

QUALITY INSPECTION OF MULTIPLE
PRODUCT VARIANTS USING NEURAL
NETWORK MODULES

Master Degree Project in Virtual Product Realization
Two year Level 30 ECTS
Spring term 2022

Fredrik Vuoluterä

Supervisor: Stefan Ericson

Examiner: Sunith Bandaru

 i

Abstract

Maintaining quality outcomes is an essential task for any manufacturing organization. Visual inspections have

long been an avenue to detect defects in manufactured products, and recent advances within the field of deep

learning has led to a surge of research in how technologies like convolutional neural networks can be used to

perform these quality inspections automatically. An alternative to these often large and deep network structures

is the modular neural network, which can instead divide a classification task into several sub-tasks to decrease

the overall complexity of a problem. To investigate how these two approaches to image classification compare

in a quality inspection task, a case study was performed at AR Packaging, a manufacturer of food containers.

The many different colors, prints and geometries present in the AR Packaging product family served as a natural

occurrence of complexity for the quality classification task. A modular network was designed, being formed by

one routing module to classify variant type which is subsequently used to delegate the quality classification to

an expert module trained for that specific variant. An image dataset was manually generated from within the

production environment portraying a range of product variants in both defective and non-defective form. An

image processing algorithm was developed to minimize image background and align the products in the

pictures. To evaluate the adaptability of the two approaches, the networks were initially trained on same data

from five variants, and then retrained with added data from a sixth variant. The modular networks were found

to be overall less accurate and slower in their classification than the conventional single networks were.

However, the modular networks were more than six times smaller and required less time to train initially, though

the retraining times were roughly equivalent in both approaches. The retraining of the single network did also

cause some fluctuation in the predictive accuracy, something which was not noted in the modular network.

Keywords: quality inspection, defect detection, variants, modular neural network, convolutional neural

network, case study

 ii

Acknowledgements

I’d like to thank Andreas and Therese for acting as my company supervisors, your support made the project

possible. I’d also like to thank AR Packaging as a whole, but specifically the personnel at the Tibro production

facility. The interest in the study, help in finding defective products and welcoming attitude made my visits a

pleasant experience.

Furthermore, Richard and Bernard deserve an acknowledgement for helping me shape the early stages of the

project and offering support throughout. A very special thanks goes to Ainhoa, who helped me find the perfect

company to partner with for the study. Additionally, I’d like to acknowledge the patience and understanding

from friends and family for enduring my ramblings about the thesis. Your support was essential to keep my

spirits up during the study.

Lastly, I’d like to thank Sunith for taking on the role of examiner in a project which was at the time barely

coherent and Stefan for relentlessly supporting me as the project supervisor, whether it pertained to acquisition

of hardware, choice of algorithms, strategy for data collection, organizing the report and so many other things.

I extend my most heartfelt gratitude to you.

Skövde, May 2022

Fredrik Vuoluterä

 iii

Certificate of Authenticity

Submitted by Fredrik Vuoluterä to the University of Skövde as a master’s degree thesis at the School of

Engineering.

I certify that all material in this master thesis project which is not my own work has been properly referenced.

 iv

Table of Contents

1 Introduction ... 1

1.1 Background.. 1

1.2 Problem Description .. 2

1.3 Aim and Objectives ... 3

1.4 Methodology.. 3

1.5 Scope ... 5

2 Frame of Reference ... 6

2.1 Quality Management ... 6

2.1.1 Quality Inspections .. 7

2.2 Deep Learning ... 8

2.2.1 Neural Network Training... 9

2.3 Modular Neural Networks ... 12

2.3.1 Domain .. 13

2.3.2 Topology .. 14

2.3.3 Formation .. 15

2.3.4 Integration .. 16

3 Literature Review .. 17

3.1 Quality Inspection using Convolutional Neural Networks .. 17

3.2 Modular Neural Network Studies .. 19

4 Network Design ... 21

4.1 General Network Design ... 21

4.2 Modular Design ... 21

4.3 Initial Tests .. 24

5 Data Handling .. 25

5.1 On-site Data Collection & Labelling ... 25

5.2 Image Dataset & Filtering ... 26

5.3 Defect Types .. 28

 v

6 Image Processing ... 31

6.1 Segmentation ... 31

6.2 Orientation ... 32

6.3 Image Processing Performance ... 34

7 Network Training .. 36

7.1 Data Preparation .. 36

7.2 Modular Network Training .. 37

7.3 Monolithic Network Training .. 38

7.4 Retraining Network Approaches ... 38

8 Results ... 40

8.1 Classification Accuracy ... 40

8.2 Classification Speed .. 41

8.3 Network Size ... 41

8.4 Network Training and Retraining Time .. 42

9 Discussion.. 43

9.1 Complexity and Generalizability ... 43

9.2 Reusability of Modules .. 43

9.3 Implications for Sustainability... 44

10 Conclusions ... 45

10.1 Future Work... 45

11 References ... 46

Appendix A: Confusion Matrices ... 53

 vi

Table of Figures

Figure 1: Five steps of a case study (Runeson & Höst, 2008) mapped onto project activities............................ 4

Figure 2: Illustration showing the structure of a simple neural network. .. 8

Figure 3: Example of divergence in the error rate between training and validation data. 10

Figure 4: Diagram of different repeated block sub-topologies, inspired by Amer & Maul (2019) 15

Figure 5: Number of published papers found on Scopus concerning both quality inspection and CNNs. 17

Figure 6: Workflow of the proposed classification networks. ... 21

Figure 7: Illustration of how image data is clustered based on product variant and quality. 22

Figure 8: Visualization of the designed modular structure and a monolithic network. 23

Figure 9: Example of images used to test both network approaches (Mureșan & Oltean, 2018). 24

Figure 10: A set of eight images collected of the same product in different rotations. 25

Figure 11: All eight variants which were initially included in the study. .. 26

Figure 12: The high profile of V5 obscures the sides of the product. ... 27

Figure 13: Two products produced close in time may suffer the same defect in varying degrees. 29

Figure 14: Two varying degrees of deformation. .. 29

Figure 15: Comparison of a single-pressed product on the left and a double-pressed product on the right. 29

Figure 16: Example of product with misaligned print. .. 30

Figure 17: Example of a product with tearing in the corners. ... 30

Figure 18: Different kinds of surface damage showing dirt, tape, “washlines” and paint on the products. 30

Figure 19: Segmentation algorithm workflow... 31

Figure 20: Input image and the binary mask generated from the image segmentation. 32

Figure 21: Binary mask allows areas around the product to be cropped. .. 32

Figure 22: Orientation algorithm workflow .. 33

Figure 23: Binary mask at 10, 26 and 39 degrees of rotation from initial position. .. 33

Figure 24: Comparison of the original image and the processed image. ... 33

Figure 25: Examples of images which either partially or entirely failed to be processed. 34

Figure 26: Rate of successful processing of images per product variant... 34

Figure 27: Histogram showing the image processing time for 792 samples. .. 35

 vii

Figure 28: Stages in the training process, adapted for the project from Zheng et al. (2021)............................. 36

Figure 29: Division of image data for training and validation. ... 37

Figure 30: Accuracy divergence from 20-epoch retraining when using 10 or 50 epochs instead. 39

Figure 31: Cumulative training times for each network, with segments representing network modules. 42

 viii

Index of Tables

Table 1: Breakdown of the number of images for each product variant before and after filtering. 27

Table 2: Classification accuracy for each of the trained networks. ... 40

Table 3: Average classification speed for each of the trained networks. .. 41

Table 4: Size table for each of the trained networks. .. 41

 1

1 Introduction

1.1 Background

Quality management has become a central concern for manufacturing organizations, as achieving good

quality is necessary to remain competitive in the market (Harik & Wuest, 2020). In addition to the

establishment of international standards (European Committee for Standardization, 2015a, 2015b),

different frameworks have been developed to aid organizations in establishing well-functioning quality

management systems, such as Total Quality Management and Six Sigma (Oakland, 2014). A

prominent element within these larger quality management frameworks is quality control, which is

implemented for the expressed purpose of ensuring manufactured products comply with quality

requirements (Anand & Priya, 2020). A common approach to identifying products which do not

conform to requirements is visual inspections (Harik & Wuest, 2020). Due to the relative cost and

variability in using human operators to perform these inspections, automated machine vision systems

are often desirable (Anand & Priya, 2020).

During the last decade, deep learning techniques have been increasingly used when constructing

automated inspection systems, often utilizing convolutional neural networks (CNNs) (Czimmermann

et al., 2020; Naranjo-Torres et al., 2020; Qi et al., 2020; J. Wang et al., 2018; J. Yang et al., 2020).

While CNNs can solve a range of other tasks, they have proved to be very effective for visual

classification and object recognition applications (Alom et al., 2018). As such, several recent studies

(Chen et al., 2022; Riedel et al., 2022; Singh & Desai, 2022; Stephen et al., 2022) have used CNN-

based vision systems to automatically detect surface defects in products.

Despite showing promise as a technique for defect detection (Czimmermann et al., 2020; Ferguson et

al., 2018; Qi et al., 2020; J. Yang et al., 2020), many studies note issues and challenges which can

occur when utilizing CNNs for quality inspection tasks. These include misidentifying product variants

or defect types (Block et al., 2021; Huang & Ren, 2020; Nasiri et al., 2020; Y. Yang, Yang, et al.,

2020), time-consuming training or retraining of a network (Czimmermann et al., 2020; Ferguson et

al., 2018; Y. Yang, Pan, et al., 2020), need for large amounts of data (Naranjo-Torres et al., 2020; Qi

et al., 2020; Tout et al., 2021; J. Yang et al., 2020) and the network size or computational cost being

larger than desired (Naranjo-Torres et al., 2020; Y. Yang, Yang, et al., 2020).

 2

It is also accepted that visual classification tasks with higher complexity require more data, larger

networks and more resource-intensive training of the neural network (Amer & Maul, 2019). For quality

inspection applications, this complexity may increase when more product variants are introduced to

the network, resulting in a wider range of, for example, colors, materials, defect types and geometry.

Modular neural networks (MNNs) have been developed to mitigate the issue of growing complexity

and do this by dividing the classification into several sub-tasks. Each module in a MNN consists of an

independent neural network which is trained to deal with only a subsection of the total complexity.

While multiple approaches exist to create MNNs, the connecting tissue between them is this division

of complexity among a collection of modules, in contrast to conventional ‘monolithic’ neural networks

which instead attempt to handle all complexity in one network (Amer & Maul, 2019).

1.2 Problem Description

AR Packaging is a manufacturer of different kinds of trays and containers used in the food industry,

such as for fast food or microwave meals. The main material used is carton board, but some product

variants make use of plastic and aluminum to meet customer requirements. As the products are

intended for use in the food industry, strict quality and hygiene standards are enforced in the

manufacturing process. A defective tray may cause food leakage, vacuum seals breaking,

contamination or issues when the food producer fills the tray. Today the company mainly relies on

experienced human operators to inspect products for defects and identify those that do not meet quality

specification. Due to the variability, cost and speed of manual inspections there is an interest in

developing an automated inspection system.

Given the diverse materials and features within the AR Packaging product family, along with the need

for automatic inspection solutions, the company offers an interesting opportunity to investigate the

usefulness of modular CNN solutions for quality inspection. As the company continuously develops

new designs based on customer demand, changes existing materials for more sustainable alternatives

and experiences shifts in which products are manufactured at the site, it is imperative that the

inspection solution not only performs well in the current product family, but is further able to easily

be updated when changes in the product family occur.

 3

1.3 Aim and Objectives

The intersection of visual quality inspections, CNNs and modularity form the central theme of the

thesis, which seeks to explore how neural network modules perform compared to conventional neural

network implementations. The aim of the thesis is thus to answer the research question:

• How do conventional monolithic neural networks compare to modular neural networks in

quality inspection applications with high product variety and frequent changes to the product

family?

For this question to be answered, the thesis has been divided into a series of objectives to be achieved:

1. Review the contemporary literature of how CNNs are applied in quality inspection tasks.

2. Plan the study and define the design of both the monolithic and modular approach.

3. Perform an initial study using publicly accessible datasets to verify the designs.

4. Collect image data of several product variants in the production facilities of AR Packaging.

5. Use data from a selection of products to train both the monolithic and modular network designs.

6. Compare performance and training process using established metrics in the field.

7. Add data from one or more variants and re-train the monolithic and modular network designs.

8. Evaluate and compare both the new performance and the re-training process.

9. Document and summarize the project in a report.

By applying the two different approaches to the same task, using the same training data, it will be

possible to evaluate how fit each approach is with regard to not only the accuracy of the quality

inspection, but also factors concerning training or re-training, input data required, size of the networks,

response time and how data handling is affected.

1.4 Methodology

As the thesis is contained to a single use case, it will be performed within the methodological

framework of a case study, drawing heavily upon guidelines for the method by Runeson & Höst (2008).

They define a case study as an investigation of a contemporary phenomenon in its context. They further

describe it as an empirical method and note similarities between case studies and quasi-experiments

conducted in industrial settings. Case studies also often lack strong experimental controls. These

properties are easily found in the thesis, making a case study approach a good fit.

 4

The thesis will be exploratory in its nature, seeking to establish how modular neural networks perform

in comparison to the dominant monolithic approach to quality inspections. In addition, it will act within

the positivist paradigm, gathering empirical data to explain the interactions of the two approaches and

reinforce the conclusions of the study.

Runeson & Höst (2008) outline five major steps which are necessary for a successful case study. The

first step, case study design, involves planning the study and defining objectives to be achieved. Next

is preparation for data collection, where the approach and methods for collecting data is defined. The

third step is evidence collection, where data collection for the case study is performed. Then step four,

analysis of collected data, seeks to generate some result. The fifth and final step is reporting, in which

the findings of the case study are presented.

Figure 1: Five steps of a case study (Runeson & Höst, 2008) mapped onto project activities.

Data collection and analysis for the thesis will however be performed with two distinct objectives in

mind. The first one is to gather image data for the neural networks to train on, which implicitly requires

some degree of analysis of the collected images. The second will seek to extract data for the final

analysis from the networks regarding training, accuracy and other relevant measurements of their

performance. As such it diverges slightly from the idealized framework presented by Runeson & Höst

(2008), but they note that case studies are by nature flexible and data collection can be conducted

incrementally. Thus, these steps can be mapped onto project activities, see Figure 1.

 5

1.5 Scope

The study will limit itself to investigating surface defects in the products, such as scratches, holes,

cracks, tearing or deformations. Other quality properties, like product dimensions being within

tolerances, will not be included in the study.

Only a selection of product variants and defect types found at AR Packaging will be included in the

study. This is both due to the number of different variants exceeding what is feasible to examine given

the resources of the thesis and some defect types occurring infrequently, making the generation of

training data hard.

 6

2 Frame of Reference

2.1 Quality Management

Quality management systems are the means by which an organization seeks to ensure any products

and services they provide conform to set requirements (European Committee for Standardization,

2015a). Within manufacturing organizations there is a range of properties that can be considered when

evaluating the quality of a product, such as adherence to tolerances or surface quality (Harik & Wuest,

2020). Oakland (2014) notes the danger of delivering unreliable, poor-quality products or services, as

it damages customer trust, generates a poor reputation and lowers the organizations competitiveness.

Furthermore, there may be other implications of poor quality. Complying with regulations, such as

food safety guidelines or ensuring brake functionality in vehicles, is required not only to protect the

end user but also to prevent costly recalls, bad press coverage and legal consequences like fines.

Several different approaches to supporting the goals of achieving quality have emerged, such as Total

Quality Management, Six Sigma and Lean production. These approaches often overlap or can be used

in conjunction with each other but share the common goal of satisfying customer expectations with

regard to quality, reliability, price and delivery. These considerations are not a strictly internal matter,

as suppliers may have significant impact on the ability to meet them and customer requirements may

shift over time (Oakland, 2014).

Harik & Wuest (2020) distinguish between process quality and product quality, noting that the former

affects the latter. As each stage in the manufacturing process impacts the quality of the final product,

a holistic understanding and awareness of the process is important for quality management. Another

distinction present within quality management is between quality control and quality assurance.

According to the ISO 9000 standard (European Committee for Standardization, 2015a) quality

assurance seeks to increase confidence in the achievement of quality requirements while quality

control is directly concerned with fulfilling said requirements. This difference is echoed by Poornima

(2017) and Anand & Priya (2019), who describe quality control as being product-oriented and focusing

on identifying defects whereas quality assurance is process-oriented and seeks the prevention of

product defects.

 7

2.1.1 Quality Inspections

One of the main tools of quality control is visual quality inspections, used to verify the quality of a

part or product (Harik & Wuest, 2020). The inspections can be done at any stage of production, either

on incoming materials, products or components within the manufacturing process or finished products.

Inspected subjects which do not meet set quality requirements are rejected while those that conform

progress to the next stage of production or are delivered to the customer (Anand & Priya, 2020). The

traditional form of inspection is done by human operators, inspecting either all or a sampling of the

finished products at the end of the production process (Harik & Wuest, 2020). However, in addition to

finished goods inspection, it is common practice to inspect parts and products during their

manufacturing, called in-process or in situ inspection (Goetsch & Davis, 2013). Visual inspection

methods are typically limited to detecting surface defects, such as scratches and deformations, while

internal quality issues generally require other techniques to detect (Harik & Wuest, 2020).

Manual inspections do suffer from a number of downsides, such as operators getting bored (Goetsch

& Davis, 2013), experiencing fatigue, being unable to keep up with production rates or varying in their

judgement (Anand & Priya, 2020). These factors make inspections less reliable, even when 100% of

all products are inspected, risking either defective products being approved or non-defective products

being discarded. In addition, the process of manual inspection is expensive, time-consuming and is in

some cases either infeasible or impossible to perform (Harik & Wuest, 2020).

Automatic inspection systems utilizing machine vision technology is an alternative to using human

operators. According to Anand & Priya (2019), there are some key benefits of machine vision

inspection compared to manual inspections. Firstly, machine vision systems can achieve higher

accuracy and precision compared to humans. Speed is another factor, as inspections can be carried out

at a faster rate than conventional quality assessments. The measurements are also repeatable and can

be done continuously with the same degree of accuracy, as the system does not experience tiredness

or boredom. Machine vision systems can thus be more feasibly tasked with inspecting 100% of all

products and are more cost effective in their operation. Anand & Priya (2019) further point out that

machine vision performs noncontact inspections, reducing the risk of the inspection damaging the

product, and enables inspections to be performed in hazardous environments where human operators

cannot be present.

While there exists a variety of different approaches and techniques to implement machine vision

algorithms, increasing interest has been garnered for applications using artificial intelligence (AI) and

 8

machine learning (ML). Combined with industrial-grade equipment, neural networks in particular have

shown the ability to successfully perform high-speed inspections tasks (Harik & Wuest, 2020).

2.2 Deep Learning

Deep learning is a subset of the greater study of AI and ML. Artificial Neural Networks (ANNs), which

are simplified mathematical models of how neurons in a brain interact (Khishe & Parvizi, 2020), are

central to any deep learning application. ANNs are constructed in layer of neurons, as shown in Figure

2, with each neuron being connected to all the neurons in both the preceding and succeeding layers.

Each connection has a weight, usually a number between 0 and 1, which is multiplied with the value

passed on from the previous neuron. Each neuron adds all the incoming values and uses the sum as

input for an activation function, mimicking the process of how real neurons process information.

Values get propagated through the network, from the input layer to the output layer, and generate a

result in the final node or nodes (Di et al., 2018).

Figure 2: Illustration showing the structure of a simple neural network.

The idea of constructing ANNs are far from a new phenomenon, with the first mathematical model

being suggested in 1943. Over the years interest and funding for the field fluctuated, with the most

dire periods being dubbed “AI winters”. Despite these setbacks the research progressed, with deep

neural networks emerging during the 1980s. These new ANNs utilized more layers in their

architecture, hence the description as “deep”, enabling more complex task to be solved (Di et al., 2018).

 9

A recent surge of interest in deep learning started a decade ago, with the breakthrough of AlexNet, a

CNN. AlexNet was entered into the 2012 ImageNet Large Scale Visual Recognition Challenge, a

contest where different image recognition algorithms are tasked with classifying images belonging to

1000 different classes. No other entry managed to come close to the accuracy of AlexNet, which

achieved a top five error rate of just 15,3% compared to the second-place finishers 26,2% (Di et al.,

2018). The manner in which AlexNet outperformed all contemporary visual recognition approaches

started a rush to iterate and improve upon the architecture, spawning a host of new CNN architectures

in the following years which managed to achieve error rates below that of a human (Alom et al., 2018).

2.2.1 Neural Network Training

As ANNs are not inherently able to solve tasks, the networks need to be trained to “learn” the features

of a problem. This is accomplished by tuning the weights within the network to generate outputs which

correctly, or close to correctly, correspond to the inputs (Rumelhart et al., 1986). One approach to

training networks which has gained popularity within deep learning is backpropagation. It is a

supervised learning technique relying on labelled data (Alom et al., 2018) and was used by Rumelhart

et al. (1986) together with the deep neural networks being developed in the 1980s to demonstrate how

data features could be created and represented. LeCun et al. (1998) further show the applicability of

backpropagation in deep neural networks for practical purposes, such as recognizing handwritten

letters and digits, and highlight CNNs as a particularly effective technique for visual recognition.

When a neural network classifies input data, this data is propagated forward in the network until it

reaches the last layer and an output can be generated. This is known as forward propagation

(Goodfellow et al., 2016). However, unless the network is completely accurate, some error between

the actual classes and predicted classes will occur. By using a set of known input-output pairs, the

performance and total error of the network can be known. This is where backpropagation is used to

propagate the error backwards in the network. The error for each individual weight is calculated using

the partial derivative of the error function, allowing each weight to be tuned to minimize the total error

of the network (Rumelhart et al., 1986). This process repeats to iteratively reduce the total error until

a stop condition is met, such as a threshold of accuracy or number of iterations.

Contemporary methods for training neural networks usually divide data into two datasets, one used for

training and the other for validation. An issue that plagues deep learning networks is overfitting to the

training data, thus seeming accurate while training but failing to generalize to real world applications.

To mitigate this issue, the error rate between the training and validation datasets can be compared and

 10

evaluated for divergence, as the validation data is not used in backpropagation and can act as a stand-

in for real world data. If the network achieves progressively better results for the training set while the

accuracy for the validation set changes at a different rate, see Figure 3, it is reasonable to assume

overfitting is occurring as the network is less attuned to the general features of the population compared

to the specific features of the training sample (Goodfellow et al., 2016).

Figure 3: Example of divergence in the error rate between training and validation data.

Despite showing promise at the time, and being viewed as state-of-the-art techniques to this day, some

factors held back CNNs and backpropagation from widespread use until recently. Goodfellow et al.

(2016) note that the availability of more data and advances in both hardware and software

infrastructure contributed to massive improvements in the performance of neural networks, as the

networks could better generalize with more data and larger networks with more layers could be feasibly

trained.

2.2.1.1 Dropout

Dropout is a method to further mitigate overfitting when training neural networks, described

extensively in a paper by Srivastava et al. (2014). It works by “thinning” the network, temporarily

disabling random neurons during training from receiving or passing on values. This method is highly

effective as it prevents the training algorithm from relying on certain sections of the network, and

instead generalizes the learned features to more neurons. Like ANNs themselves, the function of

dropout has a parallel in nature. Specifically, genes which can work well with a random assortment of

 11

other genes create more robust systems, rather than relying on individual fitness or a large set of

partners. While Srivastava et al. (2014) do find increased performance for multiple applications when

using dropout, they also conclude that using the technique requires training to be performed for 2-3

times longer than conventional training methods without dropout.

2.2.1.2 Labelling

Labelling is the process of creating labels for unlabeled data. Within image classification tasks, labels

are necessary not only as a precondition for training using backpropagation, but also to determine the

output classes (Alom et al., 2018; Goodfellow et al., 2016). The process of manually labelling large

image datasets can however be immensely labor-intensive, time-consuming and costly as well as

requiring experts to perform the labelling (Alencastre-Miranda et al., 2021; Nasiri et al., 2020; Zheng

et al., 2021). Sources of already labelled data and methods which decrease the need for labelled data,

such as transfer learning, are therefore highly desired in classification tasks.

2.2.1.3 Data Augmentation

Another approach used to reduce overfitting for image datasets is data augmentation. The existing

dataset is extended by, for example, flipping images horizontally or vertically, dividing images in

patches, modifying color properties in the images or rotating images. These transformations also have

the benefit of maintaining the label of the original image, lessening the burden of labelling. Thus, a

single image can yield multiple other images that preserve the features of the object while at the same

time increasing the ability of the network to handle variation in how objects are presented (Krizhevsky

et al., 2012).

2.2.1.4 Transfer Learning

The weights in a neural network are commonly randomly initialized before training, but an alternative

is to use transfer learning. This methods uses weights from a previously trained network to “transfer”

knowledge of features instead of training from a randomized set of parameters (Alom et al., 2018).

Transfer learning can be conceptualized as “fine-tuning” the weights of a network to a new task (Di et

al., 2018; Shin et al., 2016). Pre-trained neural network models are preferred when there is a lack of

training data, as they require less data to achieve good performance. Transfer learning is also less

computationally expensive compared to training new networks, aids the generalizability of the network

and attains accuracy quicker (Alom et al., 2018).

 12

2.3 Modular Neural Networks

Modularity is an important concept within many different fields, but it is understood slightly differently

depending on how it is applied. For example, in the context of Industry 4.0, Saxena & Vijaivargia

(2020) define modularity with regard to modular systems, emphasizing the ability to adapt to emerging

circumstances. Modularizing a production system essentially allows more flexibility and rapid

reconfigurations, with each module being able to collaborate in different ways. A more general

understanding is offered by Kamrani & Salhieh (2002) in discussing modular product design. They

state the necessity of modular product being able to be coupled to form a complex whole. Each module

can perform some function, but it is the connection between them that truly enables the full use of

these functions. One example the authors give is a computer, which can freely exchange or add a range

of different components depending on which functions are desired.

However, Kamrani & Salhieh (2002) further make clear that a modular design is not a web of complex

interactions. Rather, interactions between modules should be kept to a practical minimum, while

module design and production should be independent from each other. To achieve this the full task

which the modular design should attempt to solve should be thoroughly decomposed to properly

understand which sub-functions are required and how they can be independently achieved by a module.

This definition lies closer to the ideas underpinning the development of MNNs.

MNNs are built on the concept of modularity, with each module containing a neural network. In

discussions of MNNs, conventional neural networks utilizing a single, interconnected structure are

often called monolithic neural networks to distinguish them from the modular approach (Amer &

Maul, 2019; Castillo-Bolado et al., 2021). Proponents of MNNs claim several advantages over

monolithic techniques, such as the ability to break down complexity into smaller pieces (Amer & Maul,

2019; Hu, 2020), exchange or reuse modules (Castillo-Bolado et al., 2021), be scalable (Goel et al.,

2021; Valdez et al., 2019), reduce the amount of parameters (Goel et al., 2021; Intisar & Zhao, 2019)

and use less computational power (Castillo-Bolado et al., 2021; Goel et al., 2021).

While monolithic approaches are still dominant in the deep learning field, modularization has shown

promise in problems with large scale and complexity (Amer & Maul, 2019), including recent studies

within speech recognition (Ansari & Seyyedsalehi, 2017), image classification (Goel et al., 2021) and

pattern recognition (Valdez et al., 2019).

 13

However, development of MNNs necessitate decomposition of the problem space into sub-tasks, and

a process for generating a modular structure dealing with those sub-tasks (Castillo-Bolado et al., 2021;

Goel et al., 2021; Meng et al., 2020). While modularization techniques exist, they lack extensive

research which have made them more difficult to employ than more established monolithic approaches

(Amer & Maul, 2019).

Just as there is variety within monolithic neural networks approaches, modularization processes for

MNNs can differ greatly. In a literature review by Amer & Maul (2019) on modularization techniques

four classes of these techniques are described, those being Domain, Topology, Formation and

Integration. These can be understood as methods of manipulating the properties of the MNN depending

on the task the network is being deployed to solve.

2.3.1 Domain

Domain modularization deals with how input data used by the MNN is partitioned. One justification

for modularizing the data is that modules can act on sub-domains of the data and not have to learn the

features of the entire dataset. How data is partitioned depends heavily on the application of the MNN

and can be based on any number of data features. This step is directly related to problem

decomposition, and good domain modularization can result in vastly lower problem complexity.

However, modularizing the data is not mandatory for MNN applications (Amer & Maul, 2019).

Domain modularization can be performed in a number of ways, but generally fall into one of two

categories, those being Manual or Learned. Learned domain modularization relies on learning

algorithms to partition the data into appropriate sub-domains (Amer & Maul, 2019). One example of

this approach can be found in a paper by Goel et al. (2021), where a MNN is developed for image

classification. Their approach relies on a visual similarity metric to group object classes with other

visually similar objects. To demonstrate this, they note how vehicles like trucks and cars would be

grouped separately from animals like cats and dogs, at which point the module handling animals would

not need to train on the features of a vehicle and vice versa. The groupings can be generated

dynamically, allowing the number of modules to fit the needs to the data.

Manual domain modularization on the other hand requires prior knowledge of the data and can be hard

to perform on large datasets or datasets with unclear boundaries. It does however allow very fine

control over the modularization and lacks the computational expense of an algorithmic approach

(Amer & Maul, 2019). In addition, as it requires knowledge of the problem space, known best practices

can emerge to further ease manual domain modularization.

 14

2.3.2 Topology

Topological modularity describes how the units within a MNN interact with each other and the number

of modules, thus generating the network structure. While a modular topology is a precondition for an

ANN to be considered a MNN, it will only achieve true modularity if the functionality of the network

is distributed across the topological modules as well. Attaining functional modularity enables more

opportunities for debugging the network as predictive functions are concentrated to parts of the MNN,

in contrast to monolithic networks which distribute their representational abilities across the entire

network resulting in a logical black box (Amer & Maul, 2019).

Several modular topologies exist, each with their own advantages and disadvantages. One of these is

the repeated block class of topologies. Repeated block MNNs are, as the name implies, a repetition of

building blocks in a specified configuration. These blocks should share some common characteristics

with each other, although they do not need to be exact copies. Repeated block topologies are usually

easy to describe analytically and can be extended using simple rules. These are not traits found in all

modular topologies as some, like the Highly-clustered non-regular topology, can’t be described as a

repeating pattern due to its non-regularity (Amer & Maul, 2019).

Depending on how a repeated block MNN is constructed, it can be placed into several sub-topologies,

see Figure 4. The multipath topology is constituted by semi-independent sub-networks which only

converge at the network input and output. This structure enables parallelization of the network. Using

a multipath MNN does however add new parameters to the construction of the network, such as the

size and number of modules. To determine proper values for these parameters optimization may be

required during the construction of the network (Amer & Maul, 2019).

Another sub-topology of repeated block MNNs is the sequential approach. The structure is similar to

multipath, but instead of input data passing through the modules in parallel a sequential MNN passes

data through all modules in series. This topology shares origins with deep learning, increasing depth

to enable more complex representations. By dividing the depth into modules, higher and lower features

are learned in different modules and thus concentrating representational knowledge in separate parts

of the network structure (Amer & Maul, 2019). Sequential MNNs are however unable to parallelize

their operation and suffer from some of the same downsides as monolithic networks.

 15

Figure 4: Diagram of different repeated block sub-topologies, inspired by Amer & Maul (2019)

The modular node sub-topology combines the parallel and serial nature of multipath and sequential

MNNs and structures its modules analogously to neurons in a conventional monolithic neural network.

While the repeatable structure makes it easy to scale and studies have shown it can reduce the number

of model parameters while maintaining performance, it also introduces more parameters to be

considered in network construction (Amer & Maul, 2019).

Other classes of topology exist as well, such as the multi-architectural topology. It can share the

structure of repeated block topologies but carries the distinction of being a combination of fully

independent network architectures which are connected through some overriding algorithm. As the

modules within a multi-architectural MNN can differ in their architecture, these networks are usually

tailored to the specific needs of an implementation rather than being repeatable blocks with similar

properties. As such, this topology can be more specialized, but the training of multiple different

architectures may require more time and computational resources than a more homogenous approach

(Amer & Maul, 2019).

2.3.3 Formation

Formation is the process by which the topology of the MNN is constructed. Amer & Maul (2019)

divide these methods into three classes, Manual, Evolutionary and Learned. The manual technique,

just as the manual approach to domain modularization, relies on a human designer to form the network

using previous knowledge, best practices and intuition. While this approach offers the opportunity to

 16

integrate knowledge of the problem into the very structure of the MNN, it can be difficult to perform

when there is low understanding of problem space.

Evolutionary and Learned formation both offer automated alternatives when constructing MNNs.

Evolutionary algorithms are currently considered state of the art in formation of MNNs, as the fitness

functions they deploy have proven to excel at finding suitable parameters, such as number of modules

and how to connect them to each other. Learned formation relies on machine learning algorithms to

dynamically construct the network, choosing how to apply the topology and the associated parameters.

Both of these algorithmic solutions to network formation have the downside of being computationally

expensive and lack the expert knowledge which can be introduced in manual formation (Amer & Maul,

2019).

2.3.4 Integration

Integration is the feature of MNNs seeking to specify how different modules collaborate to generate

network outputs. Amer & Maul (2019) claim this process can be handled cooperatively or

competitively, as the modules either try to collectively contribute to the final output or compete to be

the only module to have its output passed forward. This negotiation of outputs can be handled either

through a logic-based approach, stating rules based on the information known to the network, or

through a learning algorithm, which can combine outputs from different modules to achieve the best

performance. Such learning algorithms are useful for problems characterized by complex interactions

and relationships which are hard to solve through predefined rules.

 17

3 Literature Review

3.1 Quality Inspection using Convolutional Neural Networks

Studies on the application of CNNs in quality inspections tasks have steadily increased over the past

few years. This is clearly visualized in Figure 5, which shows the number of papers on Scopus

containing the keywords “defect detection” or “quality inspection” alongside either “convolutional

neural network” or “CNN”. As with any rapidly expanding research area, there are many different

methods and approaches being employed, as well as their application in different contexts. Despite the

existing differences within the field, it is possible to find common themes among many of the published

papers, providing valuable lessons when applying CNNs in a quality control role.

Figure 5: Number of published papers found on Scopus concerning both quality inspection and CNNs.

Studies often highlight the comparative advantages of a deep learning approach in quality inspection

over not only manual visual inspection, but also other automated methods. In a study by Weimer et al.

(2016) it is noted that manual feature engineering for automated vision systems often struggle with

noisy input and classification of complex surfaces. This idea is echoed in a paper by T. Wang et al.

(2018), where the authors claim that hand-crafted features often require specific conditions to work as

intended. Both studies then go on to highlight CNN models as alternative due to their inherent ability

to automatically extract features in their training process and handle noise in the input data.

 18

A frequent challenge in these studies is the acquisition of sufficient data to train their neural network

models. This is a common issue for the wider deep learning field but is exacerbated in quality

inspection tasks as defects may rarely occur, thus limiting the amount of data which can be feasibly

collected. Several approaches exist in the literature to mitigate this lack of data. For example, in a study

by Ferguson et al. (2018) which attempts to classify defects in casting products using X-ray imaging,

transfer learning is utilized to increase the accuracy of the system. The authors first use two large

public image datasets to attain the general features and aspects of casting defects, and then finetune

the network with a smaller dataset. This leveraging of pretrained networks showed an accuracy of

95,7% compared to only 65,1% in a network which used randomly initialized weights before being

trained only on the small casting dataset.

Another approach to solving the issue of imbalanced data is shown in a paper by Yun et al. (2020)

seeking to classify defects in metal surfaces. The authors identify six different defect types in the metal

surface, but the data is highly imbalanced, with the most common type occurring five times more often

than the rarest one. To address both the imbalance and the amount of training data available they

develop a conditional convolutional variational autoencoder, or CCVAE for short, which can generate

new images based on the ones already collected. By training a CNN with both the original data and

the dataset of generated images the network achieves higher accuracy and faster convergence than a

network model using only the real-world data. Such data augmentation techniques to extend smaller

datasets can be invaluable for cases with heavily imbalanced or small datasets.

There are also a vast array of studies showing CNNs being successfully applied in quality inspection

tasks for a variety of products and materials, using different kinds of input data, across several sectors.

Agricultural research have adopted CNNs in several roles, among them being defect detection or

quality inspection of fruits (Naranjo-Torres et al., 2020), eggs (Nasiri et al., 2020), potatoes (Casaño

et al., 2020) and coffee (Pradana-López et al., 2021). Studies within construction and property

maintenance have also applied CNNs in inspection tasks, such as crack detection in concrete (Chordia

et al., 2021) and ceramic tiles (Stephen et al., 2022). The manufacturing sector is however seeing a

comparably massive number of similar quality inspection studies within various industrial processes

and fields, such as additive manufacturing (B. Zhang et al., 2019), welding (Z. Zhang et al., 2019),

metal production (Tao et al., 2018), wood-based manufacturing (Chen et al., 2022), electronics (Shu

et al., 2021) and battery production (Badmos et al., 2020).

 19

3.2 Modular Neural Network Studies

The research on MNNs is significantly thinner than the comparably popular application of CNNs, but

the literature still covers a variety of different approaches of how to either develop or use a MNN.

Chowdhury et al. (2021) demonstrate how a modular structure for classification tasks utilizing router

and expert networks can achieve fast computation and small size while still being scalable and perform

parallel computation. As their suggestion uses routing networks to activate only parts of the total

structure, for example three expert modules which then integrate their output collaboratively, it avoids

performing a lot of redundant computation in the parts of the network which lack knowledge of the

relevant data features.

Goel et al. (2021) developed a similar system, but with a stronger focus on low energy consumption

and ability to run on embedded devices. Their system uses a tree structure with branches across the

problem space, grouping object classes based on a visual similarity metric. This creates super-groups

of similar objects, such as animals or vehicles, which can then be further broken down into smaller

groups until a ‘leaf’ module is found which can classify the object. The system shows that the

avoidance of redundant operations can significantly reduce computation, memory requirements,

response time and energy consumption compared to monolithic approaches.

Dedicated quality control applications for MNNs are somewhat rare in the contemporary literature.

While many of the developed architectures or formation methods could be leveraged in a quality

control task, the studies are not inherently about quality inspection or similar tasks. However, examples

do exist. A paper by Kauer-Bonin et al. (2022) describes the development of a MNN quality inspection

system within the healthcare sector. Retinal optical coherence tomography scans are used to diagnose

various disorders or diseases, often neurological in nature, but high-quality scans are essential for

proper analysis. While quality criteria exist for what is deemed acceptable, these evaluations are

performed manually by experts in the field, resulting in the same shortcomings of manual inspections

often noted in similar studies. To automate this process, the authors construct a modular structure

containing three neural networks, each with separate functionality applied sequentially to the input

data, such as confirming the scan is properly centered and contains complete information.

While the authors do not conceptualize their network as such, according to the definitions provided by

Amer & Maul (2019), it follows a sequential multi-architectural topology using manual formation,

collaborative integration and no domain modularization. The MNN developed by Kauer-Bonin et al.

(2022) manages to achieve an accuracy of 97% as well as classification speeds of 0.301s in their largest

 20

model, making the system suitable for real-time use. Additionally, the network module checking

completeness and signal strength for the scans manages to drastically reduce the computing time in

both the CPU and GPU while using a fraction of parameters compared to monolithic CNNs found in

other studies. The high speed, low computational cost and small size provide MNNs with a distinct

advantage over monolithic alternatives, even if they add some complexity to the network development

process.

Another application of MNNs which lies closer to traditional manufacturing defects is shown in a

study by Rathinavel & Kannaianl (2018), where they propose a defect detection system for fabric

which incorporates a MNN classifier. Problem decomposition is accomplished by partitioning the data

using clustering, and the MNN processes the input in all modules. Then a gating network chooses

which module produces an output based on what data it was trained on. The MNN achieves an accuracy

of 96.7%, which the authors conclude demonstrates the strength of the technique.

 21

4 Network Design

4.1 General Network Design

The monolithic and modular neural network approaches share a general workflow structure within this

study, as can be seen in Figure 6. Upon receiving an input image, a pre-processing procedure is

performed to enable more accurate classification as well as ensuring the image resolution corresponds

to the expected size of input images in the network. See 6 Image Processing for a more detailed

description of the implemented image processing algorithm. Once processed, the image is transferred

to a classification network which attempts to determine if the product is defective or not.

Figure 6: Workflow of the proposed classification networks.

The framework allows for easy exchange of the classification network to test how different approaches

perform in the same conditions. Monolithic approaches, of which there are many architectures

available for use, do not need any further design to function and can be implemented as soon as they

have been trained. However, the implementation of a modular network requires additional steps,

especially given how the very structure of modular networks can be tailored to specific use cases and

specific sets of data.

4.2 Modular Design

As outlined in the previous section 2.3 Modular Neural Networks, Amer & Maul (2019) propose the

fundamental features of MNNs as Domain, Topology, Formation and Integration. These concepts

heavily informed the construction of the MNN. The initial question of domain modularization is

simple, if not trivial, in many quality inspection applications as the division of defective and non-

defective products often form the central motivation for such implementations. However, there exists

two further levels of possible data modularization which could be relevant depending on the specifics

of a case.

 22

The first one is defect type. As seen in other studies, such as Yun et al. (2020), defects may present in

different ways and therefore could form an interesting basis for data partition. The second level is

product variant. As an inspection system may be expected to encounter different kinds of products,

modularizing data based on which product is present is a further possibility. With a central component

of the case study being the classification of multiple product variants, the variant type alongside the

quality distinction were chosen as the factors for data modularization. Thus, images are first clustered

based on which variant they depict and secondly if they show defective products or not, see Figure 7.

Figure 7: Illustration of how image data is clustered based on product variant and quality.

The possibility of further partitioning into defect types was considered, but ultimately the idea was

discarded. In addition to some defect types occurring rarely, which causes lacking training data, there

was difficulty in categorizing images with multiple types of defect present. As such, all defective data

is pooled to impart a general idea of defective features, with the downside of the network being unable

to distinguish different types from each other.

The breakdown of input data also informs the choice of network topology. Using the MNNs described

by Goel et al. (2021) and Chowdhury et al. (2021) as inspiration, the modular structure is composed

of a routing module and a set of expert modules. Each expert module is trained on the data of a product

 23

variant, foregoing the complexity of the entire dataset. The routing module serves to identify which

variant is present in an image and can then active only the relevant expert module, see Figure 8. To

facilitate easy exchange of modules, each contains a fully independent CNN architecture. As such the

topology fits the designation of multi-architectural modular node as outlined by Amer & Maul (2019).

Figure 8: Visualization of the designed modular structure and a monolithic network.

As the domain is well known and the number of modules is easy to expand, no dynamic generation of

the MNN is required. Instead, the formation of all connections and modules is performed manually to

fit the product variants present in the dataset. As an additional consequence of the division of

knowledge in the modules, the integration will be competitive by necessity, with the routing network

determining which modules gets to generate an output.

This design allows not only modules to be trained separately, but further eases the addition of new

modules if the product family changes. If new variants are introduced, additional modules can be

trained, and the routing network retrained to recognize the new product. All other modules remain

preserved, requiring no further validation of their function. In contrast, retraining a monolithic network

may compromise the detection accuracy of previous variants as the weights of the network are shared.

 24

4.3 Initial Tests

To verify the functionality of the two approaches, a public dataset of fruits and vegetables, made

available by Mureșan & Oltean (2018), was used. The images in the dataset are preprocessed to exclude

any background, thus isolating only the pictured object, see Figure 9. Fruits and vegetables were

selected as stand-ins for different product variants and similar varieties of an object, such as two image

sets of apples, were used to mimic either okay or defective products. By using pretrained networks,

either standalone in the monolithic approach or as modules in the MNN, a high degree of accuracy

was attained after only a short training horizon, thus verifying the functionality of both networks.

Figure 9: Example of images used to test both network approaches (Mureșan & Oltean, 2018).

 25

5 Data Handling

5.1 On-site Data Collection & Labelling

To collect images of products, an area of AR Packaging’s production facility was outfitted with a

camera stand and a Logitech Brio 4K webcam capable of capturing high resolution images. To keep a

consistent background in the images, a cardboard platform was assembled to place products onto. The

camera was positioned with a top-down perspective of the cardboard sheet and products placed upon

it. As the data collection occurred within the production environment, the camera was exposed to the

same amount of natural light that would be expected in a real implementation. To generate images,

products would be manually placed on the platform and a picture would be manually taken using the

webcam. The product would then be rotated approximately 45º and have another picture taken, with

this pattern repeating until the product had made a full rotation. Each product would thus generate

eight images showing it from different angles and slightly different positions on the platform, see

Figure 10, integrating a level of natural variation in how products would be presented.

Figure 10: A set of eight images collected of the same product in different rotations.

Early in the study, automatic collection of images was considered as an alternative to this manual

method. Using a camera mounted in a machine and a connected sensor which could indicate the

presence of a product, product images could be captured automatically. Such an approach could

drastically increase the number of images which would be feasible to collect as well as more closely

resembling the operation environment of a real-world inspection system.

However, automatic image collection would introduce significant problems when labelling products

as it would require each image to be inspected manually to identify defects. Not only is this a highly

time-consuming process, but it also introduces the risk of the data handler mislabeling products due to

inexperience, misunderstanding of quality requirements, fatigue or variability in judgement. These

 26

issues were exacerbated by the high likelihood of massive imbalance in the data occurring, as non-

defective products represent a vast majority of all production.

In contrast, the manual approach to image collection which was used could exploit already existing

quality inspection procedures to pre-label image samples. By gathering batches of products which have

been inspected by production personnel, the quality status could be known and thus preserved as labels.

The knowledge of the labels of gathered products also allowed for the number of images of each class

to be roughly balanced. The increased labor intensity of image collection and lower image yield was

thus justified by a significantly easier labelling process and more control over the balance of data.

5.2 Image Dataset & Filtering

At the completion of the main data collection in the production environment, a dataset containing

14577 images covering more than ten product variants had been generated. The images were captured

in a resolution of 3840x2160 and have an average size of 0,69 MB. The data collection focus was on

a subsection of variants, initially a set of eight (V1-V8) as seen in Figure 11.

V1 V2 V3 V4

V5 V6 V7 V8

Figure 11: All eight variants which were initially included in the study.

Two variants, V3 and V5, were later excluded from the study, reducing the set to only six types. This

is due to circumstances such as production planning or variant volume limiting the number of images

which could feasibly be collected in a timely manner. Other issues were variant specific, such as the

high profile of V5 obscuring most of the product surface when seen from a top-down perspective, see

Figure 12. This makes single camera inspection unreliable as other angles would be necessary to

 27

properly evaluate the quality. Another contributing factor to reducing the number of variants in the

study was the increased time and resources it would have taken to collect further images and train

networks on additional image datasets.

Figure 12: The high profile of V5 obscures the sides of the product.

The dataset also had to undergo filtering to verify the quality of images before being used in network

training. A series of properties, or lack thereof, were used as grounds for excluding an image from the

filtered dataset, such as hands showing in the picture, bad focus, the product being substantially outside

of frame or defective images where the defect was not visible. The largest set of images filtered

occurred for V7, where it was found post facto that a large chunk of OK samples showed a similar, but

different, product variant. As such, almost 500 images had to be removed from the dataset. No filtering

was done for V3 and V5 as they were excluded from the study at this point. The distribution of images

across variant and class, as well as the results of the filtering process, can be seen in Table 1.

Table 1: Breakdown of the number of images for each product variant before and after filtering.

 Before filtering After filtering

Variant OK NOK Total OK NOK Total

V1 304 911 1215 304 882 1186

V2 1173 1039 2212 1173 1003 2176

V3 n/a n/a 526 n/a n/a n/a

V4 634 601 1235 634 592 1226

V5 65 324 389 n/a n/a n/a

V6 1624 1775 3399 1622 1764 3386

V7 1355 1484 2839 804 1387 2191

V8 579 1205 1784 575 993 1568

Sum 5734 7339 13 599 5112 6621 11 733

 28

While a roughly equal image balance was achieved for V2, V4 and V6, issues arose in the balance of

V1, V7 and V8. The above-mentioned exclusion of a significant number of V7 images is to blame for

the bad balance in that specific case. Regarding the lack of OK samples for V1 and V8, insufficient

communication was the culprit, as the planned production batches of these variants were finished

before enough images were collected. As such, additional products were unavailable during the allotted

time for data collection.

However, unlike typical issues of imbalance in quality inspection applications, defective samples are

overrepresented in these three variants. This is much more desirable than OK samples making up a

disproportionate part of the dataset, as these tend to be more uniform in their presentation and thus

represent a set of features which are easier to learn. Defective products on the other hand tend to show

a much wider range of possible variation and type, making those features more challenging to

represent. As such, even with almost a 3:1 imbalance in the worst case, these variants were still

included in the study.

5.3 Defect Types

Within the collected data a multitude of different defect types are present. Even defects which could

be classified as the same type differ in their presentation within and between product variants. As the

data partition did not concern identifying different kinds of defects, a full cataloging of the difference

was not attempted, but some discussion of the subject is essential to understand both the complexity

and limitations of the dataset.

One important point to understand is that the dataset represents a snapshot of selected defects over a

limited time period. As such, even if some defect type could occur in more variants, there may only be

data for the defect occurring in one variant. This is the case for misaligned print, which only occurred

in V7. A similar case is the presence of so-called “washlines” only in images of V1 and V8. Over a

long enough horizon of data collection there would thus be a much better representation of defect types

across the variants included in the study.

This issue is exacerbated by the fact the defect often come in batches, with several products suffering

from the same issue but in different degrees, see Figure 13. The occurrence of a series of defects during

the data collection period may thus provide a good representation of a defect type for one variant but

be totally lacking in any of the other. A selection of defect types is discussed in the rest of the section.

 29

Figure 13: Two products produced close in time may suffer the same defect in varying degrees.

Deformation: In all likelihood the most commonly occurring defect, being well represented in the

data of each product variant. Deformations of a product geometry range from quite extreme to more

subtle damage. A comparison between two deformed products can be seen in Figure 14, where the left

one is severely damaged and the right one only suffering from a dent on one side. However, due to the

visually striking character of most deformation and the mechanical issues which often coincide with

their occurrence, these defects are often very easily identified by inspection personnel.

Figure 14: Two varying degrees of deformation.

Double-pressing: Double-pressing occurs when twice as much material is fed to the pressing machine,

producing a product with two layers. The features of the product geometry are often less pronounced

as there is more resistance when pressing it, see Figure 15. Much more uncommon than simple

deformation, but occurrences are noted in all six product variants.

Figure 15: Comparison of a single-pressed product on the left and a double-pressed product on the right.

 30

Misaligned Print: As the name indicates, this defect takes place when printed material is misaligned

when fed into the pressing machine. The geometry of the product is not necessarily compromised, but

printed features such as barcodes or cooking instruction may be compromised, see Figure 16. Data for

this defect was only collected for V7 but could occur for any variant with a printed surface.

Figure 16: Example of product with misaligned print.

Tearing: Tears are often found in the corners of products or occur when there is significant

deformation but are rarer than deformation itself, see Figure 17. In some variants, like V4, tears can

occur on the side of the product making it hard to show from a top-down perspective.

Figure 17: Example of a product with tearing in the corners.

Surface Damage: Surface damage is here used as a catch-all term for any defect which is visible on

the surface of the product but does not necessarily deform the geometry or occur as the result of

misaligned print or tearing. Appearance varies depending on source of surface damage, see Figure 18.

Figure 18: Different kinds of surface damage showing dirt, tape, “washlines” and paint on the products.

 31

6 Image Processing

6.1 Segmentation

As mentioned in the section 5.2 Image Dataset & Filtering, the images in the dataset have a resolution

of 3840x2160 which is much larger than the typical input size of CNNs. For example, Krizhevsky et

al. (2012) rescaled images used in AlexNet to 224x224. Resizing images before classification thus

becomes a required pre-processing step, but simply reducing the size of image itself risks removing

significant information. This is especially important in networks performing quality inspection, as

subtle defect may only occupy a small patch of the image which could become impossible to

differentiate with the loss of resolution.

To address this loss of detail, a more advanced image pre-processing procedure was developed to

minimize the resolution of the input image while keeping the entire product in frame before the image

is resized to fit the classification network. Images are first subjected to segmentation to identify the

location of the product in an image, see Figure 19. This is accomplished by using k-means clustering

to automatically differentiate the product from the cardboard background. Any gaps within the cluster

are also filled to create a solid shape which can then be represented in a binary mask, where the location

of the product is marked by 1s, and the background is marked by 0s. The code used was generated

through the Image Segmenter App in Matlab, a part of the Image Processing Toolbox.

Figure 19: Segmentation algorithm workflow.

If the algorithm misidentifies the background as the product, the function which fills any gaps will

cause the entire image to be covered by the binary mask leaving no information about the location of

the product. To prevent this from happening, the procedure is repeated if the binary mask covers the

entire image but inverts the mask before the gaps are filled. Upon the completion of the procedure a

binary mask corresponding to the product within the image is attained, see Figure 20.

 32

Figure 20: Input image and the binary mask generated from the image segmentation.

6.2 Orientation

By localising the highest, lowest, right-most and left-most points of the binary mask created by the

segmentation algorithm, the original image can be cropped to remove as much background from the

image as possible. However, in some cases this approach would still include large sections of the

background as seen Figure 21. To further preserve the features of the product, the second major image

pre-processing algorithm seeks to maximize the portion of the cropped image containing the binary

mask by orienting the product horizontally or vertically.

Figure 21: Binary mask allows areas around the product to be cropped.

To accomplish this, the binary mask is iteratively rotated while calculating the resolution between the

edge points, see Figure 22 and Figure 23. If the first rotation is found to increase the resolution, rotation

is attempted in the opposite direction. As long as these points define the resolution the entire product

will be within the new image, so by iterating until the smallest resolution is found the portion of the

image containing the product will be maximized. Intuitively for the rectangular product variants

included in the study, the minimum resolution is obtained when they are either horizontally or

vertically aligned.

 33

Figure 22: Orientation algorithm workflow

Figure 23: Binary mask at 10, 26 and 39 degrees of rotation from initial position.

Once further iterations are unable to minimize the resolution, the final area around the product is

calculated. The rotation is applied to the original image, as the binary mask was simply used to

represent location. Before cropping the image, a 10-pixel border is added in every direction to ensure

the edges of the product are properly visible. If the new image includes area which were not present in

the original image, the new space will be black. Given that the process was completed successfully,

resulting images will be aligned either vertically or horizontally. In contrast to the segmentation part

of the image processing procedure, this code was manually written specifically for this task and was

not generated using any app or toolbox.

By using this procedure, the resolution of the example shown in this chapter was reduced by almost

67% while not losing any product details, see Figure 24. Similar results are true for all other

successfully processed images.

Figure 24: Comparison of the original image and the processed image.

 34

6.3 Image Processing Performance

While the image processing algorithm manages to isolate products within an image for the most part,

there are cases where it fails to achieve this task. This can result in processed images failing to align

the product or failing to crop one side of the image, but more severe issues where the processing

completely fails were also recorded. However, as the algorithm is currently constituted it is impossible

for the product to be excluded from an image, making it possible to classify images even if they fail to

be properly aligned and cropped.

Figure 25: Examples of images which either partially or entirely failed to be processed.

To gain an overview of how well the processing worked, the occurrence of major processing failures

for each variant was investigated. This evaluation was conducted manually and relied on subjective

judgements of what was deemed a failure. As a reference, partially successful processing like the two

left-most images in Figure 25 were not counted as failures, while the right-most image would have

been. Given these rough definitions, the processing success rate was estimated as seen in Figure 26.

Generally, individual images which failed to process may have been overexposed to light which then

compromised the segmentation of the image and thus subsequent steps.

Figure 26: Rate of successful processing of images per product variant.

99,59% 99,77%

0,81%

99,94%
95,24%

99,33%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

V1 V2 V4 V6 V7 V8

Processing Success Rate

 35

However, it is also obvious that a large part of the failures of the algorithm are unrelated to temporary

environmental noise and are rather variant specific. Notable here is V7 with a success rate notably

below most other variants, and V2 for which the algorithm totally fails to consistently process images.

The working theory for this fact is that the internal print of V7 and the entire surface of V2 resemble

the cardboard background to such an extent that clustering routinely fails, though at much higher rates

for V2.

Some attempts were made to correct this fact, but due to time constraints the current performance was

deemed good enough to produce training data. As mentioned before, even in the most severe failures

of image processing the image clearly portrays the products, though at a lower resolution than properly

processed images. Since both the monolithic and modular networks approaches will be trained and

tested on the same data, any lingering issues caused by these shortcomings will not compromise the

overall comparison between the techniques.

As for the speed of the algorithm, it achieves an average processing time of 2,17 seconds when tested

on 792 samples from each of the six studied variants. It should be noted that the time can vary

depending on the rotation of the product or if an inverted segmentation must be performed. The spread

of the processing time is visualized in Figure 27 below.

Figure 27: Histogram showing the image processing time for 792 samples.

0

20

40

60

80

100

120

140

Fr
e

q
u

e
n

cy

Bin

Image Processing Time

 36

7 Network Training

7.1 Data Preparation

Properly training the networks in the study is essential to be able to perform a useful and valid

comparison of the two competing approaches. As can be seen in Figure 28, the process of training a

network can be divided into several stages. The first two strictly deal with acquiring and preparing

input data for the training. Using the image dataset generated in chapter 5 Data Handling, images can

be extracted based on the needs of a specific network. Before being used in training however, these

were all run through the image processing algorithm discussed in chapter 6 Image Processing. While

it is possible to integrate the algorithm into the training process to avoid having to store all the

processed images, the time lost for processing was deemed a far greater cost than additional storage.

Figure 28: Stages in the training process, adapted for the project from Zheng et al. (2021).

The processed images are then subjected to data augmentation before being used to train the networks.

To ensure a fair comparison between networks the parameters for data augmentation were kept static

in every training sequence. The augmented options which were found to yield the best results were

randomly reflecting an image vertically and/or horizontally, randomly rescaling an image by 10% and

randomly translating an image by a maximum of 30 pixels in any direction. These added data features

not only help the networks deal with variation in the input data, but also prevents overfitting. Training

 37

was performed within the framework provided by the Deep Learning Toolbox in Matlab, establishing

easy control over training options and augmentation settings. Subsequent pretrained CNNs used in the

study were also acquired as add-ons to the Deep Learning Toolbox.

7.2 Modular Network Training

As outlined in the section 4.2 Modular Design, the MNN is made up of two constituent parts, those

being a routing module and a series of expert modules. The CNN architecture ShuffleNet, first

introduced by X. Zhang et al. (2018), was selected as a good candidate for the modular structure

envisioned. It uses an input resolution of 224x224 and was designed to be computationally efficient,

managing to be roughly 13 times faster than AlexNet while still achieve similar classification accuracy.

The small size of the network also lends itself well to a modular structure, with a single instance of the

network taking no more than a few MB of storage compared to the hundreds necessary to store larges

architectures. Following the example of other studies, such as Ferguson et al. (2018), transfer learning

of a version of ShuffleNet pretrained on the ImageNet classification dataset was used instead of

randomly initializing the weights.

Figure 29: Division of image data for training and validation.

The data for each variant was divided into a training set, containing 70% of OK and NOK samples,

and a validation set, containing the last 30% of each class, see Figure 29. After several tests, it was

found that 50 epochs, that is iterating the training process over the entire training set 50 times, was

roughly the length of training required for the expert modules to achieve acceptable accuracy while

avoiding the risk of overfitting. Training was conducted in batches of 10, and the convergence of the

validation set checked every epoch.

 38

In the first iteration of the MNN, an expert module was trained for V1, V2, V4, V6 and V7, resulting

in a set of five networks learning the feature of just one variant each. The last variant, V8, was left

unused as it would be introduced in the retraining stage to simulate an addition to the product family.

A custom dataset was built for the routing module, being trained on each of the five selected variants

instead of a division of defective and non-defective. This dataset thus contained a mixture of OK and

NOK samples within each class, but a similar division of 70% training and 30% validation was used.

Since the complexity of differentiating product variants was deemed much easier than detecting

defects, and due to the much larger dataset the routing network had to work with, a larger batch size

of 32 along with a shorter training horizon of 30 epochs.

7.3 Monolithic Network Training

For the monolithic network ResNet-101 was chosen as the CNN architecture. The ResNet series of

CNNs, presented by He et al. in 2016, have proven to be very popular among quality inspection

applications. For this study, the 101-layer variant was chosen as it represents a much deeper and larger

network than ShuffleNet, containing about 30 times more parameters and taking approximately 50

times more space to store. This contrast between the networks fit the narrative previously discussed

regarding modular and monolithic structures. Another upside of using ResNet-101 is that it shares an

input resolution of 224x224 with ShuffleNet, making it slightly easier to interchange processed data

between the approaches. Like the network modules previously trained, the ResNet-101 model in use

was pretrained on the ImageNet classification dataset allowing for the use of transfer learning.

To ensure a valid comparison of the different approaches, the training parameters used to train the

expert modules were also used by the monolithic network. Likewise, the datasets used to train and

validate the first five expert modules were extracted and combined to be used in the training of the

monolithic network. Thus, the exact same images are used for both approaches. However, since the

output of the network is only concerned with detecting defects, all NOK and OK samples are pooled

to form two classes.

7.4 Retraining Network Approaches

To simulate the introduction of a new product to the production line, both approaches were retrained

with the data for V8. Updating the MNN requires only another expert module to be trained on the new

data and the routing module to be retrained with another variant category. This was accomplished

 39

using the exact same procedure as described previously, except for the routing module transfer learning

using the network previously trained on the first five variants instead of the ShuffleNet model trained

on the ImageNet classification dataset.

The retraining of the monolithic approach proved a bit more troublesome. Using the same method as

previously described, the data used to train the additional module was added to the dataset of the first

five variants, once again ensuring that both approaches had access to the same images. Repeating the

method used for retraining the routing module, the monolithic network previously trained on five

variants was used as the starting point of training the network with the added data.

To shorten the time required to retrain the network, the number of epochs was reduced to 20 while all

other settings remained the same. Achieving unsatisfactory results, especially for V1, another attempt

was made with the full 50 epochs. Strangely this further reduced the accuracy for some variants, with

a massive reduction for V1. Finally, a training using only 10 epochs was attempted. This iteration

seemed to result in the best overall accuracy and avoided the huge drop-off in accuracy for V1. The

difference in accuracy can be seen in Figure 30, where divergence from the 20-epoch retraining results

in the subsequent tests is visualized. The cause for this phenomenon is currently unknown but it

highlights the importance of properly validating retrained networks.

Figure 30: Accuracy divergence from 20-epoch retraining when using 10 or 50 epochs instead.

-20,00%

-10,00%

0,00%

10,00%

20,00%

V1 V2 V4 V6 V7 V8 Total

Accuracy difference

Mono_retrained_10 Mono_retrained_50

 40

8 Results

8.1 Classification Accuracy

To test the classification accuracy of each of the trained networks, all the base validation images were

gathered and classified. Since these images had not undergone any augmentation, the generated results

deviated somewhat from the validation accuracy found in during the training process. The results from

these tests are shown in Table 2 below, with both variant specific performance and the overall

accuracy. Confusion matrices can be seen in Appendix A:.

Table 2: Classification accuracy for each of the trained networks.

MNN MNN (retrained) Mono Mono (retrained)

V1 93,54% 93,54% 98,03% 98,88%

V2 97,55% 97,55% 99,23% 98,62%

V4 98,64% 98,64% 99,46% 98,91%

V6 96,95% 96,95% 98,33% 95,28%

V7 98,78% 98,78% 99,39% 98,63%

V8 n/a 95,11% n/a 98,72%

Overall 97,28% 96,99% 98,85% 97,73%

The best overall performance is found in the two monolithic networks, which clearly outperform the

two MNNs. Notable is the fact that since even the retrained routing network can differentiate the

variants at practically 100% accuracy, the accuracy of the first five modules remains unchanged in the

retrained MNN. This is not true for the monolithic networks however, as the retraining of the network

affected the accuracy of each variant in some way. Laying this unreliability aside, there is no question

that a greater accuracy is attained when pooling the images in the dataset compared to when they are

partitioned in smaller modules. The idea of reducing complexity of a task may be a sound one, as

discussed previously, but there is demonstrably much to gain by utilizing more general features in this

case. This idea was further cemented by training a monolithic network using ShuffleNet on the first

 41

five variants. Even when using only a fifth of the parameters this network managed outperform the

modular approach in overall accuracy, achieving 97,51%.

8.2 Classification Speed

During the tests which recorded the classification accuracy of the networks, the speed of classification

was logged as well. These measurements do not include any image pre-processing, but instead measure

the time it takes for the image to pass through either the modular or monolithic networks. The MNN

activates two modules, first the routing module to detect which variant is present in the image and then

the corresponding expert module to classify the quality. The monolithic network needs only pass the

image through itself and generate an output. As can be seen in Table 3, the monolithic networks are

somewhat faster than the modular approach. This is contrary to the literature on the subject previously

cited in this study but can be the result of inefficiencies in how the two modules are called and

executed. However, both approaches achieve response times which are well below the production rates

expected, making the classification speed suitable for real-time application.

Table 3: Average classification speed for each of the trained networks.

MNN MNN (retrained) Mono Mono (retrained)

Average Speed (s) 0,0273 0,0256 0,0209 0,0210

8.3 Network Size

The overall size of the modular networks is substantially smaller, taking up roughly 20 MB of storage

compared to the over 150 MB of the monolithic networks, see Table 4. These results were expected

given the choice of network architectures but are necessary to note as some applications may have

limited storage capacities making the MNN more suitable. However, as more modules are added, the

MNNs will grow while the monolithic network will stay approximately the same size.

Table 4: Size table for each of the trained networks.

MNN MNN (retrained) Mono Mono (retrained)

MBs 19.839 23.149 155.145 155.147

 42

8.4 Network Training and Retraining Time

The time spent training networks is of course determined by the user in some ways, with training

parameters such as number of epochs and image batch size affecting how quickly the process is

concluded. Consequently, the results visible in Figure 31 should primarily be understood strictly as the

outcome of this specific case study, even more so than the other measurements of network

performance.

As expected, even when using the same training data and parameters, individual modules train much

faster than the monolithic networks. The most computationally expensive module to train in the study

was the routing network, owing to the large size of the dataset it was trained on. It is possible that even

fewer epochs could be used for the routing module and still maintain accuracy, though no test was

conducted to confirm this idea.

Of more interest is that the retraining time for the monolithic network was surprisingly low. As

discussed in 7.4 Retraining Network Approaches, fewer epochs of retraining yielded better results than

a longer training horizon. As the underlying causes of this remain unexplored, on can only state that

this study does not find a modular approach easier or quicker to retrain upon the addition of more

product variants.

Figure 31: Cumulative training times for each network, with segments representing network modules.

0

5000

10000

15000

20000

25000

30000

35000

MNN MNN (retrained) Mono Mono (retrained)

Cumulative Training Time (s)

 43

9 Discussion

9.1 Complexity and Generalizability

The genesis of interest in studying a modular approach of deep learning quality inspection was the

supposition that product families which introduce increased complexity to a classification problem

through the presence of various colors, prints, geometries and so on, could be more easily handled by

dividing the inspection task into smaller sub-tasks. More specifically, it was believed that this

reduction of complexity may overshadow any general understanding of the problem attained from

pooling the image data. The most immediate manifestation of this would have been a higher

classification accuracy in individual modules than a large network could achieve.

This study found the opposite. Before retraining the networks using the data from another variant, the

monolithic network outperformed the modular alternative both in overall predictive accuracy and for

each individual product variant. While this study does not invalidate a modular structure for quality

inspection networks, it should serve to advance critical examination of actual problem complexity. As

this case shows, any gains made through reducing the overall difficulty of classifying a single variant

can be outweighed by understanding the features of defective products more generally. Restating this

result from another perspective, the modular approach within this case requires more image data from

each variant to reach comparable precision with the monolithic approach. Given that acquisition,

labelling and processing image data forms a large part of the labor necessary to produce a trained

neural network, increasing that burden is a bad proposition.

9.2 Reusability of Modules

One point where the modular approach showed a clearly advantageous feature was the fact that the

retrained MNN did not suffer any change in accuracy, in contrast to the retrained monolithic networks

which were significantly affected in all categories of accuracy. This will hold true as long as the routing

module is able to maintain accuracy, thus activating the correct expert module. Additionally, in a final

implementation of the system, a neural network may not be needed to perform the routing. The part of

the structure routing images could just as easily be replaced by a system which reads a barcode, senses

an RFID tag, receives the variant type electronically from a PLC or relies on a human operator to

manually enter the current batch of variants. While this ability wasn’t utilized in the study, that level

of control and reliability when changing modules could be highly sought after in other applications.

 44

9.3 Implications for Sustainability

Throughout the study, questions of sustainability have informed the work in several ways. AR

Packaging is itself in an ongoing process of lowering or eliminating plastic content in their products

where possible in favor of renewable alternatives like carton board. Despite making significant

progress in this area, the company predicts that the process of rethinking product designs to decrease

environmental impact will be a continuous project over the foreseeable future. This fact makes the

adaptability of quality inspection systems a vital aspect, as inspection software must keep pace with

changing product designs and materials. Thus, by studying how to retrain deep learning applications

quickly and reliably within quality control, the transformation to more sustainable products can be

supported.

Despite being outperformed in many metrics within this specific case, modular designs of neural

networks may offer more energy efficient and less computationally expensive alternatives to

monolithic approaches. The idea of minimizing redundant or irrelevant computation for classification

tasks is a sound one, and the potential of being able to extract specific modules and reuse in other

applications may remove the need to even train a network in some cases. As the research within the

field progresses, these questions of energy efficiency and reusability will be important to discuss.

There are also implications for more economic and social factors pertaining to sustainability.

Technologies such as automatic inspection systems are often developed to replace, or at least minimize

the need for, human labor. Positive aspects to this process certainly exist, as performing visual

inspections in production facilities is usually monotonous and uninteresting work, and by reducing the

amount of time spent doing such tasks frees us to engage in more fulfilling and rewarding activities

while still maintaining the same levels of quality and production as before. A cheaper, less labor

intensive and more productive manufacturing process is certainly a good outcome for economic

sustainability.

However, as history has shown from the mechanization of agriculture to automation in the automotive

industry, workers who are displaced by technological progress often lack appreciation for such macro-

perspectives when their own standard of living is directly connected to labor which is now in less

demand. Monotonous as the work may be, it is often performed by a knowledgeable unionized

workforce which not only form a social base of their respective communities, but also an economic

one. Therefore, to avoid economic shocks, efforts to counterbalance reduced labor demand should be

considered to safeguard economic and social stability of affected groups.

 45

10 Conclusions

This case study sought to compare a modular and monolithic network approach to quality inspection

using data from a real production environment where changes to the product family may occur. Using

guidelines found in contemporary scientific literature, a modular network was designed to correspond

to the more widely applied monolithic structure. An image dataset was gathered from the partner

company, from which data on six product variants was chosen to be processed and used to train and

test the two competing network structures. To simulate an addition to the product family, both

networks were first trained on only five variants, and then retrained using data from the sixth.

The monolithic networks outperformed the modular networks in overall accuracy, with the initial

monolithic network achieving higher precision in all five trained variants compared to both modular

networks. The retrained monolithic network experienced some fluctuation in its accuracy compared to

the initial results, which was not observed in the retrained modular network. The classification speed

of the modular networks was also measured to be slower than the two monolithic networks, which

both achieved equivalent speeds. The modular networks were smaller than their monolithic

counterparts, but the retrained network grew in size due to an added module while the retrained

monolithic network experienced no significant change in size. The cumulative time spent training the

initial modular network was roughly 29% shorter than the initial monolithic network, but the retraining

time for both networks was approximately equivalent.

10.1 Future Work

Conducting a follow-up study in a more controlled setting would be highly interesting. Several

compromises had to be made to fit the specific conditions of the case, such as data collection being

subjected to both production schedules and stochastic quality outcomes. If one tired to procedurally

generate image data instead of relying on manual collection and labelling, much of the limitations and

noise of a real-world manufacturing plant could be eliminated. Thus, a more general and in-depth

understanding of the interaction between complexity and generalizability could be attained than what

is possible from an isolated case study.

An aspect of the study which needs drastic improvement is the image processing algorithm. While the

speed and partial failure to process images did not undermine the comparison between the two studied

approaches, these factors would need to be more thoroughly addressed in an actual implementation of

the system.

 46

11 References

Alencastre-Miranda, M., Johnson, R. M., & Krebs, H. I. (2021). Convolutional Neural Networks and

Transfer Learning for Quality Inspection of Different Sugarcane Varieties. IEEE Transactions on

Industrial Informatics, 17(2), 787–794. https://doi.org/10.1109/TII.2020.2992229

Alom, Md. Z., Taha, T., Yakopcic, C., Westberg, S., Hasan, M., Esesn, B., Awwal, A., & Asari, V.

(2018). The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches.

https://arxiv.org/abs/1803.01164v2

Amer, M., & Maul, T. (2019). A review of modularization techniques in artificial neural networks.

Artificial Intelligence Review, 52(1), 527–561. https://doi.org/10.1007/s10462-019-09706-7

Anand, S., & Priya, L. (2020). A Guide for Machine Vision in Quality Control. CRC Press.

Ansari, Z., & Seyyedsalehi, S. A. (2017). Toward growing modular deep neural networks for

continuous speech recognition. Neural Computing and Applications, 28(1), 1177–1196.

https://doi.org/10.1007/s00521-016-2438-x

Badmos, O., Kopp, A., Bernthaler, T., & Schneider, G. (2020). Image-based defect detection in

lithium-ion battery electrode using convolutional neural networks. Journal of Intelligent

Manufacturing, 31(4), 885–897. https://doi.org/10.1007/s10845-019-01484-x

Block, S. B., Silva, R. D. da, Dorini, L. B., & Minetto, R. (2021). Inspection of Imprint Defects in

Stamped Metal Surfaces Using Deep Learning and Tracking. IEEE Transactions on Industrial

Electronics, 68(5), 4498–4507. https://doi.org/10.1109/TIE.2020.2984453

Casaño, C. D. L. C., Sánchez, M. C., Chavez, F. R., & Ramos, W. V. (2020). Defect Detection on

Andean Potatoes using Deep Learning and Adaptive Learning. 2020 IEEE Engineering International

Research Conference (EIRCON), 1–4. https://doi.org/10.1109/EIRCON51178.2020.9254023

Castillo-Bolado, D., Guerra-Artal, C., & Hernández-Tejera, M. (2021). Design and independent

training of composable and reusable neural modules. Neural Networks, 139, 294–304.

https://doi.org/10.1016/j.neunet.2021.03.034

 47

Chen, L. C., Pardeshi, M. S., Lo, W. T., Sheu, R. K., Pai, K. C., Chen, C.-Y., Tsai, P.-Y., & Tsai, Y.-

T. (2022). Edge-glued wooden panel defect detection using deep learning. Wood Science and

Technology. https://doi.org/10.1007/s00226-021-01316-3

Chordia, A., Sarah, S., Gourisaria, M. K., Agrawal, R., & Adhikary, P. (2021). Surface Crack

Detection Using Data Mining and Feature Engineering Techniques. 2021 IEEE 4th International

Conference on Computing, Power and Communication Technologies, GUCON 2021. Scopus.

https://doi.org/10.1109/GUCON50781.2021.9574002

Chowdhury, I. M., Su, K., & Zhao, Q. (2021). MS-NET: modular selective network. International

Journal of Machine Learning and Cybernetics, 12(3), 763–781. https://doi.org/10.1007/s13042-020-

01201-8

Czimmermann, T., Ciuti, G., Milazzo, M., Chiurazzi, M., Roccella, S., Oddo, C. M., & Dario, P.

(2020). Visual-Based Defect Detection and Classification Approaches for Industrial Applications—A

SURVEY. Sensors, 20(5). https://doi.org/10.3390/s20051459

Di, W., Bhardwaj, A., & Wei, J. (2018). Deep Learning Essentials: Your Hands-on Guide to the

Fundamentals of Deep Learning and Neural Network Modeling. Packt Publishing.

European Committee for Standardization. (2015a). Quality management systems – Fundamentals and

vocabulary (ISO 9000:2015).

European Committee for Standardization. (2015b). Quality management systems—Requirements (ISO

9001:2015).

Ferguson, M., Ak, R., Lee, Y.-T. T., & Law, K. H. (2018). Detection and segmentation of

manufacturing defects with convolutional neural networks and transfer learning. Smart and

Sustainable Manufacturing Systems, 2(1), 137–164. https://doi.org/10.1520/SSMS20180033

Goel, A., Aghajanzadeh, S., Tung, C., Chen, S. H., Thiruvathukal, G. K., & Lu, Y. H. (2021). Modular

Neural Networks for Low-Power Image Classification on Embedded Devices. ACM Transactions on

Design Automation of Electronic Systems, 26(1). https://doi.org/10.1145/3408062

Goetsch, D. L., & Davis, S. (2013). Quality Management for Organizational Excellence: Introduction

to Total Quality (7th ed.). Pearson.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

 48

Harik, R., & Wuest, T. (2020). Introduction to Advanced Manufacturing. SAE International.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.

https://doi.org/10.1109/CVPR.2016.90

Hu, P. (2020). A classifier of matrix modular neural network to simplify complex classification tasks.

Neural Computing and Applications, 32(5), 1367–1377. https://doi.org/10.1007/s00521-018-3631-x

Huang, X., & Ren, J. (2020). Quality Control on Manufacturing Computer Keyboards Using

Multilevel Deep Neural Networks. 2020 IEEE 6th International Conference on Control Science and

Systems Engineering (ICCSSE), 184–188. https://doi.org/10.1109/ICCSSE50399.2020.9171988

Intisar, C. M., & Zhao, Q. (2019). A Selective Modular Neural Network Framework. 2019 IEEE 10th

International Conference on Awareness Science and Technology (ICAST), 1–6.

https://doi.org/10.1109/ICAwST.2019.8923334

Kamrani, A., & Salhieh, S. (2002). Product Design for Modularity (2nd ed.). Springer Science +

Business Media. https://doi.org/10.1007/978-1-4757-3581-9

Kauer-Bonin, J., Yadav, S. K., Beckers, I., Gawlik, K., Motamedi, S., Zimmermann, H. G., Kadas, E.

M., Haußer, F., Paul, F., & Brandt, A. U. (2022). Modular deep neural networks for automatic quality

control of retinal optical coherence tomography scans. Computers in Biology and Medicine, 141.

https://doi.org/10.1016/j.compbiomed.2021.104822

Khishe, M., & Parvizi, Gh. R. (2020). Artificial Neural Networks, Concept, Application and Types. In

D. Alexander (Ed.), Neural Networks: History and Applications. Nova.

Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet Classification with Deep Convolutional

Neural Networks. Neural Information Processing Systems, 25. https://doi.org/10.1145/3065386

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791

Meng, X., Quan, L., & Qiao, J. (2020). A Self-Organizing Modular Neural Network for Nonlinear

System Modeling. 2020 International Joint Conference on Neural Networks (IJCNN), 1–8.

https://doi.org/10.1109/IJCNN48605.2020.9207263

 49

Mureșan, H., & Oltean, M. (2018). Fruit recognition from images using deep learning. Acta

Universitatis Sapientiae, Informatica, 10, 26–42. https://doi.org/10.2478/ausi-2018-0002

Naranjo-Torres, J., Mora, M., Hernández-García, R., Barrientos, R. J., Fredes, C., & Valenzuela, A.

(2020). A Review of Convolutional Neural Network Applied to Fruit Image Processing. Applied

Sciences, 10(10). https://doi.org/10.3390/app10103443

Nasiri, A., Omid, M., & Taheri-Garavand, A. (2020). An automatic sorting system for unwashed eggs

using deep learning. Journal of Food Engineering, 283.

https://doi.org/10.1016/j.jfoodeng.2020.110036

Oakland, J. S. (2014). Total quality management and operational excellence: Text with cases (4th ed.).

Routledge.

Poornima, M. C. (2017). Total Quality Management. Pearson India.

Pradana-López, S., Pérez-Calabuig, A. M., Cancilla, J. C., Lozano, M. Á., Rodrigo, C., Mena, M. L.,

& Torrecilla, J. S. (2021). Deep transfer learning to verify quality and safety of ground coffee. Food

Control, 122, 107801. https://doi.org/10.1016/j.foodcont.2020.107801

Qi, S., Yang, J., & Zhong, Z. (2020). A Review on Industrial Surface Defect Detection Based on Deep

Learning Technology. 2020 The 3rd International Conference on Machine Learning and Machine

Intelligence, 24–30. https://doi.org/10.1145/3426826.3426832

Rathinavel, S., & Kannaianl, T. (2018). An Efficient Fabric Defect Prediction Based on Modular

Neural Network Classifier with Alternative Hard C-Means Clustering. International Journal of

Engineering and Technology, 7, 277–284. https://doi.org/10.14419/ijet.v7i3.27.17892

Riedel, H., Mokdad, S., Schulz, I., Kocer, C., Rosendahl, P. L., Schneider, J., Kraus, M. A., & Drass,

M. (2022). Automated quality control of vacuum insulated glazing by convolutional neural network

image classification. Automation in Construction, 135. https://doi.org/10.1016/j.autcon.2022.104144

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-

propagating errors. Nature, 323, 533–536.

Runeson, P., & Höst, M. (2008). Guidelines for conducting and reporting case study research in

software engineering. Empirical Software Engineering, 14(2), 131. https://doi.org/10.1007/s10664-

008-9102-8

 50

Saxena, P., & Vijaivargia, A. (2020). Characteristics and Design Principles of Industry 4.0. In K.

Jayakrishna, K. E. K. Vimal, S. Aravind, A. Kulatunga, M. T. H. Sultan, & J. Davim (Eds.),

Sustainable Manufacturing for Industry 4.0—An Augmented Approach. CRC Press.

Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., & Summers, R. M.

(2016). Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures,

Dataset Characteristics and Transfer Learning. IEEE Transactions on Medical Imaging, 35(5), 1285–

1298. https://doi.org/10.1109/TMI.2016.2528162

Shu, Y., Li, B., & Lin, H. (2021). Quality safety monitoring of LED chips using deep learning-based

vision inspection methods. Measurement, 168. https://doi.org/10.1016/j.measurement.2020.108123

Singh, S. A., & Desai, K. A. (2022). Automated surface defect detection framework using machine

vision and convolutional neural networks. Journal of Intelligent Manufacturing.

https://doi.org/10.1007/s10845-021-01878-w

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A

Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research,

15(56), 1929–1958.

Stephen, O., Maduh, U. J., & Sain, M. (2022). A machine learning method for detection of surface

defects on ceramic tiles using convolutional neural networks. Electronics, 11(1).

https://doi.org/10.3390/electronics11010055

Tao, X., Zhang, D., Ma, W., Liu, X., & De Xu. (2018). Automatic metallic surface defect detection

and recognition with convolutional neural networks. Applied Sciences (Switzerland), 8(9).

https://doi.org/10.3390/app8091575

Tout, K., Meguenani, A., Urban, J.-P., & Cudel, C. (2021). Automated vision system for magnetic

particle inspection of crankshafts using convolutional neural networks. The International Journal of

Advanced Manufacturing Technology, 112(11), 3307–3326. https://doi.org/10.1007/s00170-020-

06467-4

Valdez, F., Melin, P., & Castillo, O. (2019). Optimization of Modular Neural Networks for Pattern

Recognition with Parallel Genetic Algorithms. In L. Martínez-Villaseñor, I. Batyrshin, & A. Marín-

Hernández (Eds.), Advances in Soft Computing (pp. 223–235). Springer International Publishing.

 51

Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing:

Methods and applications. Special Issue on Smart Manufacturing, 48, 144–156.

https://doi.org/10.1016/j.jmsy.2018.01.003

Wang, T., Chen, Y., Qiao, M., & Snoussi, H. (2018). A fast and robust convolutional neural network-

based defect detection model in product quality control. International Journal of Advanced

Manufacturing Technology, 94, 3465–3471. https://doi.org/10.1007/s00170-017-0882-0

Weimer, D., Scholz-Reiter, B., & Shpitalni, M. (2016). Design of deep convolutional neural network

architectures for automated feature extraction in industrial inspection. CIRP Annals - Manufacturing

Technology, 65(1), 417–420. https://doi.org/10.1016/j.cirp.2016.04.072

Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., & Tang, S. (2020). Using deep learning to detect defects

in manufacturing: A comprehensive survey and current challenges. Materials, 13(24), 1–23.

https://doi.org/10.3390/ma13245755

Yang, Y., Pan, L., Ma, J., Yang, R., Zhu, Y., Yang, Y., & Zhang, L. (2020). A High-Performance Deep

Learning Algorithm for the Automated Optical Inspection of Laser Welding. Applied Sciences, 10(3).

https://doi.org/10.3390/app10030933

Yang, Y., Yang, R., Pan, L., Ma, J., Zhu, Y., Diao, T., & Zhang, L. (2020). A lightweight deep learning

algorithm for inspection of laser welding defects on safety vent of power battery. Computers in

Industry, 123. https://doi.org/10.1016/j.compind.2020.103306

Yun, J. P., Shin, W. C., Koo, G., Kim, M. S., Lee, C., & Lee, S. J. (2020). Automated defect inspection

system for metal surfaces based on deep learning and data augmentation. Journal of Manufacturing

Systems, 55, 317–324. https://doi.org/10.1016/j.jmsy.2020.03.009

Zhang, B., Liu, S., & Shin, Y. C. (2019). In-Process monitoring of porosity during laser additive

manufacturing process. Additive Manufacturing, 28, 497–505.

https://doi.org/10.1016/j.addma.2019.05.030

Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). ShuffleNet: An Extremely Efficient Convolutional

Neural Network for Mobile Devices. 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 6848–6856. https://doi.org/10.1109/CVPR.2018.00716

 52

Zhang, Z., Wen, G., & Chen, S. (2019). Weld image deep learning-based on-line defects detection

using convolutional neural networks for Al alloy in robotic arc welding. Journal of Manufacturing

Processes, 45, 208–216. Scopus. https://doi.org/10.1016/j.jmapro.2019.06.023

Zheng, X., Chen, J., Wang, H., Zheng, S., & Kong, Y. (2021). A deep learning-based approach for the

automated surface inspection of copper clad laminate images. Applied Intelligence, 51(3), 1262–1279.

https://doi.org/10.1007/s10489-020-01877-z

 53

Appendix A: Confusion Matrices

Confusion Matrix for initial modular network:

 54

Confusion Matrix for initial monolithic network:

 55

Confusion Matrix for retrained modular network:

 56

Confusion Matrix for retrained monolithic network:

