, such as the existence of unnecessary sample files on a web server, enable attackers
to bypass authentication. Weak authentication processes and the lack of a filter for spam
and phishing emails are common vulnerabilities of mail servers. For instance, a weak
password may allow unauthorized access to a mail server, resulting in the disclosure of
sensitive information.

Figure 8.22: Web browsing and mail data streams
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8.4 STUDY X: APPLICATION AND EVALUATION IN
POWER GRID

This study applies the proposed taxonomy, dependence rules and analysis method in
two instantiated power-grid models.

Figure 8.23: InstantiatedModel II based on IEEE 9Bus (with SCADA DMZ zone)
(see Appendix IV for more details)
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8.4.1 INSTANTIATED POWER-GRID MODELS

We evaluate our taxonomy and rules through two instantiated power gridmodelsModel
I and Model II based on our reference models. These two models differ in terms of
whether a SCADA demilitarized zone (or DMZ) is contained or not. The Model II ex-
ample is presented in Figure 8.23 (see more details in Figure 10.6 and Figure 10.7).
Details ofModel I are presented in Figure 10.4 and Figure 10.5 in Appendix IV.

The architectures of these two models are instantiated by following the Purdue model
(Williams, 1994) and recommended practices for power-grid security by Homeland Se-
curity (2020), to ensure that our models reflect power-grid structure in the real world.
For the physical layer of these twomodels, we follow the IEEE 9-bus system that is com-
monly used in electricity performance analysis (Sharma, Velgapudi, and Pandey, 2017).

Model I consists of 994 components, 1602 topological and functional dependencies, and
172 data flows transferred between network applications. Model II contains a SCADA
DMZ (Stouffer, Falco, Scarfone, et al., 2011) as a protection layer between IT and OT
networks. This DMZ zone contains replicated SCADA servers and historians. A firewall
grants the IT network access to the replicated historians. In comparison,Model II con-
tains 180 data flows. As depicted in Figure 8.23, we present a simplified explanation of
the power system structure that focuses on core features and connections. We highlight
some simplified examples for the same type of data flow to illustrate its function and
participants.

SCADA WAN contains nine subnets that cover three primary substations (i.e., Sub1,
Sub4, and Sub5), three secondary substations (i.e., Sub2, Sub3, and Sub6), and three
DER (i.e., DERSub1, DERSub4, DERSub5). Each primary substation subsumes one
RTU and one local workstation, while each secondary substation or DER substation sub-
sumes oneRTUand onemobile workstation. Here, DER substations and secondary sub-
station are connected to IEDs, while primary substations are connected to both IEDs and
SIS-PLCs. Substation automation is achieved through RTUs. For instance, DERRTU4
is connected with Bus2, CB1 and CB2 to monitor and control Generator2.

The data flows in our instantiated PG-Model I mostly follow the examples shown in Fig-
ures 8.17 to 8.22.

Figure 8.24: Historical analysis and load-prediction data streams inModel II (with
SCADA DMZ zone)

Some data flows in PG-Model II differ. The differences between data flows in PGModel
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I and PG Model II are:

• In PG-Model II, the historic process data is duplicated, transferred, and stored in
a replicated historian in the SCADA DMZ FTP and be accessed to IT network like
the Analyser network-zone, as illustrated in Figures 8.24. Instead, historic data is
accessible from Office network-zone in PG-Model I, as shown in Figures 8.18.

• InPG-Model I, systemupdating and systemconfiguration are performedboth through
local hosts and remote computers, as illustrated in Figure 8.20. In comparison, for
PG-Model II, SCADA technicians request update from hardware and software ven-
dors, and store retrieved data in the FTP server of SCADA DMZ.

• In PG-Model I, remote engineers can directly log into local workstations through
VPNs, as illustrated in Figures 8.21. In PG-Model II, remote operators log into the
built-in HMI server in the SCADA DMZ zone to run certain HMI programming soft-
ware.

8.4.2 MODEL-BASED DEPENDENCE ANALYSIS AND CASCADE
MODELING

ConceptBase is an implementation tool that permits the specification of specific rela-
tionships using deductive principles. A data link between two components, for instance,
is specified once and evaluated as a relation. The data links between cyber components
and OT devices such as RTU are of special relevance, as these data streamsmay bemon-
itored or changed by hostile actors. The query below returns such data streams:

DatastreamToRTU in GenericQueryClass isA UnidirectionalDataStream with
parameter

rtu : RTU
constraint

cs1 : $ exists comp/Component (~rtu subcomponent comp) and
(this receiver comp) $

end

Using queries allows us to enumerate component dependencies without manually navi-
gating a complex network topology. Instead, we can automate the calculation of depen-
dencies. Based on the criteria stated in the preceding subsection 8.2.1, we programmed
our functional dependence rules in ConceptBase. In addition, we implemented compa-
rable ConceptBase queries to extract dependencies of our instantiatedmodels, as shown
below:

FunctionalDependentOn in QueryClass isA Component with
computed_attribute

functionallyDependentOn : Component
constraint

dfc1 : $ (this functionalDependence ~functionallyDependentOn) $
end

We query our instantiated power-grid models to determine which components depend
on a certain node functionally. Functional dependence is transitive. We identify six
components from Model I that depend on Sub1 RTU  functionally. We further extract
multiple components that have functional dependence on these six components, which
shows transitive functional dependencies. This generates a list of dependent matrices
for the targeted model. Such dependence matrices support statistical analysis or graph

194



CHAPTER 8 MODELING CRITICAL INFRASTRUCTURE FOR VULNERABILITY ANALYSIS

modeling using complex network theory. When ranking components with the highest
NFD

i,j (introduced earlier in Section 5.2), we observe that Model I and Model II have

the same top-5 components, namely Scada_Timer_TimeUnitSoftware (NFD = 18),
ScadaFE_FE_FESoftware (NFD = 10),Engineering_Updater_UpdateToolset (NFD =
6), Engineering_Maintenance_EngineeringToolset (NFD = 6), and Engineering_Up-
dater_FWSWUpdateDatastore (NFD = 6).
Figure 8.25 illustrates two scenarios of cascading failureswhen setting up the samenode
positions with initial failures.

In the first scenario, we assume that the server Vendor_HWSWUpdater is compro-
mised. In the case ofModel I, the threat agent may further compromise theUpdateSoft-
ware service, uponwhich false datamaybe injected to the data receiver likeScada_FTP_
SoftwareUpdater, or leave a backdoor in the host. Furthermore, the threat agent may
also alter the data sets in the SoftwareUpdatesDatastore. In the case of Model II, the
threat agent may follow the same attack paths till theUpdateSoftware service. Then the
threat agent needs to send a data request to the ScadaDMZ_FTP_SoftwareUpdater,
before directly triggering a false-data injection attack.

Figure 8.25: Cascade failure analysis inModel I andModel II

In the second scenario, we assume that Scada_Timer_TimeUnitSoftware is compro-
mised through the deployment of some existing exploits. Compromising the time unit
software in SCADA may allow attackers to view or modify time synchronization data
streams between SCADA and controlling substations in bothModel I andModel II. This
observation is consistent with our earlier conclusion that nodes withmore dependencies
may have greater significance in the context of cybersecurity.

In addition, the aforementioned scenarios can use the following rule and query to deter-
mine which components may be affected by a failure of the starting node:

CascadeFailureRules in Class with
rule

rule1 : $ forall c1,c2/Component (c1 functionalDependence c2) ==>
(c2 cascadeFailure c1) $

end

CascadeFailureNode in QueryClass isA Component with
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computed_attribute
affects : Component

constraint
doesaffect : $ (this cascadeFailure_trans ~affects) $

end

For large-scale systems such as smart grids, even weak adversaries can trigger cascading
failures throughout the entire system, resulting in substantial influence. Enhancing the
robustness of system functionalities is one method for enhancing the security of infras-
tructure systems. Prior to establishing methods for measuring adversarial influence or
threat effects, it is crucial to determine the relationships between two components based
on their previous contacts. In other words, when modeling and analyzing the vulnera-
bilities of larger-scale systems, it is essential to take into account the connected impact
and composite consequences. Evidence must be compiled from each of the three levels.
We support querying both existing system vulnerabilities and possible chained APT vul-
nerabilities (Chen, Desmet, and Huygens, 2014). One example is illustrated earlier in
Figure 8.6.

8.4.3 EXTENDING THE TAXONOMY TO MODEL REAL POWER GRID

In addition to the synthetic investigations Model I and Model II, we also conducted a
research applying the taxonomy to the municipal electricity grid in Sweden. The study’s
objective was to determine whether the taxonomy could encompass the physical and
software components of a real-world power system. The power grid consisted of two
larger substations plus more than 200 smaller “transformer”stations serving neighbor-
hoods. The design of the two substations was identical. The transformer stations were
available in two variations, one with a single transformer and the other with two.

Wedeveloped a networkmodel for the power grid components, including theOT compo-
nents and control networks. In a second phase, wemodeled the control center’s software
components and, to some extent, the OT components’ firmware. We did not model the
data flows between the data center and theOT components due to the lack of easily avail-
able information. Due to confidentiality restrictions, the real-world study’s models were
not disclosed and were removed at the study’s conclusion.

To summarize, the taxonomy could encompass all elements. In the stage of physical
component modeling, two new components types had to be added. One for a special-
ized balancing equipment used to ensure the neutral power line has a common poten-
tial. To mimic circuit breakers with embedded RTU, a second component type was
created. Ultimately, we opted to model these integrated devices with the “subcompo-
nent”architecture shown in Figure 8.3. The modeling of software components led to
similar findings about the taxonomy’s scope. Wediscovered that the control centermade
extensive use of virtualization; hence, the hypervisor systems needed to be treated as
containers of the guest operating systems, which were themselves modeled as contain-
ers of the application software.

The study shows that manually modeling complex CIs such as the electrical grid is a
time-intensive endeavor. Information about various components of the network model
is dispersed among departments and even componentmanufacturers, making the devel-
opment of a comprehensive and consistent networkmodel a challenge. Nevertheless, we
discovered that most subsystems, such as the transformer stations, had the same archi-
tecture. This is also applicable to most configurations of control systems and operations
systems. This suggests the usefulness in the development of a duplication function such
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as the reference models in sub-section 8.3 so that subsystems could be duplicated fast.

8.5 CONCLUSION

This chapter delivers a modeling methodology of intricate CI networks, and related con-
straints via a taxonomy and instantiated power grid and manufacturing models. These
two modules can also serve as a knowledge base of CPS-based CI models that are an-
alyzed by external tools for vulnerability analysis. Static analysis queries are used to
pinpoint design weaknesses in the CI layered network. The taxonomy provides a rich
set of component and interconnection types to model realistic CI systems. This extends
the research on enterprise modeling by covering the physical processes below the tech-
nology layer of classical enterprise modeling languages.

We show how the taxonomy can be implemented in a power grid prototype in Study
X. This study uses two instantiated power-grid models extracted from existing architec-
tures and frameworks like the IEC 62351 series. Such instantiated power-grid models
can be leveraged to perform dependence identification and cascading modeling, thus
supporting security analysis. We visualize the security topology of the smart grid before
and after an attack and answer questions like which IT and OT components are affected
by the attack and how the attack propagated throughout the network, in Study X. This
study also validates the structural, functional adequacy, compatibility, operability, reli-
ability and maintainability of our artifact.

Relations between different classes are categorized as sub-component configuration,
data connection, and power connection, and can be easily extended, which shows a high
structural strength of our model. We further define the functional dependence rules to
formally assess the levels of connections. These dependence rules reuses names from
existing reliable ontology and frameworks to ensure conciseness.

Such multi-dimensional functional dependencies also support cascade modeling. The
dependence rules are deriving the functional dependence structure from topological and
data flow specifications. The rules are fully implemented via the ConceptBase system
and efficiently compute the dependencies. The rules can also be used to pinpoint the
most “critical”components in a CI model in terms of the number of components that
depend on them. This extends works on traceability of enterprise models by linking IT
components to software artifacts and to the components of the physical system. Our
collection of function dependency rules does not include all possible relationships be-
tween cyber and cyber-physical layer components. Nevertheless, our dependence rules
are multidimensional and serve as a foundation for future expansion.

The reference models can be used in power-grid modeling, presenting high functional
adequacy and maintainability. Using the instantiated power grid models provide disci-
plined and coherent support to specify and group components and coordination mech-
anisms as a mean to harness the notorious complexity of smart-grid networks. These
instantiated models validate the suitability of the CI taxonomy to describe all layers of
power-grid systems, from the physical components to the software applications.

We instantiated ourmodel in ConceptBase, which implemented the Telos programming
language using an object-like proposition data structure. We established deductive rules
and queries for propagating physical power-grid component properties such as nominal
voltage and frequency. During the creation and development of our taxonomy, depen-
dency rules, and reference models, we drew from and utilized terminology from existing
ontologies and adhered to dependable frameworks such as the Purdue model, NIST SP
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800-82, and the IEC 62351 series to strengthen the compatibility of our works.

Part of our taxonomy has been utilized in (and still part of) ourmaster’s program, partic-
ularly in network modeling and analysis lab assignments of complex CPSs, which indi-
cates operability. The presentation of our proposed taxonomy and reference model uses
ConceptBase for its ability to represent both classes and objects in the same database.
This allows us to use the taxonomy as constructs of a domain-specificmodeling language
to represent sample smart grids to any degree of detail. In doing so, we can extend the
taxonomy at any time.
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CHAPTER 9

STREAMLINING VULNERABILITY
ANALYSIS FOR CRITICAL
INFRASTRUCTURES

This chapter answers the research question of how to assess the  vulnerabilities of com-
plex CIs with the support of our proposed curated vulnerability database (presented in
Chapter 6), the embedded vulnerability-analysis ML algorithms (presented in Chapter
7), and the CI vulnerability taxonomy (presented in Chapter 8). This question can be
divided into sub-questions: (i) how to identify vulnerabilities for CIs? and (ii) how to
model and assess system-wide vulnerabilities?

In response to these two questions, we propose a vulnerability-analysis orchestration
method to connect the proposed artifacts, including the CI vulnerability taxonomy, the
cross-linked vulnerability database and theML-based vulnerability analysis approaches,
to identify and assess matched vulnerabilities. This is the core coordinator agent that
orchestrates the communication and exchange of data across our suggested modules.

9.1 ARTIFACT IV: VULNERABILITY ANALYSIS
ORCHESTRATION METHOD FOR CRITICAL
INFRASTRUCTURES

This thesis proposes a vulnerability analysis orchestration method that facilitates com-
munication and information exchange between our proposed taxonomy and previously
established modules (i.e., correlated database and machine learning vulnerability anal-
ysis algorithms) and orchestrates their activities. Figure 9.1 illustrates this vulnerability
analysis orchestrationmethod. Orchestration refers to the process of integrating diverse
cybersecurity modules in order to simplify the interaction between vulnerability data
and CI multi-layer network in order to provide a higher level of automation in vulnera-
bility assessment. CI models created using our CI taxonomy provide the query genera-
tor with organized system configuration data. This query generator delivers tags in the
CPE metadata format, from which cybersecurity professionals may pick and query the
localized database. This database of vulnerabilities cross-links several open-source vul-
nerability repositories and enumerations and returns a list of CI vulnerabilities based on
the query. ML models trained on historical vulnerabilities are then employed to assign
missing severity, threat, and higher abstraction level CWE labels to these CI vulnerabil-
ity cases. Finally, these instances with new security indications are returned to the CI
taxonomy to provide additional visualization and static query-based analysis.

More specifically, Figure 9.2 presents a model-based security engineering method in
which the proposed taxonomy plays a vital role to facilitate dependence analysis and vul-
nerability assessment. CI models instantiated via our taxonomy give organized system
configuration information to support vulnerability queries. Next, vulnerability analy-
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Figure 9.1: Orchestration of the proposed artifacts and instantiations

sis techniques are utilized to assign severity, threat, and vulnerability labels to these CI
vulnerability situations. Furthermore, these vulnerability cases with added security in-
dicators are inserted into the existing CI models to facilitate further visualization and
static query-based analysis.

An attacker may materialize an APT utilizing a vulnerability chain, in which vulnera-
bilities on one set of components grant access to attacks on another set of components.
Our taxonomy facilitates modeling and detection of such vulnerability chains, with one
example illustrated in Figure 9.3.

V-x in Figure 9.3 relates to several vulnerabilities. Additionally, we utilize A-x to denote
an advanced assault stage. An attacker might use the default password configuration
(V-1) of a design engineer’s account to compromise this account (A-1), and then attempt
to infiltrate an associated designer workstation using compromised accounts in a sub-
sequent attack (A-2). If the designer workstation has insufficient authentication man-
agement (V-2), then this subsequent assault (A-2) may have a greater chance of success.
In addition, the threat agent may initiate a second attack (A-3) to acquire access to a
database server through a compromised designer workstation. A potential vulnerability
of weak access control (V-3) could permit an attack (A-3), which could allow a threat
agent to launch a second attack (A-4) to manipulate certain geometry CAM programs
in the control server if there is a further vulnerability of an unencrypted database (V-
4). Due to poor communication between CAM-engineers and security officers (V-5),
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Figure 9.2: Connection between the proposed taxonomy and other artifacts

Figure 9.3: A scenario of vulnerability chain in manufacturing system

previously successful CAM program code modification attacks may go undetected. IT-
personnel, OT-personnel, and local operatorsmay experience communication gaps if the
IT department andOTdepartment are located in separate locations. In this scenario, the
altered CAM file may reach the PLC uncorrected, causing NC or CNCmachines to move
in the incorrect direction. Due to communication inadequacies, this might have serious
consequences for the production process.

The aforementioned chained vulnerabilities can be defined with security profession-
als’ expertise, or identified by following the connections between CWE, CAPEC and
ATT&CK attributes of investigated vulnerability instances. The vulnerability chain ex-
ample shown in Figure 9.3 can be modeled using the proposed taxonomy, as presented
in Figure 9.4. It is interesting that CAPEC-560 can follow both CAPEC-49 and CAPEC-
70, indicating multi-step attack graph following the vulnerability chain. Identification
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of such vulnerability chains is valuable for system-level vulnerability assessment.

Figure 9.4: Modeling and identification of vulnerability chain

9.2 STUDY XI: APPLICATION AND EVALUATION IN
MANUFACTURING

We interviewed 2 industrial-production professionals and 2 operators of a manufactur-
ing company to collect information about manufacturing networks structure, to set up
models for the manufacturing systems. We then instantiated a human robot collabora-
tive (HRC) assembly system to validate our proposed approach.

9.2.1 PROTOTYPE OF MANUFACTURING SYSTEM

Themanufacturingmodel adopts similar structure of the power gridmodels, and is con-
sisted of physical-, control-, and cyber networks, as illustrated in Figure 9.5. Human
roles are also marked in this diagram to show how canmanufacturing engineers and cy-
bersecurity engineers collaborate for vulnerability identification, assessment and man-
agement. One of such examples is already presented earlier in Figure 8.7.

The physical layer incorporates manufacturing machinery such as CNC, which is used
to automate machining tools, PLC gripper system where the gripper controller PLC is
placed, Robot system where the robot and conveyor are located, conveyor for routing
material through machineries, as well as distributed sensors and a variety of cameras
for capturing production-related measures. On HMI embedded devices, local operators
can see synchronized instructions and validate their status. Meanwhile, application en-
gineers do routine maintenance on these workstations.

The control layer also includes networks for communications between CNC, PLC, Robot,
and other equipment, often utilizing amaster-slave structure. Typically, a master device
(e.g., the CNC) starts inquiries and delivers them to a slave device. Through a local com-
munication network such as Modbus, this slave device (e.g., Robot PLC) receives the
inquiry and transmits the needed data to complete the transaction. Note that CNC and
PLC controllers are connected to the actual equipment but not the control network. In
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Figure 9.5: Manufacturing Network
(Figure reproduced from Jiang et al. (2019))

the integrated HMIs of the control center, human employees may directly monitor as-
sembly tasks. In order to do this, computers in the CNC are designed to gather data from
the physical production system and display it to the human operator, enabling CNC and
Robot operators to perform remote machining and supervise the process. In addition,
the control center typically includes a historian server for displaying historical data, an
application server that retrieves data from the historian for analysis and also supports
other software applications, and a domain controller for implementing security policies
such as access control. There are also additional user jobs in the control layer, such as
PLC programmers who develop field device operational instructions for efficient pro-
duction flow.

The cyber layer of manufacturing system share similar functional zones like the cyber
network in power grid systems. For instance, DesignerZone, SimulationZone and In-
spectionZone host servers that support machining model design, simulation and pro-
duction inspection, separately. Generally, CAD designers in the DesignerZone create
CAD files and transfer them as product planning data to the SimulationZone. CAM en-
gineers receive the CAD files and conduct simulations, and further creates G-code or
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M-code files (i.e, programming instructions that tell machines what to do) out of the
ProcessData. Data engineers query the simulation datastore from the ControlCentre,
and then further divide queried process and machining data into CNC machining data
process data to CNC machines for production purpose, as well as robot machining data
and process data for process-control purposes. Meanwhile, process andmachining data
from the workstation are sent back by CNC PLC and controller separately, under the re-
quest of data operators in ControlCentre. These data would be under quality inspection
by production engineers and statistic process control (SPC) data engineers. Addition-
ally, IT administrators and domain operators in the ITAdminZone are in charge of se-
curity maintenance including administrative tasks and authorization management such
as mail service and user management.

9.2.2 HUMAN ROBOT COLLABORATIVE ASSEMBLY SYSTEM

In our manufacturing study, a HRC assembly system was used. A HRC system is a col-
laborative environment in which people and robots perform concurrent activities (Wang
et al., 2019). Given that human operators are directly involved in the assembly sys-
tem and work side by side with robots, the significance of cybersecurity protection and
maintenance of suchHRC systems cannot be understated. Malicious alterations to robot
movement orders may lead to the damage of human employees if they are not properly
monitored.

Due to the fact that constructing the HRC assembly system is not a contribution of this
thesis, we briefly describe its primary structure and linkages that are significant to cyber-
security analysis. The Symbiotic Human-Robot Collaborative Assembly: Technologies,
Innovations and Competitiveness (2022) (SYMBIO-TIC) project offers further informa-
tion on the HRC system. The third demonstration that is located at ASSAR Industrial
Innovation Arena in Sweden is particularly relevant. The information that serves this
case study is collected through threemainmanners: (i) outputs of SYMBIO-TIC project,
including published papers and reports; (ii) field study in the actual HRC settings in AS-
SAR; and (iii) interviews with previous project members of SYMBIO-TIC.

This HRC assembly system consists of three work stations, one tool changing station,
a robot (ABB IRB 2600-20(12)/1.65) with a PLC gripper, and a conveyor. Operators
mostly cooperate with the robot at the three work stations. The cameras capture their
position and motions. (products of Microsoft Kinects) for assembly process planning
and scheduling purposes. To do so, several systems are employed to streamline the
data flows between these working stations and robots, namely an UnitController sys-
tem for assembly data analysis and sending commands, a Cockpit system for assembly
process planning, a CollisionAvoidance system for human-robot movements analysis,
and a WorkerIdentification system to recognize workers’ movements, as illustrated in
Figure 9.6.

More specifically, the WorkerIdentification and UnitController systems assess work-
ers’ and robot’s locations and their availabilities, separately. Based on the information
of available workers and robot, theCockpit system completes assembly process planning
and scheduling for a batch of given product, and further sends these assembly operations
to the UnitController. UnitController requests detailed information for each assembly
operation (e.g., a robot’s movement from one point to another) that is encapsulated in
function blocks by graphical robot programming software like Drag&Bot (2022). Such
gripper opening and closing instructions are provided by robot simulation software like
RobotStudio (2022). The UnitController translates function blocks into running codes
and transfers them to the robot controller (e.g., IRC5 (2022) controller) to control the
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Figure 9.6: Human robot collaboration system that integrates SYMBIO-TIC

robot, and into I/O (referring to input and output) signals to PLC to control the behav-
ior of the gripper. Meanwhile, UnitController sends the instructions for workers and
working stations to the HMIC (referring to human machine interface controller) which
are usually embedded in a tablet or a smart phone. Workers can then enter operation
execution status into theHMIC. Considering the goal of higher resilience of the HRC as-
sembly system, duplicated assembly process data are stored in the UnitController, the
CollisionAvoidance and the Cockpit system, while synchronised through timers. When
the CollisionAvoidance detects potential collisions between human and robot, it revises
the current trajectories of robot and sends instructions back to UnitController to avoid
collision.

The aforementioned simulation and programming software packages, including Robot-
Studio, Drag&Bot, UnitController and Cockpit, are embedded in one workstation that
usesWindows 10 for x64-based system, as illustrated in Figure 9.6. The CollisionAvoid-
ance system is embedded in another workstation also running onWindows 10. Mean-
while, theWorkerIdentification software is embedded in another computer running on
Windows 10. HMIC software package is embedded in one mobile phone and one pad,
both of which are running on Android operating system. Among all these developed
software components, onlyDrag&Bot allows remote access directly. The other software
components like Cockpit are each separately encapsulated in software containers like
Docker (2022), to ensure each running software perceiving the machines in a secure
way with lower chance of data leakage. Communication between processes and mem-
ory allocation is strictly controlled and isolated. Access control policy is well embedded
by assigning roles clearly. For example, Cockpit user can only log into the Cockpit sys-
tem, but does not have access permissions to other software, configurations, libraries or
databases.

All machines and services are operating on a single, password-protected local network.
A router from ASUS is used to encrypt the network using a typical SSH (referring to
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Table 9.1: Vulnerability patch decision making considering criticality and severity

Component Criticality Number of Vulnerability Average Severity

HRC_MainController_UnitController 6 N/A N/A

HRC_MainController_RobotStudio 1 1 7.4

HRC_MainController_Cockpit 2 N/A N/A

HRC_MainController_Drag&Bot 2 N/A N/A

HRC_MainController_DockerEngine 4 8 7.23

HRC_MainController_OperatingSystem 5 17 7.5

HRC_WorkerIdentification_OperatingSystem 1 17 7.5

HRC_WorkerIdentification_WorkerIdentification 1 N/A N/A

HRC_CollisionAvoidance_OperatingSystem 2 17 7.5

HRC_CollisionAvoidance_CollisionAvoidance 2 N/A N/A

HRC_HMIC_OperatingSystem 1 2 7.3

HRC_Router 5 4 8.08

HRC_IRC5 2 2 9.8

HRC_PLC 2 5 7.2

secure shell) encryption layer. The hub features IP-reservable software firewalls. The
hub links certain computers to specific IP addresses. The software is set to anticipate
communication and connects to certain services.

9.2.3 MODEL-BASED VULNERABILITY ASSESSMENT FOR HUMAN
ROBOT COLLABORATIVE ASSEMBLY SYSTEM

Our criticality study consists of two steps: (i) a static analysis utilizing the taxonomy,
and (ii) a conversation with stakeholders to determine the weighting of criticality. We
evaluate the critical assets of the HRC assembly system in accordance with the reliance
criteria outlined in sub-section and rank the HRC system components from most crit-
ical to least critical. Here, the criticality of a component is determined by the num-
ber of other components that depend on it functionally. The five most critical com-
ponents are HRC_MainController_UnitController (NFD = 6), HRC_Router (NFD =
5), HRC_MainController_OperatingSystem (NFD = 5), HRC_MainController_Dock-
erEngine (NFD = 4), and HRC_MainController_Drag&Bot (NFD = 2). We then dis-
cussed with the project members of SYMBIO-TIC to validate these identified critical
assets and to weight their criticality. Besides the five most critical components, these
project members also suggest the importance of the physical PLC gripper and robot,
and also data assets stored and communicated between RobotStudio, Drag&Bot, Unit-
Controller and Cockpit.

We gathered system configuration and component data for the HRC assembly system,
and then generated queries for our localized vulnerability database. Note that we only
gathered 14 essential components for the functions depicted in Figure 9.6. By querying
the database, we obtained 39 vulnerability instances that are published beforeNovember
3, 2021, which is composed of 3 critical, 30 high, and 6 medium severity vulnerabilities.

Table 9.1 displays the criticality level when functional dependencies, the number of dis-
covered vulnerabilities, and the average severity score for these vulnerabilities are con-
sidered.
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In the APP layer, Docker containers bundle program code and dependencies. A con-
tainer is reasonably separated from other containers and its host system. Therefore,
databases are not shared between computers. Nonetheless, several known Docker vul-
nerabilities, such as the container breakout vulnerability, allow an attacker to further
exploit confined software through a backdoor. Table 9.1 suggests that operating system
of theMainController can be given the highest prioritization.

During ourmodel-based evaluation, we also identified a structural weakness in the HRC
system. Even though all databases (such as Cockpit, HMIC, and Drag&Bot databases)
are password protected, passwords are saved in plaintext in configuration files. For in-
stance, the configuration file stores theRobotStudio password to enable data connection
with Drag&Bot. This vulnerability is classified as CWE-260 and may allow an attacker
to obtain privileges or assume identity. Once adversaries get access of the RobotStudio
system, they may alter robot production procedures and do damage to the entire HRC
system.

We also learned that this static analysis only covers a subset of the system’s compo-
nents. And hence, some vulnerabilities may be left out. Still, the suggested taxonomy
and instantiated models allow for further development with more complex systems and
elucidated rules for query-based vulnerability analysis.

9.3 CONCLUSION

A vulnerability-analysis orchestration method presented in this chapter contributes to
data-driven vulnerability analysis for critical manufacturing by correlating subtle mod-
ules for vulnerability data curation, vulnerability feature allocation, and system-wide
manufacturing analysis, which are used to support CI vulnerability assessment.

Study VII shows the effectiveness of ourmethod in terms of consistent search and query
support for relevant vulnerabilities of a targeted component, as well as knowledge reuse
of CPS-based CI configuration. The CI taxonomy presented in Section 8.1 was applied
to generate reference models of manufacturing and further deliver instantiations for an
actual HRC assembly system, which demonstrates good functional adequacy and main-
tainability. The localized database and query generator support the retrieval of individ-
ual vulnerabilities. In addition, the instantiated HRC assembly model supports model-
based vulnerability assessment, which assists in the identification of structural vulnera-
bilities. With the dependence rules, we further model chained vulnerabilities to support
system-level vulnerability assessment, in which multiple vulnerability instances need to
be assessed together. In this way, we evaluate both individual and structural vulnerabil-
ities to help with the prioritization of vulnerability patches.

The presented study shows the strength of our method in terms of consistent search
and query support, as well as knowledge reuse extracted from vulnerability repositories
andCI systemconfigurations. The proposed vulnerability analysis orchestrationmethod
helps a system owner identify the most critical components for cybersecurity protection
before a patch is available. Components containing the same vulnerabilities require dif-
ferent levels of patch prioritization, as some components are protected or less accessible
(e.g., an isolated device). The proposed taxonomy and implemented queries support
prioritization analysis that considers the system architecture. This taxonomy can also
be easily extended to support analysis of vulnerability chains with higher complexity.
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CHAPTER 10

CONCLUSION

This final chapter discusses how the main contributions of this thesis address the chal-
lenges outlined in Section 1.2, meet the objectives presented in Section 1.3 and answer
the research questions proposed in Section 1.4. This chapter ends with a suggestion of
somepreliminary users of this study, aswell as possible expansions and future directions
that would build on the presented research.

10.1 REVISITING THE OBJECTIVES AND THE
RESEARCH QUESTIONS

This section revisits the objectives and research questions presented earlier in Section
1.3 and 1.4, addressed with the proposed answers while highlighting contributions.

The work described in this thesis engaged in understanding and suggesting solutions to
bridge the knowledge gap among several essential functional modules in the current CI
vulnerability assessment andmanagement processes. In doing so, it addresses fourmain
challenges: (i) heterogeneous and diverse vulnerability data sources; (ii) subjective and
human-centered analysis process; (iii) CI dependencies that exacerbate analysis com-
plexity, and (iv) gaps in CI vulnerability management. To tackle these challenges, four
research questions were formulated, as illustrated in Figure 10.1 and further discussed
next.

Figure 10.1: An overview of relationships between artifacts and research questions
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RQ (1) - What are the challenges in critical infrastructure vulnerability assessment using

publicly accessible vulnerability repositories?

Exploratory experiments described in Paper IV and Chapter 5 facilitate identification
of research gaps and assignment of problems. Specifically, vulnerabilities are disclosed
using disparate standards and vocabularies, which complicates their understanding and
sharing. We learned through our baseline Study I that NVD is viewed on the website
or downloaded in JSON or XML format. On the other hand, CWE is downloaded in
XML, HTML, or CSV format. Even when both are downloaded in XML format, their
syntax and semantics remain distinct. In the meanwhile, vulnerability records from the
past reveal a pattern of variation in the deployment of security measures. For instance,
NVD analysts employ a collection of 241 unique CWE-IDs to manually assign weakness
labels to vulnerability occurrences. This exploratory baseline research underlines the
heterogeneity and complexity of vulnerability data sources accessible to the public. Ad-
ditionally, some vulnerability instances are not allocated with weakness and threat la-
bels or severity scales. For example, more than 29 % vulnerabilities have no assigned
CWE weakness labels. Then, the CI stakeholder survey (Study II) and Study III iden-
tify other problems with these vulnerability repositories, including synonyms, incom-
pleteness, and inconsistency. Study III also evaluates the impact of data inconsistencies
in vulnerability repositories on vulnerability assessment of actual IT and OT systems.
These three exploratory investigations demonstrate the requirement for a cross-linked
vulnerability database as well as data cleaning and fusing strategies to appropriately pre-
process vulnerability data.

RQ (2) - How can data be obtained and correlated for vulnerability analysis considering

complex and heterogeneous sources of vulnerability alerts?

In response to this question, a common data model (CDM) is provided along with
correlation and query generating techniques for integrating diverse data sources into se-
mantic categories based on their co-occurrence, as presented in Chapter 6. On the basis
of this unified semantic model, vulnerability data collection and subsequent correlation
opportunities are combinedwith a newquery generation logic, to serve as the foundation
for context-specific vulnerability assessment. We further instantiated a correlated and
synchronized database to facilitate the retrieval and analysis of vulnerabilities. Thus,
security operators at various SOC levels are equipped with a customized and synchro-
nized database that retrieves vulnerability data from several internet sources. Study IV
shows that such linkage and aggregation of vulnerability data sources provides more in-
depth analytics that link relevant exploits and threat-agent activities with the evaluation
of general detection and defensive measures. The process of consolidation and normal-
izing allows for the incorporation of numerous, changing formats, while also enhancing
current data, as shown in a comparative analysis Study V. A vulnerability intelligence
system should seamlessly link freshly gathered data to old data and allow analysts to
execute more complicated data bindings. Specifically, vulnerability instances are gath-
ered synchronously from repositories to aid operators in assessing current vulnerability
trends and to further reduce the risk-window caused by found vulnerabilities, similar to
how the localized database in Paper II is utilized.

RQ (3) - How can the missing information gap in the curated and correlated vulnerability

database be bridged?

Using correlation approaches presented in Chapter 6, data-driven security indicators
generate a correlated database from several vulnerability-alert repositories and standard
enumerations. A knowledge-level layer then passes the vulnerability data to a rule-based
classifier, which correlates them into patterns. To answer RQ (3), an optimization ap-
proach is developed to select the ideal machine-learning base algorithm(s) for generat-
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ing effective ensemble models for vulnerability analysis and threat modeling, based on
a standard set of machine-learning performance criteria. ML eliminates manual, time-
consuming report analysis and reduces the time security analysts spend analyzing large
volumes of security alerts related attributes, such as the automatic vulnerability CVSS
severity scoring system proposed in Paper III and improved in Paper VII, as well as the
CWE weakness classifier presented in Section 7.4. These two ML classifiers show better
performances when compared to related works in experimental studies, Study VI and
Study VIII. These ML classifiers show usefulness and applicability in vulnerability anal-
ysis automation in StudyVII. Furthermore, using the ensemblemethod presented inPa-
per V, newly discovered vulnerability instances are given to a ML pipeline that classifies
these instances based on threat-, vulnerability-, andweakness-patterns. Study IX inves-
tigates different ensembles of five supervisedMLmodels (i.e., LR, NBSVM, LSTM-RNN,
MLP, and KNN), which reveal better performances than their individual performances.

RQ (4) - How can the vulnerabilities of complex critical infrastructures be modeled and

assessed with the support of a curated database and vulnerability assessment algo-

rithms?

To answer this question, we suggest amodelingmethodology of intricate CI networks,
and related constraints via a taxonomyand instantiated referencemodels for power grids
andmanufacturing. These twomodules can also serve as a knowledge base of IT/OT con-
vergent CI models that are analyzed by external tools for vulnerability analysis. Current
CI vulnerability management is challenging due to the knowledge gap between IT secu-
rity and OT security, and also different terminologies used in these two domains. Our
model bridges such gaps with common semantics, and supports query of vulnerabilities
across the CI layers. Static analysis queries are used to pinpoint design weaknesses in
the CI layered network. Using the instantiated CI reference models provides disciplined
and coherent support to specify and group components and coordination mechanisms
as a mean to harness the notorious complexity of smart-grid networks. This taxonomy
supports reusable and efficient usage through CI model instantiations with standard-
ized virtual replica for cyber connections and cyber-physical processes. Our research
contributes to the cybersecurity analysis of CIs through a taxonomy that is a model of
a domain describing objects that inhabit it. This taxonomy is a system of categories of
IT, OT, and physical objects that was derived practically or conceptually. Thus, it fa-
cilitates the comprehension and organization of the knowledge of the broad field of CI
cybersecurity, as presented in Paper I, Paper VI and Paper VIII.

To summarize, three objectiveswere formulated to guide the studies in this thesis. Namely:

Objectives:

(A) To expand the scope of knowledge about vulnerability alerts and curate
meaningful context of vulnerability analytical processes.

(B) To assess identified vulnerabilities with enhanced levels of automation that
reduce existing information gaps induced by ad-hoc and subjective audit-
ing processes.

(C) To model vulnerability in CIs in a reproducible manner that supports vul-
nerability assessment and increases the level of security awareness.

This thesis includes exploratory studies of existing vulnerability repositories andCI struc-
tures, which leads to the development of a correlated vulnerability database and a CI
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taxonomy with clearly defined relationships between CI component, security attributes
such as vulnerability, and security stakeholders, addressing Objective-A. Answers to
Objective-B are offered by utilizing the cross-linked vulnerability repository and ML
techniques to automatically assign labels of vulnerability attributes, and are further strength-
enedby the proposed vulnerability-analysis orchestration systemand its embeddedwork-
flows. This framework also satisfies Objective-C, together with the CI taxonomy and
instantiated models for the power grid and industrial manufacturing.

This thesis contributes to data driven vulnerability analysiswith a set of proposedmodels
and methods, namely vulnerability data model (Artifact I), ML-based analysis method
(Artifact II), CI vulnerability taxonomy and dependence rules (Artifact III), as well as
vulnerability-analysis streamlining method (Artifact IV ). These artifacts are validated
in a series of studies (see Table 4.2) to evaluate their utility, following standardizedmet-
rics drawn from literature review. Together, this thesis (i)identifies challenges of using
open-source vulnerability repositories and scoring systems; (ii) expands vulnerability
knowledge scopewith datamodel and correlationmethod; (iii) fills the information gaps
in vulnerability repository withMLmethods that also increase the level of automation in
vulnerability assessment; (iv) detects dependencies and vulnerabilities through CI vul-
nerability semantics; and (v) bridges the gaps among different security functions and
stakeholders.

Based on the results presented in this research study and summarized in the previous
paragraphs, it can be concluded that the research questions have been answered and the
research aim has been filled that is to investigate workflows that bridge the knowledge
gaps among different security functions, such as vulnerabilitymanagement, report anal-
ysis, and infrastructure networksmonitoring, in order to correlate vulnerability findings
and coordinate mitigation responses in complex CIs.

10.2 FUTURE WORKS

This thesis contributes to the development of data-driven solutions for CI security, par-
ticularly in the areas of vulnerability assessment and management for complex CI sys-
tems considering heterogeneous and different security alerts. Multiple studies are con-
ducted to demonstrate the validity of the given solutions. Nevertheless, additional re-
search and inquiry into alternate research prospects are still required.

(i) Data reliability validation automation:

To further improve public vulnerability data data sources, we intend to integrate addi-
tional sources of vulnerability data in order to incorporate the opinions of a wider range
of stakeholders. We also plan to investigate the automation of data reliability evaluation.
Vulnerability repositories of trusted vendors could be incorporated into a cross-linked
local vulnerability database to detect inconsistencies automatically. Incorporating ref-
erences from additional vulnerability data sources, such as security blogs where vulnera-
bilities are originally identified, is also beneficial. Advanced natural language processing
(Zhu andDumitraş, 2016) and textmining techniques (Murtaza et al., 2016)may be used
to automate correlation between numerous vulnerability repositories and correction of
conflicting vulnerability information, or to automatically produce vulnerability reports
from security forums or news.

(ii) Further improvement of ML model performance:

To further improve the performance of our ML based vulnerability analysis methods
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presented in Paper III, Paper V, Paper VII and Chapter 7, we suggest the following di-
rections:

• The proposed majority voting approach for CVSS ML training ground generation in
Paper III can be expanded by changing the majority voting tie and incorporating the
supervision of experts into the assessment loop. In this approach, security profes-
sionals give some startup parameters, and artificial intelligence systems dynamically
alter these settings. An alternative is to use the arithmetic mean of scores from vari-
ous sources to evaluate the dependability of the scores offered by these sources.

• We would extend our model to allow prediction at a more detailed level along the
CWE hierarchical tree structure. We would also try another method that uses senti-
mental analysis and sentence similarity assessment for weakness suggestions.

• We plan to test additional ensemble techniques, such as stacking methods, to better
differentiate vulnerability instances and to address challenging topics, such as class
imbalance problems and computing resource management.

(iii) Improve further the automation level:

Automating the query selection process and automating system-level vulnerability as-
sessment are two strategies that can be pursued to raise the level of automation for CI
vulnerability analysis. Both of thesemethods should be examined for potential enhance-
ments. The process of query development described in Chapter 6 requires the assistance
of subjectmatter experts in selecting query tags, a task that can be automated by combin-
ing more NLP techniques. Taxonomy and instantiate models for power-grid and man-
ufacturing infrastructures in Chapter 8 extend the application of the provided method
and automate the instantiation process. The research conducted in Chapter 8 and Chap-
ter 9 demonstrates the necessity for increased automation in the creation of integrated
models. One planned direction is to identify the shared characteristics among a set of
generic components, and define “standard”components or shared libraries.

(iv) Assess vulnerability considering environmental and temporal effects:

A component-level vulnerability index is affected not only by the deployment conditions
of the vulnerable component, but also by those of other impacted components. Note
that the vulnerable component and the affected component may not be identical, mean-
ing that targeting one componentmay grant access to another exploit on a different set of
components. This is a common trend amongAPT attack strategies. As reported inPaper
VII, such vulnerability chains are found and assessed at asset-level or even system-wide
level to evaluate the vulnerability implications exposing successful attacks. We define
multidimensional functional dependencies that facilitate cascade modeling in Chapter
8. These dependence concepts can also be utilized to calculate the critical level of a com-
ponent. The suggested taxonomy and instantiated CI models contribute to the estab-
lishment of a common framework to give unified knowledge from the views of numerous
stakeholders in order to prevent potential risks from penetrating across CI levels and to
reduce their impact. On top of the established works, we intend to examine the relation-
ships between vulnerability severity and the attack surface of the system on which the
vulnerability assessment is performed.

Multi-level vulnerability assessmentwould be examinedusing explainableAI (Liao, Gruen,
and Miller, 2020) approaches as part of the intended effort. The objective of this strat-
egy is to generate variable indicators of vulnerability while taking environmental and
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temporal effects into account, thereby addressing the challenge of adjusting the nec-
essary information details provided to hierarchical stakeholders in order to achieve an
appropriate level of situational awareness. The objective is to condense the information
burden relevant to each stakeholder into a form that is less cognitively demanding to
understand within the safe remediation decision timeframes of the vulnerability man-
agement lifecycle.

From a security evaluation perspective, a critical vulnerability may actually be consid-
ered as low patch-prioritization by a system owner possibly due to lower accessibility.
Meanwhile, a vulnerability with low impact-severity could lead to catastrophic effect if
exploited with chained vulnerabilities. Both scenarios can be systematically analyzed
with the extension of our CI architecture and vulnerability retrieval methods.
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APPENDIX I: SURVEY ABOUT USER’S PERSPECTIVE ON
VULNERABILITY DATABASES ANDMETRICS

This appendix presents a survey submitted toCI cybersecurity stakeholderswho are have
basic knowledge of CI cybersecurity. The surveys were distributed online in 2019. The
ones attached in this survey are a partial copy of the original ones, as some questions
included in the original ones are not related to this thesis. Some important survey results
are presented in the end of this appendix.

Industrial Cyber-Security Survey

Thank you for taking part in this survey and for contributing to our research!

Aim: The aim of this survey is to gather data about your perception of Industrial Cyber-
Security Protection. That means, your perception of the threats and vulnerability that
shall be prioritized in industry risk management, as well as of using open-source secu-
rity databases, vulnerability scoring mechanisms and artificial intelligence to support
industrial vulnerability analysis and decision making.

Anonymity: The information obtained from this questionnaire will be employed for re-
search purposes and the anonymity of the participants is ensured. No individual infor-
mation will be disclosed. Please do not write your name in the survey.

Duration: The questionnaire will take about 10-15 minutes to complete.

Contact: Should you wish us to contact you or any member of your organization for any
further discussion about the above, you may contact:

Yuning Jiang (PhD candidate)
Distributed Real-Time System
School of Informatics, University of Skövde
Email: yuning.jiang@his.se
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Participant Information

1. What are the followingdescriptionsbestdescribingyour field? (Choose
one or more options).

� Industrial control system security.

� Network security.

� IT services.

� Telecommunication operations/equipments.

� Cybersecurity research.

� Manufacturing industry.

� Software development.

� Other:

2. Whatare the followingdescriptionsbestdescribingyour role? (Choose
one or more options).

� Technician/Analyst.

� Production staff.

� System operator.

� Manager.

� Consultant.

� Teacher.

� Student.

� Other:

Using Public Cybersecurity Data Sources and Metrics for CI Cybersecurity

3. Towhat extentopen-source securitydatabases, e.g vulnerability repos-
itory CVE and exploit database ExploitDB are used in critical infras-
tructures to provide vulnerability alerts? (Select one option below.)

� None � Low �Medium �High

4. How often do you use open-source security databases, e.g., vulnera-
bility repository CVE and exploit database ExploitDB? (Select one fre-
quency below.)

�Never �Once a year �Once a month �Once a week � Everyday
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5. Please rank the following critical infrastructure vulnerabilitymanage-
ment strategies in the order of importance

� Structure-level vulnerability analysis to improve resilience.

� Product-level vulnerability analysis to prioritise patching.

� Provide frequent penetration testing.

� Cyber vulnerability intelligence to support vulnerability prediction.

� Other:

6. Whatare thepurposes for you touse theopen-source securitydatabases,
e.g., vulnerability database CVE and exploit database ExploitDB? (Se-
lect one or more options below. If the motivation to use open-source
security databases is not listed, please write it in Other.)

� To know the general security status.

� To know the latest security status.

� To compare and choose from products from different vendors.

� To know the security status of my products

� Other:

7. To what extent are the industrial vulnerability scoring mechanisms,
e.g., common vulnerability scoring system (CVSS), used in critical in-
frastructures to support vulnerability analysis? (Select one option be-
low.)

� None � Low �Medium �High

8. Howoftendoyouuse the industrial vulnerability scoringmechanisms,
e.g. common vulnerability scoring system (CVSS)? (Select one fre-
quency below

�Never �Once a year �Once a month �Once a week � Everyday

9. What are the purposes for you to use the industrial vulnerability scor-
ingmechanisms, e.g., commonvulnerability scoring system(CVSS)?(Se-
lect one or more options below. If the motivation to use open-source
security databases is not listed, please write it in Other.)

� To evaluate a security issue.

� To compare and choose from products from different vendors.

� To know the security status of my products

� Other:
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Figure 10.2 presents results on correlations between working field and usage of CVE.

Figure 10.2: Correlation between working field and usage of CVE
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Figure 10.3 presents results on correlations between working field and usage of CVSS.

Figure 10.3: Correlation between working field and usage of CVSS
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APPENDIX II: INTERVIEW QUESTIONNAIRE FOR STUDY III
This appendix presents the questions that led the discussions during the interviews per-
formed in Study III. Summaries of the interview results are presented in Chapter 5.
Although a list of questions was prepared before the interview, it was conducted in a
semi-structure manner, opening opportunities to both wider and deeper discussions re-
lated vulnerability-driven cybersecurity practices and challenges in complicated critical
infrastructures.

Several interviews were conducted at different stages of Study III. More specifically, in-
terview performed at an earlier stage of this case study aims to understand the vulnera-
bility assessment andmanagement practices in the involved organization. The interview
carried out in the end of this case study validates the usefulness and applicability of pub-
lic cybersecurity databases based on results of Study III.

INTERVIEW QUESTIONNAIRE I

Objective: to gain knowledge about the organization and specifically, about the vulnerability-
assessment process in this organization.

Understanding the organization:

• What are the current challenges of the vulnerability assessment in your organiza-
tion?

• What are your requirements for vulnerability assessment?

• How is vulnerability assessment related to security protection in your organization?

• Do you think that you have a comprehensive and up-to-date overview of the vulner-
ability situation of your IT/OT systems?

• How often do you conduct vulnerability assessment of your system?

• Howoften do you receive vulnerability alerts, considering the events triggered alarms
of your system?

• How long does it take for you between receiving vulnerability alerts and carrying
patching actions?

• How is your vulnerability assessment conducted? Manually or Automatically?

• Is there any part of your vulnerability-assessment process that needs further automa-
tion?

Public Vulnerability Database and Severity Metrics:

• To what extent/percentage open-source security databases, e.g vulnerability reposi-
tory CVE and exploit database ExploitDB are used in your organization?

• Which open-source security databases are you using?

• What are the purposes for you to use the open-source security databases?
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• To what extent are the industrial vulnerability scoring mechanisms, e.g. common
vulnerability scoring system (CVSS), used in your organization?

• What are the purposes for you to use CVSS or other scoring systems?

INTERVIEW QUESTIONNAIRE II

Objective: to get feedback on the results of Study III and specifically, comments upon
using public accessible vulnerability data sources.

Identified Vulnerabilities:

• Is the generated vulnerability report a useful aid for cybersecurity decision making
of the investigated system?

• Do the case study results (and the presentation of these findings) make you aware of
weaknesses that you did not know before?

• Do you agree with the top 3 weaknesses identified in this case study? Which rank is
most wrong from your point of view? (Note that the top 3 weaknesses are the ones
with the highest occurrences in the investigated system.)

• When you make cybersecurity decisions, would you rely more on the vulnerability-
assessment results using NVD or vendor entries? Or both?

227



APPENDIX III: EXAMPLE OF VULNERABILITY DATABASE OUTPUT
IN JSON
This appendix presents a vulnerability instanceCVE-2021-36745 exported fromour pro-
posed vulnerability database in JSON format. Its relevant information is composed
of eight nested documents, namely Vulnerability (basic metadata), Tracking, Threat,
Weakness, Attack, Severity and Affected Product (marked in red color).

1 {
2 "vulnerability_metadata": {
3 "id": [ {
4 "id_data" : "CVE-2021-36745",
5 "source" : "nvd"
6 },{
7 "id_data" : "ZDI-21-1115",
8 "source" : "zero day initialitive"
9 }
10 ],
11 "assigner": "security@trendmicro.com",
12 "report":[ {
13 "summary" : "A vulnerability in Trend Micro ServerProtect for Storage 6.0, ⤦

ServerProtect for EMC Celerra 5.8, ServerProtect for Network Appliance ⤦
Filers 5.8, and ServerProtect for Microsoft Windows / Novell Netware 5.8 ⤦
could allow a remote attacker to bypass authentication on affected ⤦
installations.",

14 "source" : "nvd"
15 },{
16 "summary" : "This vulnerability allows remote attackers to bypass ⤦

authentication on affected installations of Trend Micro ServerProtect. ⤦
Authentication is not required to exploit this vulnerability. The ⤦
specific flaw exists within the ServerProtect console. The issue results ⤦
from the lack of proper validation prior to authentication. An attacker ⤦
can leverage this vulnerability to bypass authentication on the system.",

17 "source" : "zero day initialitive"
18 }
19 ],
20 "references":{
21 "reference_data" : [ {
22 "url" : "https://success.trendmicro.com/solution/000289038",
23 "tags" : [ "Patch", "Vendor Advisory" ]
24 }, {
25 "url" : "https://www.zerodayinitiative.com/advisories/ZDI-21-1115/",
26 "tags" : [ "Third Party Advisory", "VDB Entry" ]
27 }, {
28 "url" : "https://success.trendmicro.com/jp/solution/000289030",
29 "tags" : [ "Patch", "Vendor Advisory" ]
30 } ]
31 }
32 },
33 "tracking": {
34 "disclosure":[ {
35 "disclose" : "2021-04-14",
36 "source" : "trend micro"
37 } ],
38 "publication":[ {
39 "published" : "2021-09-29",
40 "source" : "nvd"
41 },{
42 "published" : "2021-09-24",
43 "source" : "trend micro"
44 }
45 ],
46 "modification":[ {
47 "modified" : "2021-10-02",
48 "source" : "nvd"
49 } ],
50 "patch":[ {
51 "patch_released" : "2021-09-24",
52 "source" : "trend micro"
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53 } ]
54 },
55 "threat": {
56 "cvedetails":[ {
57 "cvedetails_data" : "Bypass",
58 "source" : "cvedetails"
59 } ]
60 },
61 "weakness": {
62 "cwe":[ {
63 "cwe_id" : "CWE-287",
64 "cwe_name": "Improper Authentication",
65 "cwe_description": "When an actor claims to have a given identity, the ⤦

software does not prove or insufficiently proves that the claim is ⤦
correct.",

66 "cwe_exploit_likelihood": "High",
67 "source" : "nvd"
68 } ]
69 },
70 "attack": {
71 "capec_data":[ {
72 "capec_id" : "CAPEC-114",
73 "capec_name": "Authentication Abuse",
74 "capec_typical_severity": "Medium",
75 "capec_prerequisites": "An authentication mechanism or subsystem ⤦

implementing some form of authentication such as passwords, digest ⤦
authentication, security certificates, etc. which is flawed in some way."⤦
,

76 "capec_resource_required": "A client application, command-line access to a ⤦
binary, or scripting language capable of interacting with the ⤦
authentication mechanism.",

77 "source" : "nvd"
78 },{
79 "capec_id" : "CAPEC-115",
80 "capec_name": "Authentication Bypass",
81 "capec_typical_severity": "Medium",
82 "capec_prerequisites": "An authentication mechanism or subsystem ⤦

implementing some form of authentication such as passwords, digest ⤦
authentication, security certificates, etc.",

83 "capec_resource_required": "A client application, such as a web browser, ⤦
or a scripting language capable of interacting with the target.",

84 "source" : "nvd"
85 },{
86 "capec_id" : "CAPEC-151",
87 "capec_name": "Identity Spoofing",
88 "capec_typical_severity": "Medium",
89 "capec_prerequisites": "The identity associated with the message or ⤦

resource must be removable or modifiable in an undetectable way.",
90 "capec_resource_required": "None: No specialized resources are required ⤦

to execute this type of attack.",
91 "source" : "nvd"
92 },{
93 "capec_id" : "CAPEC-194",
94 "capec_name": "Fake the Source of Data",
95 "capec_typical_severity": "Medium",
96 "capec_prerequisites": "This attack is only applicable when a vulnerable ⤦

entity associates data or services with an identity. Without such an ⤦
association, there would be no reason to fake the source.",

97 "capec_resource_required": "Resources required vary depending on the ⤦
nature of the attack. Possible tools needed by an attacker could ⤦
include tools to create custom network packets, specific client ⤦
software, and tools to capture network traffic. Many variants of this ⤦
attack require no attacker resources, however.",

98 "source" : "nvd"
99 },{
100 "capec_id" : "CAPEC-22",
101 "capec_name": "Exploiting Trust in Client",
102 "capec_typical_severity": "High",
103 "capec_prerequisites": "Server software must rely on client side ⤦

formatted and validated values, and not reinforce these checks on the ⤦
server side.",

104 "capec_resource_required": "Ability to communicate synchronously or ⤦
asynchronously with server.",

229



105 "source" : "nvd"
106 },{
107 "capec_id" : "CAPEC-57",
108 "capec_name": "Utilizing REST's Trust in the System Resource to Obtain ⤦

Sensitive Data",
109 "capec_typical_severity": "Very High",
110 "capec_prerequisites": "Opportunity to intercept must exist beyond the ⤦

point where SSL is terminated. The attacker must be able to insert a ⤦
listener actively (proxying the communication) or passively (sniffing ⤦
the communication) in the client-server communication path.",

111 "capec_resource_required": "",
112 "source" : "nvd"
113 },{
114 "capec_id" : "CAPEC-593",
115 "capec_name": "Session Hijacking",
116 "capec_typical_severity": "Very High",
117 "capec_prerequisites": "An application that leverages sessions to perform⤦

authentication.",
118 "capec_resource_required": "The adversary must have the ability to ⤦

communicate with the application over the network.",
119 "source" : "nvd"
120 },{
121 "capec_id" : "CAPEC-633",
122 "capec_name": "Token Impersonation",
123 "capec_typical_severity": "Medium",
124 "capec_prerequisites": "This pattern of attack is only applicable when a ⤦

downstream user leverages tokens to verify identity, and then takes ⤦
action based on that identity.",

125 "capec_resource_required": "",
126 "source" : "nvd"
127 },{
128 "capec_id" : "CAPEC-650",
129 "capec_name": "Upload a Web Shell to a Web Server",
130 "capec_typical_severity": "High",
131 "capec_prerequisites": "The web server is susceptible to one of the ⤦

various web application exploits that allows for uploading a shell file⤦
.",

132 "capec_resource_required": "",
133 "source" : "nvd"
134 },{
135 "capec_id" : "CAPEC-94",
136 "capec_name": "Adversary in the Middle (AiTM)",
137 "capec_typical_severity": "Very High",
138 "capec_prerequisites": "There are two components communicating with each ⤦

other. An attacker is able to identify the nature and mechanism of ⤦
communication between the two target components. An attacker can ⤦
eavesdrop on the communication between the target components. Strong ⤦
mutual authentication is not used between the two target components ⤦
yielding opportunity for attacker interposition. The communication ⤦
occurs in clear (not encrypted) or with insufficient and spoofable ⤦
encryption.",

139 "capec_resource_required": "",
140 "source" : "nvd"
141 }
142 ],
143 "attck_data": [{
144 "attck_id": "T1548",
145 "attck_name": "Abuse Elevation Control Mechanism",
146 "attck_tactic": ["Privilege Escalation", "Defense Evasion"],
147 "attck_mitigation": [{
148 "attck_mitigation_id": "M1047",
149 "attck_mitigation_name": "Audit"
150 },{
151 "attck_mitigation_id": "M1038",
152 "attck_mitigation_name": "Execution Prevention"
153 },{
154 "attck_mitigation_id": "M1028",
155 "attck_mitigation_name": "Operating System Configuration"
156 },{
157 "attck_mitigation_id": "M1026",
158 "attck_mitigation_name": "Privileged Account Management"
159 },{
160 "attck_mitigation_id": "M1022",
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161 "attck_mitigation_name": "Restrict File and Directory Permissions"
162 },{
163 "attck_mitigation_id": "M1052",
164 "attck_mitigation_name": "User Account Control"
165 }],
166 "source" : "nvd"
167 },{
168 "attck_id": "T1550.001",
169 "attck_name": "Use Alternate Authentication Material: Application Access ⤦

Token",
170 "attck_tactic": ["Lateral Movement", "Defense Evasion"],
171 "attck_mitigation": [{
172 "attck_mitigation_id": "M1047",
173 "attck_mitigation_name": "Audit"
174 },{
175 "attck_mitigation_id": "M1041",
176 "attck_mitigation_name": "Encrypt Sensitive Information"
177 },{
178 "attck_mitigation_id": "M1021",
179 "attck_mitigation_name": "Restrict Web-Based Content"
180 }],
181 "source" : "nvd"
182 },{
183 "attck_id": "T1563",
184 "attck_name": "Remote Service Session Hijacking",
185 "attck_tactic": ["Lateral Movement"],
186 "attck_mitigation": [{
187 "attck_mitigation_id": "M1042",
188 "attck_mitigation_name": "Disable or Remove Feature or Program"
189 },{
190 "attck_mitigation_id": "M1030",
191 "attck_mitigation_name": "Network Segmentation"
192 },{
193 "attck_mitigation_id": "M1026",
194 "attck_mitigation_name": "Privileged Account Management"
195 },{
196 "attck_mitigation_id": "M1018",
197 "attck_mitigation_name": "User Account Management"
198 }],
199 "source" : "nvd"
200 },{
201 "attck_id": "T1134",
202 "attck_name": "Access Token Manipulation",
203 "attck_tactic": ["Privilege Escalation", "Defense Evasion"],
204 "attck_mitigation": [{
205 "attck_mitigation_id": "M1026",
206 "attck_mitigation_name": "Privileged Account Management"
207 },{
208 "attck_mitigation_id": "M1018",
209 "attck_mitigation_name": "User Account Management"
210 }],
211 "source" : "nvd"
212 },{
213 "attck_id": "T1505.003",
214 "attck_name": "Server Software Component: Web Shell",
215 "attck_tactic": ["Persistence"],
216 "attck_mitigation": [{
217 "attck_mitigation_id": "M1042",
218 "attck_mitigation_name": "Disable or Remove Feature or Program"
219 },{
220 "attck_mitigation_id": "M1018",
221 "attck_mitigation_name": "User Account Management"
222 }],
223 "source" : "nvd"
224 },{
225 "attck_id": "T1557",
226 "attck_name": "Adversary-in-the-Middle",
227 "attck_tactic": ["Collection", "Credential Access"],
228 "attck_mitigation": [{
229 "attck_mitigation_id": "M1042",
230 "attck_mitigation_name": "Disable or Remove Feature or Program"
231 },{
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232 "attck_mitigation_id": "M1041",
233 "attck_mitigation_name": "Encrypt Sensitive Information"
234 },{
235 "attck_mitigation_id": "M1037",
236 "attck_mitigation_name": "Filter Network Traffic"
237 },{
238 "attck_mitigation_id": "M1035",
239 "attck_mitigation_name": "Limit Access to Resource Over Network"
240 },{
241 "attck_mitigation_id": "M1031",
242 "attck_mitigation_name": "Network Intrusion Prevention"
243 },{
244 "attck_mitigation_id": "M1030",
245 "attck_mitigation_name": "Network Segmentation"
246 },{
247 "attck_mitigation_id": "M1017",
248 "attck_mitigation_name": "User Training"
249 }],
250 "source" : "nvd"
251 }
252 ]
253 },
254 "remediation": {
255 "remediation_data":[ {
256 "update_version" : [
257 "ServerProtect for EMC Celerra (SPEMC) Update to 5.8CP1577",
258 "ServerProtect for Storage (SPFS) Update to 6.0 CP1284",
259 "ServerProtect for Network Appliance Filers (SPNAF) Update to 5.8CP1299⤦

",
260 "ServerProtect for Microsoft Windows / Novell Netware (SPNT) Update to ⤦

5.8CP1575"
261 ],
262 "source" : "trend micro"
263 } ]
264 },
265 "severity": {
266 "cvss_v3":[{
267 "base_score": 9.8,
268 "base_vector": "AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
269 "attackcomplexity": "Low",
270 "attackvector": "Network",
271 "privilegesrequired": "None",
272 "userinteraction": "None",
273 "scope": "Unchanged",
274 "confidentiality": "High",
275 "integrity": "High",
276 "availability": "High",
277 "source" : "nvd"
278 },{
279 "base_score": 9.8,
280 "base_vector": "AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
281 "attackcomplexity": "Low",
282 "attackvector": "Network",
283 "privilegesrequired": "None",
284 "scope": "Unchanged",
285 "userinteraction": "None",
286 "availability": "High",
287 "confidentiality": "High",
288 "integrity": "High",
289 "source" : "trend micro"
290 }],
291 "cvss_v2":[{
292 "base_score": 10.0,
293 "base_vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C",
294 "accessVector" : "Network",
295 "accessComplexity" : "Low",
296 "authentication" : "None",
297 "confidentialityImpact" : "Complete",
298 "integrityImpact" : "Complete",
299 "availabilityImpact" : "Complete",
300 "source" : "nvd"
301 }]
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302 },
303 "affected_products": {
304 "cve_data": {
305 "affected" : [
306 "Trend Micro - ServerProtect for Storage - 6.0",
307 "Trend Micro - ServerProtect for EMC Celerra - 5.8",
308 "Trend Micro - ServerProtect for Network Appliance Filers - 5.8",
309 "Trend Micro - ServerProtect for Microsoft Windows / Novell Netware - 5⤦

.8"
310 ],
311 "source" : "cve"
312 },
313 "cpe_data": {
314 "nodes" : [ {
315 "operator" : "OR",
316 "children" : [ ],
317 "cpe_match" : [ {
318 "vulnerable" : true,
319 "cpe23Uri" : "cpe:2.3:a:trendmicro:serverprotect:5.8:*:*:*:*:emc:*:*",
320 "cpe_name" : [ ]
321 }, {
322 "vulnerable" : true,
323 "cpe23Uri" : "cpe:2.3:a:trendmicro:serverprotect:5.8:*:*:*:*:netapp:*:*",
324 "cpe_name" : [ ]
325 }, {
326 "vulnerable" : true,
327 "cpe23Uri" : "cpe:2.3:a:trendmicro:serverprotect:5.8:*:*:*:*:netware:*:*"⤦

,
328 "cpe_name" : [ ]
329 }, {
330 "vulnerable" : true,
331 "cpe23Uri" : "cpe:2.3:a:trendmicro:serverprotect:5.8:*:*:*:*:windows:*:*"⤦

,
332 "cpe_name" : [ ]
333 }, {
334 "vulnerable" : true,
335 "cpe23Uri" : "cpe:2.3:a:trendmicro:serverprotect:6.0:*:*:*:*:storage:*:*"⤦

,
336 "cpe_name" : [ ]
337 } ]
338 } ],
339 "source" : "nvd"
340 },
341 "vendor_data": {
342 "affected" : [
343 "ServerProtect for EMC Celerra (SPEMC) 5.8",
344 "ServerProtect for Storage (SPFS) 6.0",
345 "ServerProtect for Network Appliance Filers (SPNAF) 5.8",
346 "ServerProtect for Microsoft Windows / Novell Netware (SPNT) 5.8"
347 ],
348 "source" : "trend micro"
349 }
350 }
351 }
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APPENDIX IV: INSTANTIATED MODELS FOR STUDY X
Figure 10.4 presents the cyber and control layers ofModel I used in Study X.

Figure 10.4: Cyber and control layers ofModel I used in Study X
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Figure 10.5 presents the physical layer ofModel I used in Study X.

Figure 10.5: Physical layer ofModel I used in Study X
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Figure 10.6 presents the cyber and control layers ofModel II used in Study X.

Figure 10.6: Cyber and control layers ofModel II used in Study X
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Figure 10.7 presents the physical layer ofModel II used in Study X.

Figure 10.7: Physical layer ofModel II used in Study X
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