
Array 15 (2022) 100209

A
2

Contents lists available at ScienceDirect

Array

journal homepage: www.elsevier.com/locate/array

Towards automatic discovery and assessment of vulnerability severity in
cyber–physical systems
Yuning Jiang, Yacine Atif ∗
University of Skövde, Sweden

A R T I C L E I N F O

Keywords:
Cybersecurity
Text-mining
Cyber–physical system
Vulnerability analysis
CVSS

A B S T R A C T

Despite their wide proliferation, complex cyber–physical systems (CPSs) are subject to cybersecurity vulner-
abilities and potential attacks. Vulnerability assessment for such complex systems are challenging, partly
due to the discrepancy among mechanisms used to evaluate their cyber-security weakness levels. Several
sources do report these weaknesses like the National Vulnerability Database (NVD), as well as manufacturer
websites besides other security scanning advisories such as Cyber Emergency Response Team (CERT) and
Shodan databases. However, these multiple sources are found to face inconsistency issues, especially in
terms of vulnerability severity scores. We advocate an artificial intelligence based approach to streamline the
computation of vulnerability severity magnitudes. This approach decreases the error rate induced by manual
calculation processes, that are traditionally used in cybersecurity analysis. Popular repositories such as NVD
and SecurityFocus are employed to validate the proposed approach, assisted with a query method to retrieve
vulnerability instances. In doing so, we report discovered correlations among reported vulnerability scores to
infer consistent magnitude values of vulnerability instances. The method is applied to a case study featuring a
CPS application to illustrate the automation of the proposed vulnerability scoring mechanism, used to mitigate
cybersecurity weaknesses.
1. Introduction

Modern breakthroughs in information and communication tech-
nology facilitate the integration of digital and physical environments
to improve the degree of automation in industrial processes enabled
by cyber–physical systems (CPS). Nonetheless, CPS components are
subject to vulnerabilities across the multitude of firmware versions [1].
Unwanted vulnerability occurrences are expected to be discovered.
Meanwhile, their magnitude will be graded to determine a mechanism
for patching prioritization. This analysis supports cybersecurity opera-
tors to anticipate cyber attacks from emerging threats and to prevent
intrusion opportunities [2].

New measurements make it possible to quantify cybersecurity issues
to support vulnerability-mitigation decisions. These measurements are
captured from a range of cybersecurity repositories available online.
The Common Vulnerabilities and Exposures (CVE) [3] repository is
a prime database cumulating vulnerability reports that are further
augmented with the Common Vulnerability Scoring System (CVSS) [4]
scores. Other analytical measurements are provided by the National
Vulnerability Database (NVD) [5]. However, vulnerability-mitigation
decisions that rely on CVE or NVD records as primary data sources, can
be biased and discriminating other sources of data [6,7]. For instance,

∗ Corresponding author.
E-mail addresses: yuning.jiang@his.se (Y. Jiang), yacine.atif@his.se (Y. Atif).

BugTraq from SecurityFocus [8] contains vulnerabilities that are yet
to be reported in CVE. Thus, inferred decisions based on cybersecurity
measurements need to include a wide range of cybersecurity data
repositories. A comprehensive knowledge base that combines multiple
sources through some artificial intelligence (AI)-based rules is shown in
this research to provide grounds for a required decision-support level.

Enterprises are increasingly confronted with cybersecurity issues
resulting from sporadic vulnerabilities, with reported data supporting
decision-making criteria. The enormous quantity of system data and
reported vulnerabilities increases the workload of security analysts,
which is both time-consuming and error-prone when performed man-
ually. This data-driven evolution streamlines previous risk analysis
frameworks while still taking into consideration human-expert judge-
ments. Some preliminary works towards combining emerging cyberse-
curity metrics led to the standard mechanism CVSS. CVSS is widely
adopted to assess vulnerability-severities across enterprises and aca-
demic research [9,10] [11]. However, CVSS exhibits some challenges
when used in practice [12,13]. CVSS-scores are essentially influenced
by individual experts, who may spend some time to rank the severity
of a vulnerability since disclosed in CVE. This incurred time delay
vailable online 18 June 2022
590-0056/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a

https://doi.org/10.1016/j.array.2022.100209
Received 25 January 2022; Received in revised form 11 June 2022; Accepted 11 J
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

une 2022

http://www.elsevier.com/locate/array
http://www.elsevier.com/locate/array
mailto:yuning.jiang@his.se
mailto:yacine.atif@his.se
https://doi.org/10.1016/j.array.2022.100209
https://doi.org/10.1016/j.array.2022.100209
http://creativecommons.org/licenses/by/4.0/

Array 15 (2022) 100209Y. Jiang and Y. Atif
Fig. 1. Potential time delay of scoring and inconsistent scores.

in evaluating vulnerabilities increases the chances of threats to ma-
terialize into actual cyberattacks [14]. Automation of vulnerability
scoring is therefore anticipated to narrow the gap for zero-day attacks.
To design such an autonomous scoring system, several deficiencies
must be examined, such as how to infer important measurements used
to control vulnerability metrics at an appropriate scale for reported
vulnerabilities. In addition, differences between existing CVSS versions
produce incompatible metric measurements. Previous study did not
adequately address these difficulties. Diverse businesses utilize distinct
CVSS versions to evaluate instances of vulnerability [12], resulting in
conflicting outcomes. For example, NVD uses CVSS version 3 scores to
rate vulnerability instances reported only from 2015 onwards. These
challenges of applying CVSS scores to support vulnerability analysis
and management are illustrated in Fig. 1. Considering a random vul-
nerability instance 𝑣, NVD, the corresponding manufacturer, and a
third-party analyser provide their severity scores as 𝑆𝑁𝑉𝐷, 𝑆𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟

and 𝑆𝐴𝑛𝑎𝑙𝑦𝑠𝑒𝑟 which can be inconsistent. Despite CVSS popularity [12,
13], inconsistency among reported scores for the same vulnerability
instance does occur. Particularly, when considering other CVSS tempo-
ral and environmental metrics, whereby vulnerability properties evolve
across time and deployment environments. Hence, additional sources
of relevant data, including manufacturer-provided data, online reviews
from relevant security sources and forums, are expected to consolidate
further existing CVSS scores [10].

Data inconsistence also increases the difficulty of vulnerability re-
trieval. For example, using MTU as a single keyword in the NVD search
engine returns vulnerabilities that are relevant to two diverse categories
of devices, namely Maximum Transfer Unit (e.g., vulnerability instance
CVE-2005-0065) and Master Terminal Unit (e.g., vulnerability instance
CVE-2015-0990). Therefore, to retrieve Master Terminal Unit vulner-
abilities only, we need to refine further the query with keywords like
SCADA-server or vendor-specific modules. Meanwhile, vendor names in
Common Platform Enumeration (CPE) [15] metadata may appear with
variations. For example, the vendor Schneider Electric SE has variant
forms like ‘schneider-electric’, ‘chneider-electric’, and ‘schneider-electic’ in
CPE database.

We propose a vulnerability scoring system to quantify the severity
of a reported incidence of vulnerability. The computed scores facilitate
situational awareness through quantitative indicators that are trans-
formed into actionable intelligence. This method automates vulnera-
bility investigation while addressing compatibility concerns between
multiple CVSS versions. Standard CVSS criteria are used as a scoring ba-
sis to evaluate the exploitability of vulnerabilities and the consequences
of maliciously exploits. In pursuit of these aims, we correlate vulner-
ability scores published by several online cybersecurity data sources,
including NVD, vendor websites, and technical reports from third party
reviewers (e.g., Cyber Emergency Response Team (CERT) [16] and
2

Microsoft Security Response Center (MSRC) [17], to consolidate sever-
ity scores of vulnerability instances. Accordingly, we produce ground
facts for our Machine Learning (ML)-based vulnerability-severity com-
putation algorithm. These instances are then used to train our ML
model, which we evaluate using vulnerabilities reported in vulner-
ability repositories such as NVD and SecurityFocus. In addition to
NVD and SecurityFocus, our suggested approaches can incorporate
additional other data sources such as CERT. We also propose a new
query logic to identify relevant vulnerability instances, while excluding
possible false positives based on other keywords. The evaluation study
of CPS vulnerability and related factors shows an enhanced level of
automation in cybersecurity assessments [14].

The main contributions of this paper are outlined as follows:

• A novel machine-learning based structure for vulnerability assess-
ment that infers CVSS severity scores of reported vulnerability
instances. This proposed technique addresses compatibility issues
of CVSS scores using a majority voting system, as part of the pro-
posed machine-learning model. The approach can be customized
to accommodate a preferred CVSS version, in order to allow a
common computational semantic that improves consistency in
vulnerability assessment.

• A query generation method that takes system configuration infor-
mation as input and exports the best matching query tags in the
format similar to CPE metadata.

• A CPS vulnerability analysis case study that validates the pro-
posed machine-learning based vulnerability-assessment approach.

The rest of this paper is organized as follows: In Section 2, we pro-
vide some background and formally state the problem addressed in this
paper, followed by Section 3 which discusses vulnerability data sources,
standard vulnerability-severity metrics and related vulnerability-
assessment processes used in the CVSS mechanism. In Section 4, we
reveal our vulnerability assessment prototype, which correlates existing
CVSS scores against other security-alert indicators, as well as reconciles
different CVSS versions using some text-mining techniques on a corpus
of vulnerability reports. In Section 5, we evaluate our vulnerability-
discovery and assessment methodology in CPS contexts using mainly
NVD and Shodan [18] through some analysis. In Section 6, we provide
some concluding remarks and discuss some future research directions.

2. Related works

Correlation studies between multiple cybersecurity data sources
can combine various perspectives from different stakeholders, to con-
nect multifaceted analysis into broader statistical associations. CVE,
NVD, CERT and SecurityFocus are widely used vulnerability-analytics
databases for uniquely identified vulnerability recordings. These
databases are further correlated to data sources like ExploitDB [19].
An example of this is the study carried out by Allodi and Massacci [20]
correlates. They correlate NVD to ExploitDB, Symantec AttackSignature
and ThreatExplorer. By doing so, they enhance CVSS scoring practice
by computing the temporal attributes based on the existence of public
proof-of-concept (PoC) exploits. Geer and Roytman [21] also correlate
NVD database to ExploitDB and Metasploit [22] to support penetration
testers. Fang et al. employ SecurityFocus and NVD to predict the
exploitability and exploitation of vulnerabilities, while taking PoCs
extracted from ExploitDB as ground truth [13]. Rodriguez et al. [23]
compare the original release dates of multiple data sources, including
NVD, SecurityFocus, ExploitDB and three vendors Cisco, Wireshark and
Microsoft. They observe that the vulnerability instances published in
NVD are 1–7 days delayed compared to other data sources.

A variety of approaches apply text-mining techniques in industrial
blogs like Twitter [24] and security papers. This is exemplified in
the work undertaken by Zhu and Dumitras who apply NLP to extract
malware detection features from research papers automatically [25].
Chen et al. [24], Bullough et al. [26] and Sabottke et al. [27] extract

Array 15 (2022) 100209Y. Jiang and Y. Atif

i
o
a
r
f
d
d
v
r
(
f

f
l
l
a
p
n
e
t
V
g
a
f
N
p
s
C
b
m
i
b
T
o
d
i
d
s
s
o
e
e
t
d
c

3

c
p

3

a
a
A
f
b
C
v
w
i

v
(
t
N
o
f
n
t
i
W
o
a
i
f

f
s
v
S
N
A
v
a
l
e
t
t
m
i
N

U
v
t
w

a
S
d
b

vulnerability-related data by crawling Twitter and extracting tweets
that contain CVE as a keyword. These works highlight that statistical
nterpretations of CVE and NVD datasets need to be combined with
ther live security-related data sources, such as Twitter, the dark web
nd product vendors across deployed infrastructures, to raise indicators’
eliability and precision. However, these works contribute to the wider
ield of software vulnerability analysis. Correlation studies considering
ifferent terminology used in cybersecurity addressing specifically CPS
omains are limited. In our method, we extract relevant entities of
ulnerable components and vendor information in CVE vulnerability
eports, which we map against the Common Platform Enumeration
CPE) [15] as well as vendor websites, in order to generate a dictionary
or CPS components and vendors.

The retrieved information from cybersecurity data sources supports
urther pattern recognition and trend analysis. Using AI techniques,
arge amounts of such open-source vulnerability data [11] can be ana-
yzed. More specifically, machine-learning techniques like text-mining
re applied to automatically classify disclosed vulnerabilities and guide
redictive analytics of the security gap. The effectiveness of AI tech-
iques has been illustrated in a study by Bozorgi et al. [28]. They
mploy SVM (referring to Support Vector Machine) to predict time-
o-exploit indicators of reported vulnerabilities on the Open Source
ulnerability Database (OSVDB) and CVE. Targeting CVSS base score
eneration, Gawron et al. [9] apply Neural Networks and Naive Bayes
lgorithms, while Yamamoto et al. [29] deploy supervised LDA (re-
erring to Latent Dirichlet Allocation) for CVSS metrics classification.
evertheless, using correlated cybersecurity data sources also raises
otential inconsistencies, such as the disparity between scores for the
ame vulnerability instances [10]. One drawback of previous AI-based
VSS computing approaches is that they directly adopt the vulnera-
ility reports and CVSS scores from NVD as training grounds, which
ay induce a bias in their model. Instead, we correlate vulnerability

nstances in NVD to corresponding vendor reports and third-party cy-
ersecurity analyzers such as CERT reports to consolidate data sources.
hen we integrate relevant information into a unified structure as
ur training grounds. To be more specific, we use the vulnerability
escriptions in NVD as training input. We then apply majority vot-
ng on inconsistent scores before using them as training grounds. In
oing so, our approach streamlines the computation of vulnerability
everity to address such inconsistencies upstream, in order to optimize
ecurity investments and to shorten the potential risk window. Based
n our previous work [30], we extended CVSS base-score computation
xperiments to include more vulnerability data sources. This additional
xperimental study illustrates the capacity of our mechanism to ex-
end to new data sources such as SecurityFocus. By including Shodan
atabase, we also extract more vulnerability instances for our CPS
ybersecurity case study.

. Background

In this section, we introduce the data sources, the metrics used to
alculate the vulnerability severity, and the severity score computing
rocess.

.1. Vulnerability data sources

MITRE Corporation publishes the CVE industry-standard to assign
n identifier to each discovered vulnerability. In addition, it maintains
publicly accessible database of all identifiers through CVE Numbering
uthorities (CNA) [31]. A typical CVE entry includes the following

ields: a unique identifier, a brief description of the reported vulnera-
ility, and any pertinent references about the vulnerability. The unique
VE identifier, or CVE ID, is the key that differentiates one security
ulnerability from another. In doing so, CVE IDs provide a reliable
ay of communicating across these different databases to get more

nformation about the reported security flaws.
3

NVD builds upon the information included in CVE entries to pro-
ide an enhanced information for each entry, such as severity scores
calculated based on CVSS standard) and impact ratings. NVD converts
he unstructured CVE data into structured JSON (or JavaScript Object
otation) or XML (or Extensible Markup Language) formats [6]. As part
f its enhanced information, NVD also provides advanced searching
eatures such as by OS, by vendor name, by product name, by version
umber, and by vulnerability type and severity. Among these extra fea-
ures, affected product names and versions have matching string entries
n CPE entries. Vulnerability category features are provided in Common

eakness Enumeration (CWE) [32] repository, which abstracts the
bserved faults and flaws into common groups of vulnerabilities with
dditional information about expected effects, behaviors, and further
mplementation details. The vulnerability severity score is calculated
ollowing the CVSS version 3 and version 2 standards.

SecurityFocus is a widely used vulnerability database and also
eatures a security news portal [13]. Even though this database is
hut down in January 2021, still its historical reports are applicable to
alidate our experimental analysis. Besides vulnerability descriptions,
ecurityFocus also addresses whether a vulnerability has a PoC exploit.
ote that SecurityFocus is not dependent upon CVE data sources [23].
ctually, a BugTraq vulnerability report may refer to several CVE
ulnerability instances. A statistic analysis by Fang et al. highlight that
lthough the amount of vulnerabilities reported in SecurityFocus is
ess than the number of vulnerabilities found in NVD, the fraction of
xploited vulnerabilities in SecurityFocus (37.008%) is much higher
han the proportion in NVD (6.676%) [13]. They also observe that
he vulnerability reports in SecurityFocus contain higher coverage and
ore reference significance in predictive cybersecurity analysis, lead-

ng to their experiment results where SecurityFocus performs well than
VD under an actual environment.

Industrial Control System CERT (ICS-CERT) [33] is a branch in
S-CERT that focuses on control systems’ security. The ICS-CERT ad-
isories add further analysis on reported vulnerabilities in CVE, par-
icularly on risk evaluation, affected products, and mitigations such as
orkarounds or official patches.

In the following example, we present the differences between the
forementioned vulnerability data sources, especially between NVD,
ecurityFocus and ICS-CERT. The SecurityFocus historical reports were
ownloaded in December 2020 before shutting down. The vulnera-
ility report under BugTraq ID 108727 refers to three CVE reports,

namely CVE-2019-6580, CVE-2019-6581, and CVE-2019-6582, respec-
tively. NVD assigns CVSS V3 base scores 9.8, 8.8, and 7.7 to these three
disclosed vulnerabilities. Yet, ICS-CERT and the vendor Siemens [34]
assign the same CVSS V3 base scores to CVE-2019-6581 and CVE-
2019-6582, but a different score 8.8 to CVE-2019-6580. The inconsis-
tency of CVE-2019-6580 scores is due to different views on the metric
of whether privileges are required to exploit this vulnerability. Here
we compare the discussion section in SecurityFocus and the descrip-
tion section of one vulnerability instance CVE-2019-6580 in NVD or
CVE. We observe that the summary given by SecurityFocus highlights
vulnerability types and potential threats targeting the vulnerability,
while NVD emphasizes the affected products and the impact of the
vulnerability.

• SecurityFocus discussion: “Siemens Siveillance VMS is prone to
multiple authorization-bypass vulnerabilities. Attackers can exploit
these issues to bypass certain security restrictions and perform certain
unauthorized actions. This may aid in further attacks. These issues
have been fixed in Siveillance VMS 2017 R2 v11.2a, 2018 R1 v12.1a,
2018 R2 v12.2a, 2018 R3 v12.3a, and 2019 R1 v13.1a.”

• NVD description (the same as CVE description): “A vulnerability
has been identified in Siveillance VMS 2017 R2 (All versions <
V11.2a), Siveillance VMS 2018 R1 (All versions < V12.1a), Siveil-
lance VMS 2018 R2 (All versions < V12.2a), Siveillance VMS 2018
R3 (All versions < V12.3a), Siveillance VMS 2019 R1 (All versions

Array 15 (2022) 100209Y. Jiang and Y. Atif

E
v
b
C
a
𝑃
n

3

c
t
m
(
l
t
a
r
m
P
a
i
m

3

t
m
t
a

3

t
a
t
o

3

r
d
I

< V13.1a). An attacker with network access to port 80/TCP could
change device properties without authorization. No user interaction is
required to exploit this security vulnerability. Successful exploitation
compromises confidentiality, integrity and availability of the targeted
system. At the time of advisory publication no public exploitation of
this security vulnerability was known.”

Finally, Shodan is a data source mainly targeting CPS or IoT (refer-
ring to Internet of Things) security, including SCADA (referring to Su-
pervisory Control and Data Acquisition) [35]. CPS and IoT systems in-
clude devices like webcams, routers, and servers. Relevant information
like ports and vulnerabilities of these devices can be fetched through
Shodan website or Shodan API (referring to Application Programming
Interface). Interestingly, these are currently internet-connected devices,
sending (public) live data from different locations across the World.
Unlike NVD, where vulnerability reports are published, Shodan crawls
IP addresses, made available on device respective websites and APIs.
Returned data from Shodan can be cross-referenced with NVD for
vulnerability analysis [36].

3.2. Vulnerability severity metrics

The Forum for Incident Response and Security Teams or FIRST
initiated the development of the CVSS calculator while reporting cy-
bersecurity incidents. The current CVSS Version 3 follows a sequence
of three versions of the CVSS index calculator. Vulnerabilities are first
assigned a unique identifier and their severity is rated by combining
CVSS property metrics. CVSS score involves three groups of proper-
ties. The Base group describe static properties that are not subject to
temporal or deployment environments. In contrast, the Temporal and
nvironmental groups of properties are respectively describing score
ariations across time or deployment contexts. However, we emphasize
ase score properties in this research and consider the latest version of
VSS base properties, that is Version 3 or V3. These base properties
re further grouped under three classifications, namely exploitability
𝑣
𝐸𝑥𝑝𝑙𝑜𝑖𝑡, scope 𝑃 𝑣

𝑆𝑐𝑜𝑝𝑒, and impact 𝑃 𝑣
𝐼𝑚𝑝𝑎𝑐𝑡 properties, which we discuss

ext.

.2.1. CVSS exploitability property:
This property quantifies the likelihood as well as the effort and intri-

acy to be invested for exploiting a component that would be exposed
o a given vulnerability. Hence, this property combines the following
etrics: AttackVector (AV), AttackComplexity (AC), PrivilegesRequired
PR) and UserInteraction (UI). The Attack Vector metric measures the
ikelihood for an attack scenario targeting the component to occur
hrough this vulnerability. The effort that needs to be invested may vary
cross these scenarios, quantified as part of the Attack Complexity met-
ic. Along the path of an attack scenario, some credentials or privileges
ay be required. The level of these requirements is measured by the
rivileges Required metric, for an agent with authority to be granted
ccess to the component. And, the level of participation that is expected
n order to exploit and compromised the vulnerable component is
easured by the User Interaction metric.

.2.2. CVSS scope property:
The propagation of a vulnerability from a targeted component

o eventually grant access to others within an asset configuration is
easured by ScopeChange (or S). The Scope metric is used to measure

he extent to which other components than the vulnerable one, can be
ccessed.

.2.3. CVSS impact property:
This property groups metrics along the (CIA) triad, to quantify

he magnitude of potential losses of Confidentiality (C), Integrity (I)
nd/or Availability (A). Measurements along these metrics categorize
he severity levels impacted by the vulnerability as none- (N), low- (L)
r high- (H).
4

.3. Severity score computing process

CVSS combines the above properties to infer vulnerability level
ating its severity based on a rule-based algorithm, which is further
epicted in Eq. (1) that use measurements of Exploitability, Scope and
mpact property metrics to generate the Base score of a vulnerability.

Considering a component 𝑐 of a CPS asset 𝐶, exploitability and impact
property measurements are extracted as illustrated in Eqs. (2) and (3),
separately. To infer a score of a vulnerability 𝑣 for a component 𝑐, a
function measures the corresponding base properties: 𝑓𝐸𝑥𝑝𝑙𝑜𝑖𝑡, 𝑓𝑆𝑐𝑜𝑝𝑒 and
𝑓𝐼𝑚𝑝𝑎𝑐𝑡, as illustrated by the 𝑓𝐵𝑎𝑠𝑒 function illustrated by Eq. (1).

𝑓𝐵𝑎𝑠𝑒 = (𝑃𝐸𝑥𝑝𝑙𝑜𝑖𝑡, 𝑃𝑆𝑐𝑜𝑝𝑒, 𝑃𝐼𝑚𝑝𝑎𝑐𝑡) (1)

In Eq. (1), vulnerability measurements vector 𝑣𝑖 are collected for
component 𝑐𝑖 by Eqs. (2) and (3). 𝑓 ∶𝐴 → 𝐵 means a functional asso-
ciation.

𝑓𝐸𝑥𝑝𝑙𝑜𝑖𝑡 ∶𝐶 → 𝑃𝐸𝑥𝑝𝑙𝑜𝑖𝑡 (2)

𝑓𝐼𝑚𝑝𝑎𝑐𝑡 ∶𝐶 → 𝑃𝐼𝑚𝑝𝑎𝑐𝑡 (3)

This can be illustrated briefly by the vulnerability instance CVE-
2021-37172 for example. This vulnerability instance affects Siemens
PLC (or Programmable Logic-Controller) product running SIMATIC S7-
1200 CPU family with firmware version number 4.5.0 (or the vulner-
able component), by allowing a threat agent to bypass authentication
and download arbitrary programs to this PLC (or the vulnerable CPS
asset). This vulnerability has a CVSS version 3 base score of 7.5, which
is further composed of an exploitability score of 3.9 as well as an impact
score of 3.6.

4. Discovering vulnerability severity

In this section, we present a ML-based method to discover CVSS
scores of reported vulnerability instances with no assigned score. Our
proposed approach automatically generates severity scores for vulner-
ability instances, which decreases the potential of manual errors and
requires less effort from human experts. We start with a brief overview
of the system structure, followed by a detailed introduction of each
element of the vulnerability-severity computing system.

4.1. System overview

As illustrated in Fig. 2, we first collect vulnerability data from open-
source cybersecurity repositories. Simultaneously, we adopt majority
voting techniques [37] to deal with inconsistent scores retrieved from
different CVSS scored reports across multiple repository sources. We
employ the reconciled scores as the training ground for our proposed
ML models, together with vulnerability reports. Then we streamline
score prediction by using a ML pipeline that classifies these instances
considering various CVSS-metric labels. Meanwhile, CVSS metrics from
different CVSS versions are stored in a knowledge base. Thus, the
corresponding metric-set is retrieved through the user’s query. The
same goes for measurements and severity scales. In doing so, one
can select any CVSS version to compute the corresponding score and
vector for vulnerability instances. Our proposed vulnerability severity
computing system contains a series of steps chained together through
ML computational cycles. Each integrated ML cycle involves mainly
three steps. Step 1 refers to obtaining the data. Step 2 performs data
pre-processing to prepare the data for training/testing processes on
a machine-learning algorithm. And finally, in Step 3 we output a
predicted severity score. By preprocessed data, we mean both the
training/testing instances and the classification measurements. Note
that training and testing processes are not differentiated in Fig. 2 to
facilitate readability.

Array 15 (2022) 100209Y. Jiang and Y. Atif
Fig. 2. High-level structure of vulnerability severity computing system.
Fig. 3. Vulnerability severity data collection.

4.2. Data collection

We employ multiple ways to collect vulnerability data from online
public repositories, as depicted in Fig. 3. More specifically, NVD data
feeds are directly downloaded and stored in a local database in JSON
format. The JSON format is an open standard file format used for
interchanging data, consisting of human-readable text (i.e., not binary)
attributes’ value pairs. JSON objects can be nested inside other JSON
objects, while each nested object has a unique access path across
the tree-like structure. To ensure that the local files and online NVD
data feeds are synchronized, we set up a scheduler to perform hourly
data retrieval and update the data through an existing Python library
APScheduler (referring to Advanced Python Scheduler). We choose the
hourly schedule to mirror NVD data considering that the “recent” and
“modified” feeds in NVD are updated every two hours, while the rest
are updated nightly. Besides NVD, we apply web crawling and web
scraping techniques [38] to grasp vulnerability information published
in SecurityFocus, ICS CERT and vendor websites. Web crawling refers
to the process of browsing and indexing contents from web pages.
Examples of relevant built-in Python functions include urllib.request
that downloads html pages and urllib.error that handle exceptions. Web
scraping means locating and collecting certain information and are
supported by tools like HTML parser Beautiful Soup [39]. After fetching,
parsing and extracting targeted information, we store the retrieved data
in a proper format tailored to the data usage. For instance, we store
the data extracted from SecurityFocus in local files with fields like
Bugtraq-ID, CVE-ID, title, publish date, affected product, etc., in CSV
(or comma-separated values) format. Finally, we query Shodan API to
get CPS relevant vulnerabilities.
5

4.3. Majority voting for inconsistent scores

Relying upon NVD scores alone as the model training ground can
bring bias in vulnerability assessment [6,7]. This is because a small
percentage of score records in NVD is assumed to have errors due to the
manual scoring process [12]. Besides statistical vulnerability patterns
mined from CVE reports, other data sources like vendors and third-
party security analyzers (e.g., ICS CERT and MSRC) provide different
perspectives for vulnerability scoring. We set up a majority voting [37]
module using Python whereby the score that the majority of data
sources ([𝑉1,… , 𝑉𝑑 ,… , 𝑉𝐷] where 0⟨𝑑 ≤ 𝐷,𝐷⟩2) in the pipeline agree
on is delivered as true score or ground truth score. In the cases where
only two score sources are found, or [𝑉1, 𝑉2], and these two scores are
inconsistent, we take the average of these scores.

We give an example using the vulnerability instance CVE-2018-7791
for which a CVSS V3 base-score of 9.8 is assigned by NVD and vendor
Schneider Electric with the vector AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/
A:H. Nevertheless, ICS CERT assigns this vulnerability with a score of
7.7 with the vector AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:L. Similarly,
the inconsistence comes as a result of different measurement for attack
complexity. Using our majority voting approach, we choose a final
score of 9.8 as the true score. Another example of score inconsistencies
is the vulnerability instance CVE-2014-0754 which is assigned a CVSS
V2 base-score 10.0 by NVD, VulDB, as well as ICS CERT with a
vector AV:N/AC:L/Au:N/C:C/I:C/A:C. Note that the first three CVSS V2
metrics differ from CVSS V3 metrics. AV means Access Vector, which
is equivalent to the Attack Vector in CVSS V3. AC refers to Access
Complexity, which is equivalent to the Attack Complexity in CVSS V3.
Au denotes Authentication which measures the number of times an at-
tacker needs to authenticate oneself to the targeted component in order
to exploit the vulnerability. Yet, a different score 9.3 is assigned by the
vendor Schneider Electric with a vector AV:N/AC:M/Au:N/C:C/I:C/A:C.
The inconsistency occurs due to different measurements for Access
Complexity of this instance, whereby Schneider Electric assigns medium
complexity, while the other three parties assign low complexity. Using
our majority voting approach, we choose a final score of 10.0 as a true
score.

4.4. Vulnerability severity computing

Cybersecurity data is classified using a pipeline of ML algorithms,
in order to fill CVSS score gaps. Using text-mining approaches [11],
retrieved vulnerability reports from existing cybersecurity repositories
are contrasted against vulnerability descriptors. Subsequently, new
vulnerability reports are classified along CVSS-metric property groups,
using a ML algorithm, which is trained from a set of historical instances
of reported data 𝑉 . Considering 𝑁 vulnerability instances from this

Array 15 (2022) 100209Y. Jiang and Y. Atif

b
b

𝑌

𝑌
t
3
H

s
F
L
u
2
b
t
i
a

s
i
a
t

Algorithm 1 Vulnerability CVSS Base-Score Computing.
1: procedure SeverityComputing(, 𝑚,𝑀, 𝑉 , 𝑉 ′)

⊳ is a machine learning model 𝑓 ().
⊳ 𝑓𝐵𝑎𝑠𝑒() is the CVSS calculator, as shown in Equation (1)
⊳ [𝑉1,… , 𝑉𝑑 ,… , 𝑉𝐷] (0 < 𝑑 ≤ 𝐷,𝐷 > 2) is a list of data sources, each of which has 𝑁 vulnerability instances. Each vulnerability instance 𝑣𝑖
(0 < 𝑖 ≤ 𝑁) is assigned a list of severity scores as [𝑠𝑖,1,… , 𝑠𝑖,𝑑 ,… , 𝑠𝑖,𝐷] and a list of CVSS vectors as [𝑌𝑖,1,… , 𝑌𝑖,𝑑 ,… , 𝑌𝑖,𝐷].
⊳ 𝑉 ′ is a set of vulnerability instances 𝑣𝑝 (0 < 𝑝 ≤ 𝑁 ′) that have no severity score or CVSS measurements.
⊳ 𝑚 is a set of CVSS metrics 𝑚𝑗 (0 < 𝑗 ≤ 𝑀) where each metric 𝑚𝑗 has a set of 𝐾𝑚𝑗 classes as maps to a value 𝑌

(𝑚𝑗)
𝑖 ∈ {𝑐1(𝑚𝑗) ,… , 𝑐𝑘(𝑚𝑗) ,… , 𝑐𝐾(𝑚𝑗)}

(0 < 𝑘(𝑚𝑗) ≤ 𝐾 (𝑚𝑗)).
2: 𝐷 = |[𝑉1,… , 𝑉𝑑 ,… , 𝑉𝐷]|, 𝑁 = |𝑉𝑑 |, 𝑁 ′ = |𝑉 ′

|,𝑀 = |𝑚|, 𝐾 (𝑚𝑗) = |{𝑐1(𝑚𝑗) ,… , 𝑐𝑘(𝑚𝑗) ,… , 𝑐𝐾(𝑚𝑗)}|
3: For vulnerability instance 𝑣𝑖 (𝑖 = 1,… , 𝑁) do
4: For CVSS metric 𝑚𝑗 (𝑗 = 1,… ,𝑀) do
5: Set 𝑌

(𝑚𝑗)
𝑖 = arg max

𝐾(𝑚𝑗)
[𝑐𝑎𝑟𝑑({𝑐1(𝑚𝑗) ,… , 𝑐𝑘(𝑚𝑗) ,… , 𝑐𝐾(𝑚𝑗)}‖𝑌

(𝑚𝑗)
𝑖,𝑑)](0 < 𝑑 ≤ 𝐷) as ground truth for CVSS measurement

6: End For
7: 𝑌𝑖 = [𝑌 (𝑚1)

𝑖 ,… , 𝑌
(𝑚𝑗)
𝑖 ,… , 𝑌 (𝑚𝑀)

𝑖] (𝑗 = 1,… ,𝑀)
8: Set 𝑠𝑖 = 𝑓𝐵𝑎𝑠𝑒(𝑌𝑖) as ground truth for severity score
9: End For

10: For 𝑗 = 1,… ,𝑀 CVSS metric 𝑚𝑗 (𝑗 = 1,… ,𝑀) do
11: Train() ⊳ model training and testing for historical dataset
12: 𝑓 (𝑚𝑗)(𝑣𝑖) = argmax

𝑘(𝑚𝑗)
𝑓
(𝑚𝑗)

𝑘(𝑚𝑗)
(𝑣𝑖)

13: End For
14: For vulnerability instance 𝑣𝑝 (𝑝 = 1,… , 𝑁 ′) do
15: For CVSS metric 𝑚𝑗 (𝑗 = 1,… ,𝑀) do
16: 𝑍

(𝑚𝑗)
𝑝 = 𝑓 (𝑚𝑗)(𝑣𝑝) ⊳ Get the resulting predicted CVSS measurement

17: End For
18: 𝑍𝑝 = [𝑍(𝑚1)

𝑝 ,… , 𝑍
(𝑚𝑗)
𝑝 ,… , 𝑍(𝑀)

𝑝] (𝑗 = 1,… ,𝑀)
19: End For
20: The resulting predicted score 𝑧𝑝 = 𝑓𝐵𝑎𝑠𝑒(𝑍𝑝)
21: End procedure
4

o
W
s
c
e
P
i
m
t
m
c
t
m
p
l
t

4

t
a
a
G
o

4

data set, (𝑣𝑖, 𝑌𝑖) (0 < 𝑖 ≤ 𝑁) represents a mapping between a vulnera-
ility report 𝑣𝑖 and a vector 𝑌𝑖 describing the ground truth employed
y the ML algorithm.

CVSS metrics 𝑚 = [𝑚1,… , 𝑚𝑗 ,… , 𝑚𝑀] (0 < 𝑗 ≤ 𝑀), determine
the 𝑀 classes 𝑌𝑖 = [𝑌 (𝑚1)

𝑖 ,… , 𝑌
(𝑚𝑗)
𝑖 ,… , 𝑌 (𝑚𝑀)

𝑖] where each metric class
𝑌
(𝑚𝑗)
𝑖 has a set of measurements 𝑌

(𝑚𝑗)
𝑖 ∈ {𝑐1(𝑚𝑗) ,… , 𝑐𝑘(𝑚𝑗) ,… , 𝑐𝐾(𝑚𝑗)}

(0 < 𝑘(𝑚𝑗) ≤ 𝐾 (𝑚𝑗)). For example, CVSS V3 is employed with the set of
metrics 𝑚 = [𝐴𝑉 ,𝐴𝐶, 𝑃𝑅,𝑈𝐼, 𝑆, 𝐶, 𝐼, 𝐴] (where 𝑀 = 8), with the corre-
sponding measurements 𝑌𝑖 = [𝑌 (𝐴𝑉)

𝑖 , 𝑌 (𝐴𝐶)
𝑖 , 𝑌 (𝑃𝑅)

𝑖 , 𝑌 (𝑈𝐼)
𝑖 , 𝑌 (𝑆)

𝑖 , 𝑌 (𝐶)
𝑖 , 𝑌 (𝐼)

𝑖 ,
(𝐴)
𝑖] such as, 𝑌 (𝐴𝑉)

𝑖 ∈ {𝑁,𝐴,𝐿, 𝑃 } (where 𝐾 (𝐴𝑉) = 4), 𝑌 (𝐴𝐶)
𝑖 ∈

{𝐿,𝐻} (where 𝐾 (𝐴𝐶) = 2), 𝑌 (𝑃𝑅)
𝑖 ∈ {𝑁,𝐿,𝐻} (where 𝐾 (𝑃𝑅) = 3),

𝑌 (𝑈𝐼)
𝑖 ∈ {𝑁,𝑅} (where 𝐾 (𝑈𝐼) = 2), 𝑌 (𝑆)

𝑖 ∈ {𝑈,𝐶} (where 𝐾 (𝑆) = 2),
𝑌 (𝐶)
𝑖 ∈ {𝐻,𝐿,𝑁} (where 𝐾 (𝐶) = 3), 𝑌 (𝐼)

𝑖 ∈ {𝐻,𝐿,𝑁} (where 𝐾 (𝐼) = 3),
(𝐴)
𝑖 ∈ {𝐻,𝐿,𝑁} (where 𝐾 (𝐴) = 3). This definition is illustrated with
he vulnerability instance we introduced earlier, namely CVE-2021-
7172, which can be written as (CVE-2021-37172, [N, L, N, N, U, N,
, N]).

Algorithm 1 shows the base score computation of vulnerability
everity. Considering the vulnerability computing illustration shown in
ig. 2, Lines 3–9 in Algorithm 1 represent the procedure for Step1.
ines 10–13 show the process for Step2. And finally, Lines 14–20
nfold the procedure for Step 3. The classes 𝑚𝑗 with 𝐾 (𝑚𝑗)(𝐾 (𝑚𝑗) >
) amount of measurements, such as 𝐴𝑉 , is simplified into multiple
inary classification problems, to differentiate between classes. Assume
he employed ML model (e.g. SVM) is 𝑓 (), multi-class categorization
s achieved through a ‘‘one-against-all’’ method whereby 𝑓 (𝑚𝑗)(𝑣𝑖) =
rgmax

𝑘(𝑚𝑗)
𝑓
(𝑚𝑗)

𝑘(𝑚𝑗)
(𝑣𝑖).

The classification of CVSS measurements into class labels calibrates
everity scores from property attributes. A high label of AttackComplex-
ty (AC) for example, pertains to the attribute value of 0.44, and 0.77
ttribute score pertains to low label. These numerical values are use in
6

he CVSS calculation process. a
.5. Evaluation metrics

The contrast between severity predictions and originally labeled
nes is used for training and testing the classification performance.
e employ Accuracy, Balanced Accuracy metrics [40] as well as F1-

core [41] to assess this contrast. The performance implication ac-
ounts for unbalanced classes, such as AccessVector(AV) classes for
xample, where Network category has much larger sample size than
hysical category, as depicted in Fig. 4. This observation is emphasized
n Table 2 and Table 3. AccessVector(AV) classification may involve
ulti-class associations, whereby micro-average is used to compute

he mean of value across class associations. Micro-average differs from
acro-average in the sense that micro-average aggregates the weighted

ontributions of all classes, while macro-average take the average con-
ributions of all classes. And therefore, micro-average is preferable for
ulti-class categorization problems with class imbalance. The same ap-
roach is employed for other multi-class occurrences. Binary classifiers
ike the one employed for UserInteraction (UI) uses a confusion matrix
o infer the balanced-accuracy and F1-score values of the classification.

.6. Performance evaluation

We validate our approach following two evaluation experiments,
hat use respectively data for retrieved reports in existing repositories
nd data from crawled websites. We also published codes for ML
lgorithm implementation and vulnerability data correlation in two
ithub projects [42,43], to enhance further the reproducibility [44,45]
f our proposed methods.

.6.1. Vulnerability databases
156 040 vulnerability records corresponding to 2002 to 2020 range
re retrieved from NVD (November 3, 2021 release). The reports that

Array 15 (2022) 100209Y. Jiang and Y. Atif
Fig. 4. Imbalance classes of access vector.
Table 1
Evaluation of CVSS categorization.

CVSS-Metric NVD and Securityfocus text features NVD text features only

Micro F1-score Balanced accuracy Accuracy Micro F1-score Balanced accuracy Accuracy

V2 AccessVector(AV) 84.97% 81.05% 95.76% 80.87% 79.53% 95.09%
V2 AccessComplexity(AC) 71.18% 64.01% 83.63% 63.68% 63.64% 84.02%
V2 Authentication(Au) 56.34% 56.21% 95.00% 57.47% 55.34% 93.92%
V2 ConfidentialityImpact(C) 81.03% 80.42% 82.98% 80.66% 79.88% 82.45%
V2 IntegrityImpact(I) 82.40% 82.04% 84.60% 82.34% 81.85% 84.43%
V2 AvailabilityImpact(A) 80.12% 80.09% 81.08% 79.44% 79.19% 80.53%
V3 AttackVector(AV) 75.92% 68.33% 93.68% 75.86% 67.93% 90.36%
V3 AttackComplexity(AC) 81.94% 75.53% 95.58% 78.78% 74.83% 95.31%
V3 PrivilegesRequired(PR) 78.79% 73.25% 90.71% 77.40% 72.50% 85.77%
V3 UserInteraction(UI) 93.45% 93.05% 94.13% 91.41% 91.00% 92.11%
V3 Scope(S) 93.65% 92.64% 97.48% 93.08% 90.66% 96.29%
V3 ConfidentialityImpact(C) 88.36% 87.74% 91.46% 84.37% 82.33% 86.67%
V3 IntegrityImpact(I) 90.58% 90.33% 92.02% 86.91% 85.79% 87.45%
V3 AvailabilityImpact(A) 75.75% 71.55% 93.01% 77.84% 70.41% 89.18%
are marked as REJECT are removed from further consideration. A cor-
pus of CVSS V2 reports is set up by excluding reports that are not scored
under CVSS V2. 148 803 vulnerability reports are subsequently filtered
out, which are then correlated against trusted sources of data like ICS-
CERT(asserted by cybersecurity experts). Manufacturer data sources are
also used to resolve disparate scores. The proposed ML model uses
these scores as ground truths for training purposes. Following the same
approach, reports that are not rated under CVSS V3 are taken out to set
up 75 265 instances of CVSS V3 corpus data. CVSS V3 scored reports
are fewer from 2015 and earlier, with a total of 4 958 reports.

Python package pipeline in Scikit-learn library has been used to
implement the machine-learning pipeline including features extrac-
tion and other data processes. Severity scores from different CVSS
versions are thus transformed in a streamlined way. Processing NVD
vulnerability reports’ data starts from tokenisation and subsequent
feature extractions using CountVectorizer [46] and TdidfTransforer [47]
utilities. Subsequently, TF–IDF (referring to Term Frequency–Inverse
Document Frequency) values are calculated, to generate a TF–IDF ma-
trix from word features. Train_test_split procedure is used to randomly
divide data records into training (75%) and testing (25%) datasets,
following a random distribution.

Machine learning classifiers classify new vulnerability reports within
predicted severity patterns. The results obtained from our case studies
use LogisticRegression (LR) classifier, besides a 5-fold stratified cross-
validation applied to the CVSS training dataset to reduce overfitting
occurrences. CVSS classifier prediction performances for the testing
datasets are illustrated in Table 1. CVSS V3 metric classifications reach
an overall higher performance than CVSS V2 counterparts. However,
the larger set of metrics offsets the CVSS V3 error rate.

The outcomes assure satisfactory performances when contrasted to
closely related CVSS classification researches from Gawron et al. [9]
7

as well as Yamamoto et al. [29]. Gawron et al. apply Naive Bayes and
Neural Networks algorithms onto CVE vulnerability reports published
before and within 2016 to train CVSS version 3 classifiers. Their train-
ing dataset is adjusted to uneven the influence from data imbalance.
The performance of the model proposed by Gawron et al. uses only
an accuracy metric, that may not adequately capture unbalanced clas-
sification instances. Nevertheless, our accuracy is higher on average.
For example, the accuracy for Attack Vector classifier is 90.36% when
using only NVD vulnerability entries, or 93.68% when using both
NVD and SecurityFocus entries. In comparison, Attack Vector classifier
based on Neural Network in [9] has an accuracy of 88.9% on testing
data and 80.3% on validation data. The other Attack Vector classifier
based on Naive Bayes in [9] achieves an accuracy of 90.8% on testing
data and 92.3% on validation data. Yamamoto et al. train their CVSS
version 2 classifiers on vulnerability instances disclosed in NVD from
1999 till 2014. They employed several ML algorithms, including Naive
Bayes, LDA, SLDA (referring to supervised LDA), and Latent Semantic
Indexing.

4.6.2. Security news website
In this validation experiment, we crawl vulnerability reports from

SecurityFocus and map the reports to the corresponding CVE indexes.
This step is done in December 2020, before SecurityFocus’s shut down
in January 2021. Yet, our proposed methods are still valid in the aspect
that utilizing multiple vulnerability data sources enriches the features
and may enhance the performance of the classification models. These
external descriptive reports are added as text features together with
NVD reports for model training. The results are also listed in Table 1.
We observe that by adding more text features, the performance of our

CVSS scorer improves.

Array 15 (2022) 100209Y. Jiang and Y. Atif
Fig. 5. CPS vulnerability filter.
5. Cyber–physical systems vulnerability assessment

Vulnerabilities in CPS infrastructure are assessed to enumerate and
rank their severity to prevent threat-induced anomalies, or intrusion
attempts [1,2]. Here we present a vulnerability analysis case study of
several prominent CPS components. This case study is composed of
three main steps. First, we query and filter CPS relevant vulnerabilities
from online cybersecurity data sources. Then, we compute the CVSS
V3 base scores and corresponding vectors for retrieved vulnerability
instances. Finally, we perform an analysis to explore the statistical
patterns of existing CPS vulnerabilities.

5.1. CPS taxonomy

Jang-Jaccard, Julian, and Surya Nepal propose three categories of
vulnerabilities, namely hardware, software, and network infrastructure
and protocol vulnerabilities [48]. Hardware derived vulnerabilities are
mostly seen in the form of unauthentic or illegal hardware clones.
One example of hardware vulnerability is no physical-access protection
which an attacker might exploit to gain unauthorized physical access.
And hence, exploiting hardware base vulnerabilities enables the threat
agents to access or alter physical elements of a computer server (e.g., a
hard drive) or a network (e.g., a router). Software oriented vulnera-
bilities exist in system firmware or application software. An outdated
software with flaws in source code might be exploited by a bypass
threat that is further materialized by a code-injection attack triggered
by malicious actors. Network infrastructure and protocol vulnerabili-
ties frequently appear in network protocols such as TCP (referring to
transmission control protocol).

Considering the nature of CPS, we define a CPS as composed of
software (e.g., firmware, toolset, software library, etc.) and hardware
(e.g., a hard drive). Note that software further subsumes operating sys-
tem (OS) (e.g., a Windows system). OS functionally manages software
components and acts as an interface between application software and
hardware. For example, a buffer overflow attack might exploit an OS
that contains resource management error. It may trigger further Denial
of Service (DoS) and result in loss of control of this OS. Once an OS is
shut down, the application software components are deactivated. Hard-
ware, software, and OS are assembled and used in different ways within
CPS fabrics, creating various binaries with potential backdoors [1,2].
Software is embedded in hardware and thus relies on this hardware
component’s electricity supply and CPU. Hardware-dependent software
is one such example [49]. Meanwhile, software monitors, controls, and
8

actuates hardware components. Furthermore, CPS relies on a proper
network connection to transfer data and complete feedback loops.

We evaluate our streamlined vulnerability-severity scoring mech-
anism through vulnerability analysis practices on several prominent
CPSs such as PLCs, RTUs (or Remote Terminal Units), MTUs (or Master
Terminal Units) and HMIs (or Human Machine Interfaces). A PLC is
a crucial CPS asset that controls industrial devices to keep production
processes in order. A RTU transmits telemetry data from sensing devices
that are associated with physical power components to a MTU system.
Finally, a HMI is either a standalone device or embedded commu-
nication interface to visualize and monitor MTU activities and RTU
information flow [2].

5.2. CPS vulnerability filter

Using a Python script, we retrieve CPS-relevant vulnerability in-
stances from multiple online cybersecurity data sources, including
NVD, vendor websites, ICS CERT, and SecurityFocus. In addition,
we employ Shodan query APIs to obtain vulnerability instances. The
retrieval workflow is illustrated in Fig. 3. Following this vulnerability
retrieval workflow, we further added a query-keywords generator and
a CPS vulnerability filter, as illustrated in Fig. 5.

Using the proposed retrieval and filter workflow, we extracted
vulnerable component entities from CVE vulnerability reports using an
open-source NER (referring to Named Entity Recognition) model [50],
as illustrated in Fig. 5. We then map these retrieved entities with the
CPE as well as vendor websites to generate a list of terms related to
these components. We retrieved vendor information for each extracted
CPS vulnerability instance using NER and correlated against the CPE
database. To do so, we obtained vendor HTML links from CVE ref-
erence maps, based on which we crawl the vendor websites fetching
CPS vulnerability related data. This step aims at reconciling potential
inconsistent product names. Finally, these terms are combined with the
corresponding component versions of interest, that are then used as tags
to query vulnerability instances from public vulnerability data sources.
We also conducted manual checks on CPS-related vendor metadata, and
optimized our search engine outcomes to detect hidden metadata for
each vendor, in order to decrease possible false negatives.

More specifically, the query generating process is composed of three
major steps and presented in Fig. 6. Note that we only show the
processing details for CPE to ensure readability, although we process
data extracted from CPE, as well as NVD and vendor reports.

Array 15 (2022) 100209Y. Jiang and Y. Atif
Fig. 6. Generate query tags.
• In the first step, we parse the metadata from CPE, NVD vul-
nerability report and vendor reports, and extract vendor (e.g.,
“microsoft”), product (e.g., “codeql”) and version (e.g., “1.0.0”)
information from these metadata. We canonize these extracted
items into one entity as “Vendor Product Version”(e.g., “microsoft
codeql 1.0.0”), which results in a dictionary of 816875 such enti-
ties. We further generate a dictionary using a shortened metadata
as key, and then using our generated entity as value, which is
stored in ProductDB shown in Fig. 5.

• In the second step, we generate a list of query tags ranked by
matching similarities. To start with, we canonize system config-
uration information that is usually a result of system scan into
“Vendor Product Version”(e.g., “vmware woskstation player 15.0.3”)
value pairs. We use the vendor information (e.g., “vmware”) to
filter out entities in ProductDB from other vendors, then we
generate an initial query tag list selected from the remaining
entities if they partially share the tokens of software and ver-
sion information (e.g. “woskstation player 15.0.3”). Subsequently,
we measure the similarities between the system information
string (e.g., “vmware woskstation player 15.0.3”) and strings in
the initialized query tag list. By doing so, we generate a new
dictionary using CPE metadata as key and similarity as value
(e.g., ’cpe:2.3:a:vmware:workstation_player:15.0.3’: 100). We rank
this query tag list from higher similarity to lower similarity, and
send out the first five (can be customized to other numbers) query
tags as results. We summarize this query generation process in Al-
gorithm 2. In our approach, we compute the Levenshtein distance
to calculate the difference between two strings, and instantiated
our method by utilizing the python package fuzzy.ratio from [51].
The Levenshtein distance refers to the minimum number of the
required single-character editing to change one string into the
other [52].

• In the last step, we allow manual check and query selection to
decrease possible false positives based on other keywords that
distinguish them from CPS-related concepts. If we adopt one of
the query tags and use CPE-based query, the correlated database
would return vulnerability instances that share the same CPE
metadata. If we find that all the generated query tags are not
correct, we switch to report- or vendor-based query and retrieve
9

reports that contain the system configuration information string.
5.3. CPS vulnerabilities

We first investigate in Shodan database to extract product names,
versions and vendors of industrial PLC, RTU, MTU and HMI equip-
ments. The reason we started with Shodan investigation is that Shodan
contains open ports of connected ICS devices nearly in real time. It
also covers the most commonly used CPS-based CI equipments, and
therefore provides actual device names, versions and vendors for our
case study analysis. For example, using PLC as the query tag, we gather
products like Mitsubishi Q PLC. We use these 4 lists of CI product
features as input for our query generator to generate queries for our
correlated database.

By querying NVD, we obtain respectively 257, 445, 107, and 258
vulnerability reports related to PLC, RTU, MTU and HMI. These re-
trieved 1067 CPS related vulnerabilities extend till November 3, 2021.
Note that some vulnerabilities appear in more than one type of CPS
components. One example is the vulnerability instance CVE-2019-0708
appearing in both PLC and HMI vulnerability groups. We removed
duplicated vulnerabilities and kept 870 instances in the analysis corpus
when we need to assess general CPS vulnerability features.

We further analyze these identified CPS vulnerabilities to get their
CVSS V2 and V3 scores assigned by NVD. All of these CPS vulnerabili-
ties are assigned CVSS V2 scores and relevant labels like V2 access vec-
tor. In contrast, 319 (71.69%) RTU vulnerabilities, 121 (47.08%) PLC
vulnerabilities, 47 (43.93%) MTU vulnerabilities, and 121 (46.90%)
HMI vulnerabilities are not assigned CVSS V3 scores. We conduct an in-
vestigation of the CVSS V2 labels assigned by NVD to our retrieved CPS
vulnerabilities. Table 2 lists the exploitability and impact distributions
of these vulnerability instances under CVSS V2 metrics. Vulnerabilities
exist in the four types of CPS show similar distributions in terms
of access vector, access complexity, authentication, and availability
impact. There is a higher probability that exploiting PLC vulnerabilities
may bring lower confidentiality impact, but higher availability impact.
Generally, CPS vulnerabilities have higher exploitability compared to
the overall reported vulnerabilities, especially in terms of required
authentication and complexity of such exploits.

Vulnerability in endpoint communication of CPE devices may ex-
pose the critical data to unauthorized threat actors, and can be ex-
ploited by attacks like MiTM attacks. One such example is unencrypted
protocol. Vulnerability instance CVE-2021-22779 shows such improper

network segmentation weakness that has been identified in Modicon

Array 15 (2022) 100209Y. Jiang and Y. Atif

S
d
s
w
m

a
M
t
a
f

Algorithm 2 Query tag generation with system configuration information.
procedure VulnerabilityQueryGenerator(𝐷,𝑆1, 𝑆2, 𝑆3, 𝑚)
⊳ 𝐷 is a size 𝑛 dictionary that has one key 𝐾1 and one value 𝑉1, whereby 𝐾1 is a string representing metadata, and 𝑉1 is a string in the format
of "vendor product version".
⊳ Three imported strings: 𝑆1 for vendor: 𝑆2 for product; 𝑆3 for version.
⊳ 𝑚 is an imported number.

New query lists 𝑄𝑙𝑖𝑠𝑡 = []
Search term 𝑆4 = 𝑆2 + 𝑆3, 𝑆5 = 𝑆1 + 𝑆2 + 𝑆3

For all key-value pairs (𝐾𝑖, 𝑉𝑖) in D, (i=1,. . . ,n) do
if (𝑆1 in 𝑉𝑖) And (𝑆4 in 𝑉𝑖) then

𝑄𝑙𝑖𝑠𝑡.𝑎𝑝𝑝𝑒𝑛𝑑(𝐾𝑖, 𝑉𝑖)
End if

End ForNew query dictionary 𝑄𝑑𝑖𝑐𝑡 = {}
For all key-value pairs (𝐾𝑗 , 𝑉𝑗) in Qlist, (j=1,. . . , len(Qlist)) do
Compute strings similarity 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑗 = 𝑓𝑢𝑧𝑧𝑦.𝑟𝑎𝑡𝑖𝑜(𝑆5, 𝑉𝑗)
𝑄𝑑𝑖𝑐𝑡[𝐾𝑗] = 𝑖𝑛𝑡(𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑗)

End For
Sort dictionary 𝑄𝑑𝑖𝑐𝑡(𝐾𝑗 , 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑗) by value 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑗
Export the first 𝑚 key-value pairs in 𝑄𝑑𝑖𝑐𝑡

End procedure
Table 2
CPS vulnerability measurements distribution of CVSS version 2 base metrics.

Metric Measurement PLC RTU MTU HMI CPS CVE

AccessVector
Network 91.44% 93.03% 90.65% 87.21% 91.00% 83.20%
AdjacentNetwork 1.95% 0.22% 0.93% 3.10% 1.41% 2.43%
Local 6.61% 6.74% 8.41% 9.69% 7.59% 14.37%

AccessComplexity
Low 64.20% 64.27% 65.42% 56.59% 62.51% 58.39%
Medium 32.30% 30.11% 28.04% 39.92% 32.80% 38.62%
High 3.50% 5.62% 6.54% 3.49% 4.69% 2.98%

Authentication
None 90.27% 95.06% 90.65% 92.25% 92.78% 85.20%
Single 9.73% 4.94% 9.34% 7.75% 7.22% 14.76%
Multiple 0% 0% 0% 0% 0% 0.04%

ConfidentialityImpact
None 50.58% 46.29% 42.05% 40.31% 45.45% 32.80%
Partial 43.58% 42.47% 50.47% 42.64% 43.58% 49.05%
Complete 5.84% 11.24% 7.48% 17.06% 10.97% 18.15%

IntegrityImpact
None 49.42% 48.76% 54.21% 43.02% 48.08% 29.76%
Partial 44.74% 40.90% 38.32% 41.09% 41.61% 52.64%
Complete 5.84% 10.34% 7.48% 15.89% 10.31% 17.60%

AvailabilityImpact
None 28.02% 30.34% 37.38% 33.33% 31.21% 36.23%
Partial 54.09% 55.73% 52.34% 44.57% 52.30% 42.67%
Complete 17.89% 13.93% 10.28% 22.09% 16.49% 21.10%
O
i
t
(
i

5

n
T
t
i
w
c
d
(
q
V
S
c

M580 PLCs from Schneider Electric. Vulnerable Modicon PLCs employ
Schneider Electric UMAS protocol that operates over the Modbus pro-
tocol which lacks encryption and proper authentication mechanisms.
This vulnerability allows spoofing attacks to happen against the Mod-
bus communication between the PLC controller and the EcoStruxure
software in the engineering workstation.

Another common weakness in CPS devices is improper memory
access control that allow read or write operations of memory locations,
which may cause out-of-bounds read and/or write. One example of
such vulnerabilities is CVE-2020-15782 that exemplifies weakness of
improper operation restrictions within the bounds of a memory buffer
(or cwe119). This vulnerability has been identified in a list of Siemens
IMATIC firmware, which allows attackers with network access and
ownload rights to a PLC to bypass existing protections in the PLC,
uch as PLC sandbox, and obtain read–write memory access remotely
hile staying undetected. A PLC sandbox refers to a protected area of
emory where engineering code could run.

We distinguish some specific CPS manufacturers or vendor vulner-
bilities reported by Schneider Electric SE, Siemens AG, and Mitsubishi.
ore specifically, we discovered 29 vulnerabilities from Schneider Elec-
ric SE products and 39 vulnerabilities from Siemens AG products. We
lso identified 12 vulnerabilities from Mitsubishi. We also observe some
requently published products that are affected by CI vulnerabilities.
10

6

ne typical example is OpenSSL that appears in 120 CPS vulnerability
nstances. OpenSSL [53] is a library implementing the SSL/TLS pro-
ocol. SSL (referring to secure sockets layer) is the old name of TLS
referring to transport layer security). We also found 51 vulnerability
nstances related to Simatic PLCs and HMIs developed by Siemens AG.

.4. Characteristics analysis of CPS vulnerabilities

As we discussed earlier, more than 57% of extracted CPS vul-
erability instances are not scored under the CVSS V3 mechanism.
he scoring system shown in Section 4 is used to compute scores for
hese vulnerabilities, in order to bridge the gap of missing CVSS V3
nformation. We also calculate CVSS V3 scores for the vulnerabilities
ith inconsistent scores assigned. We design this re-computation step

onsidering two factors, (i) CVSS V3 is only applied to vulnerabilities
isclosed within and after 2015 in some data sources like NVD, and
ii) inconsistent scores are provided by multiple score sources. Subse-
uently, the diversity of their sub-scores is inspected to reflect CVSS
3 metric scores through property vectors evaluations. Exploitability,
cope and Impact base metric attributes for CPS vulnerabilities are
ontrasted against actual values and illustrated in Table 3.

CPS component attributes are evaluated individually in Columns 3–
(or Columns PLC, RTU, MTU, HMI), and averaged in Column 7 (or

Array 15 (2022) 100209Y. Jiang and Y. Atif

6

c
o
r
r
f
f

Table 3
CPS vulnerability measurements distribution of CVSS version 3 base metrics.

Metric Measurement PLC RTU MTU HMI CPS CVE

AttackVector

Network 90.27% 94.38% 93.46% 84.11% 90.48% 74.35%
AdjacentNetwork 1.17% 0.45% 0.93% 3.10% 1.43% 22.57%
Local 8.17% 5.17% 5.61% 12.79% 7.96% 2.01%
Physical 0.39% 0% 0% 0% 1.30% 1.06%

AttackComplexity Low 87.16% 85.39% 80.37% 91.09% 88.79% 91.21%
High 12.84% 14.61% 19.63% 8.91% 11.21% 8.79%

PrivilegesRequired
None 85.60% 89.44% 84.11% 85.66% 88.01% 69.55%
Low 12.84% 9.89% 15.89% 13.18% 10.69% 25.18%
High 1.56% 0.67% 0% 1.16% 1.30% 5.28%

UserInteraction None 84.82% 91.46% 91.59% 76.36% 84.49% 62.80%
Required 15.18% 8.54% 8.41% 23.64% 15.51% 37.20%

ScopeChange Unchanged 90.27% 96.18% 96.26% 87.21% 92.31% 83.64%
Changed 9.73% 3.82% 3.74% 12.79% 7.69% 16.36%

ConfidentialityImpact
None 44.36% 41.12% 41.12% 30.62% 36.77% 22.15%
Low 11.67% 5.62% 12.15% 13.95% 9.39% 19.10%
High 43.97% 53.26% 46.73% 55.43% 53.85% 58.75%

IntegrityImpact
None 52.92% 50.56% 54.21% 44.96% 46.81% 31.14%
Low 10.89% 5.62% 5.61% 13.18% 8.60% 17.20%
High 36.19% 43.82% 40.19% 41.86% 44.59% 51.66%

AvailabilityImpact
None 29.18% 32.58% 36.45% 30.23% 29.86% 38.22%
Low 3.11% 1.57% 3.74% 4.26% 2.22% 2.30%
High 67.70% 65.84% 59.81% 65.50% 67.93% 61.19%
Column CPS). Column 8 (or Column CVE) shows the overall rate of
published CVE reports that have assigned CVSS V3 scores, by dividing
the vulnerabilities with certain labeled measurement (e.g., Network)
against all the disclosed vulnerabilities till November 3, 2021. By doing
so, we show how the significant characteristics of CPS vulnerabilities
diverge when considering different cybersecurity data sources.

Exploitability property attributes of CPS vulnerability contrast with
CVE counterparts in average, showing that a significant amount
(90.48%) of attacks originate from Network-based sources, particularly
for RTU vulnerabilities. There are limited occurrences of adjacent
network-based attacks against CPS. However, local attacks occur more
frequently in CPS. A large amount of CPS vulnerabilities (98.72%) are
prone to exploitability by malicious actors without privilege or user
interaction. Change of scope is observed in 7.69% instances of CPS vul-
nerabilities, resulting in severe consequences. A higher diversity among
possible impact values is observed compared to exploitability and scope
property attributes. Confidentiality and availability are more impacted
than the integrity of vulnerable CPS components. Nevertheless, impact
of CPS vulnerabilities show polarization distributions when using CVSS
V3 as assessment metrics, which is the opposite when using CVSS V2
as metrics. Impact of CPS vulnerabilities are mostly none or partial
under CVSS V2 mechanisms. In contrast, CVSS V3 suggests that CPS
vulnerabilities exploitation result in either low or high compact.

CVSS V3 is used to rate CVSS severity base scores of retrieved
CPS vulnerability reports. HMI, RTU and PLC vulnerability instances
show high base scores at 6.5 and 8.5, respectively. MTU vulnerabilities
vary within the range [4.5–8.5]. Average scores of 7.54, 8.00, 6.88
and 7.51 in CVSS V3 Base-Scores are observed respectively for PLC,
RTU, MTU and HMI. Considering CVSS qualitative scales [54] from
quantitative CVSS V3 scores, CPS vulnerability severities are rated
medium ([4.0–6.9]) to high ([7.0–8.9]).

. Conclusion and future works

Discovering and evaluating vulnerabilities in CPS networks are both
rucial and challenging processes. We proposed to raise the efficiency
f vulnerability-severity scoring systems following CVSS standards, to
ate the severity of a reported vulnerability instance. Our approach
econciles inconsistent vulnerability severity scores that are contributed
rom different cybersecurity analysers, and also decrease potential con-
licts resulting from various CVSS mechanisms. We employed majority
11
voting technique to decide the score of inconsistent reports for the
same vulnerabilities in different cybersecurity repositories. We then
used these compatible vulnerability instances as ground truth to train
a machine-learning model as a scoring basis. The performance of the
proposed model is shown to obtain high accuracy and micro F1-score
thresholds compared to similar studies. A case study involving CPS
vulnerability reports from multiple repositories is illustrated to vali-
date the proposed vulnerability assessment model. A query-filter logic
is used to customize retrieved vulnerability instances. The outcomes
are contrasted against reported CVE instances to further analyze the
characteristics of CPS vulnerabilities. The results of our case study
also indicate that vulnerability patterns are diverse when relying on
different cybersecurity data sources, which may mislead cybersecurity
decision making in the perspective of patch prioritization or budget
allocation. And hence, a vulnerability analysis approach that correlates
multiple data sources is necessary to enhance further cybersecurity
awareness.

The proposed research can be further extended by adjusting the
majority voting tie while involving experts’ supervision in the assess-
ment loop. This approach includes security experts to provide some
startup settings, along with computational intelligence techniques to
adjust these settings dynamically. Another possible future direction
involves arithmetic means of different scores to weigh several sources,
to evaluate the reliability of scores provided from these sources. Finally,
we plan to investigate the correlations between vulnerability severity
with the attack surface of the system on which the vulnerability assess-
ment is applied. This last planned work is also closely related to the
environmental property of CVSS metrics.

CRediT authorship contribution statement

Yuning Jiang: Conceptualization, Methodology, Simulation, Data
collection, Writing – original draft. Yacine Atif: Supervision, Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Array 15 (2022) 100209Y. Jiang and Y. Atif
Acknowledgment

This research has been supported in part by EU ISF (Internal Secu-
rity Fund) in the context of Project Grant #A431.678/2016.

References

[1] Ashibani Y, Mahmoud QH. Cyber physical systems security: Analysis, challenges
and solutions. Comput Secur 2017;68:81–97.

[2] Humayed A, Lin J, Li F, Luo B. Cyber-physical systems security—A survey. IEEE
Internet Things J 2017;4(6):1802–31.

[3] Common vulnerability enumeration (CVE). 2022, MITRE, https://www.cve.org/.
[Accessed 01 June 2022].

[4] Common vulnerability scoring system (CVSS). 2022, Forum of Incident Response
and Security Teams, https://www.first.org/cvss/. [Accessed 01 June 2022].

[5] National vulnerability database (NVD). 2022, National Institute of Standards and
Technology (NIST), https://nvd.nist.gov/vuln. [Accessed 01 June 2022].

[6] Anwar A, Abusnaina A, Chen S, Li F, Mohaisen D. Cleaning the NVD: Compre-
hensive quality assessment, improvements, and analyses. 2020, arXiv preprint
arXiv:2006.15074.

[7] Jo H, Kim J, Porras P, Yegneswaran V, Shin S. GapFinder: Finding inconsistency
of security information from unstructured text. IEEE Trans Inf Forensics Secur
2020;16:86–99.

[8] Securityfocus Forum. 2021, Accenture, https://www.securityfocus.com/. [Ac-
cessed 01 June 2022].

[9] Gawron M, Cheng F, Meinel C. Automatic vulnerability classification using
machine learning. In: International conference on risks and security of internet
and systems. Springer; 2017, p. 3–17.

[10] Johnson P, Lagerström R, Ekstedt M, Franke U. Can the common vulnerability
scoring system be trusted? a bayesian analysis. IEEE Trans Dependable Secure
Comput 2016;15(6):1002–15, IEEE.

[11] Spanos G, Angelis L, Toloudis D. Assessment of vulnerability severity using text
mining. In: Proceedings of the 21st Pan-Hellenic conference on informatics. 2017,
p. 1–6.

[12] Scarfone K, Mell P. An analysis of CVSS version 2 vulnerability scoring.
In: 2009 3rd international symposium on empirical software engineering and
measurement. IEEE; 2009, p. 516–25.

[13] Fang Y, Liu Y, Huang C, Liu L. FastEmbed: Predicting vulnerability exploita-
tion possibility based on ensemble machine learning algorithm. Plos One
2020;15(2):e0228439, Public Library of Science San Francisco, CA USA.

[14] Ruohonen J. A look at the time delays in CVSS vulnerability scoring. Appl
Comput Inf 2019;15(2):129–35, Elsevier.

[15] Common platform enumeration (CPE). 2022, MITRE, https://cpe.mitre.org/.
[Accessed 01 June 2022].

[16] Computer emergency response team. 2022, Cybersecurity & Infrastructure
Security Agency, https://www.cisa.gov/uscert. [Accessed 01 June 2022].

[17] Microsoft Security Response Center (MSRC). 2022, Microsoft, https://msrc.
microsoft.com/update-guide/vulnerability. [Accessed 01 June 2022].

[18] Shodan database. 2022, Shodan, https://www.shodan.io/dashboard. [Accessed
01 June 2022].

[19] Exploit database. 2022, Offensive Security, https://github.com/offensive-
security/exploitdb. [Accessed 01 June 2022].

[20] Allodi L, Massacci F. Comparing vulnerability severity and exploits using case-
control studies. ACM Trans Inf Syst Secur 2014;17(1):1–20, ACM New York, NY,
USA.

[21] Geer D, Roytman M. Measuring vs. modeling. Login:: The Magazine of USENIX
& SAGE 2013;38(6):64–7, USENIX Association.

[22] Metasploit. 2022, Rapid 7, https://www.metasploit.com/. [Accessed 01 June
2022].

[23] Rodriguez LGA, Trazzi JS, Fossaluza V, Campiolo R, Batista DM. Analysis of
vulnerability disclosure delays from the national vulnerability database. In: Anais
do i workshop de seguranÇa cibernética em dispositivos conectados. SBC; 2018.

[24] Chen H, Liu R, Park N, Subrahmanian V. Using twitter to predict when vulnera-
bilities will be exploited. In: Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 2019, p. 3143–52.

[25] Zhu Z, Dumitraş T. Featuresmith: Automatically engineering features for malware
detection by mining the security literature. In: Proceedings of the 2016 ACM
SIGSAC Conference on computer and communications security. 2016, p. 767–78.
12
[26] Bullough BL, Yanchenko AK, Smith CL, Zipkin JR. Predicting exploitation of
disclosed software vulnerabilities using open-source data. In: Proceedings of the
3rd ACM on international workshop on security and privacy analytics. 2017, p.
45–53.

[27] Sabottke C, Suciu O, Dumitra? T. Vulnerability disclosure in the age of social
media: Exploiting twitter for predicting real-world exploits. In: 24th {𝑈𝑆𝐸𝑁𝐼𝑋}
security symposium ({𝑈𝑆𝐸𝑁𝐼𝑋} security 15). 2015, p. 1041–56.

[28] Bozorgi M, Saul LK, Savage S, Voelker GM. Beyond heuristics: learning to classify
vulnerabilities and predict exploits. In: Proceedings of the 16th ACM SIGKDD
international conference on knowledge discovery and data mining. 2010, p.
105–14.

[29] Yamamoto Y, Miyamoto D, Nakayama M. Text-mining approach for estimating
vulnerability score. In: 2015 4th international workshop on building analysis
datasets and gathering experience returns for security. IEEE; 2015, p. 67–73.

[30] Jiang Y, Atif Y. An approach to discover and assess vulnerability severity
automatically in cyber-physical systems. In: 13th international conference on
security of information and networks. 2020, p. 1–8.

[31] CVE numbering authorities. 2022, MITRE, https://cve.mitre.org/cve/cna.html.
[Accessed 01 June 2022].

[32] Common weakness enumeration (CWE). 2022, MITRE, https://cwe.mitre.org/
index.html. [Accessed 01 June 2022].

[33] ICS-CERT advisories. 2022, Cybersecurity & Infrastructure Security Agency, https:
//us-cert.cisa.gov/ics/advisories. [Accessed 01 June 2022].

[34] Siemens Report for CVE-2019-6580, CVE-2019-6581 and CVE-2019-6582. 2021,
https://cert-portal.siemens.com/productcert/pdf/ssa-212009.pdf. [Accessed 01
June 2022].

[35] Bodenheim R, Butts J, Dunlap S, Mullins B. Evaluation of the ability of the
shodan search engine to identify internet-facing industrial control devices. Int J
Crit Infrastruct Prot 2014;7(2):114–23, Elsevier.

[36] Fagroud FZ, Ajallouda L, Toumi H, Achtaich K, El Filali S, et al. IOT
search engines: Exploratory data analysis. Procedia Comput Sci 2020;175:572–7,
Elsevier.

[37] Tao D, Cheng J, Yu Z, Yue K, Wang L. Domain-weighted majority voting for
crowdsourcing. IEEE Trans Neural Netw Learn Syst 2018;30(1):163–74, IEEE.

[38] Mahto DK, Singh L. A dive into web scraper world. In: 2016 3rd international
conference on computing for sustainable global development. IEEE; 2016, p.
689–93.

[39] Beautiful soup. 2022, Leonard Richardson, https://www.crummy.com/software/
BeautifulSoup/bs4/doc/. [Accessed 01 June 2022].

[40] Brodersen KH, Ong CS, Stephan KE, Buhmann JM. The balanced accuracy and
its posterior distribution. In: 2010 20th international conference on pattern
recognition. IEEE; 2010, p. 3121–4.

[41] Powers DM. Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. 2011, Bioinfo Publications.

[42] NVD feature analysis. 2021, Yuning Jiang, https://github.com/Yuning-J/
NVDFeatureAnalysis. [Accessed 01 June 2022].

[43] Vulnerability classifier. 2021, Yuning Jiang, https://github.com/Yuning-J/
VulnerabilityClassifier. [Accessed 01 June 2022].

[44] Stodden VC. Reproducible research: Addressing the need for data and code
sharing in computational science. 2010.

[45] González-Barahona JM, Robles G. On the reproducibility of empirical software
engineering studies based on data retrieved from development repositories. Empir
Softw Eng 2012;17(1):75–89, Springer.

[46] Countvectorizer. 2022, scikit-learn, https://scikit-learn.org/stable/modules/
generated/sklearn.feature_extraction.text.CountVectorizer.html. [Accessed 01
June 2022].

[47] Tdidftransforer. 2022, scikit-learn, https://scikit-learn.org/stable/modules/
generated/sklearn.feature_extraction.text.TfidfTransformer.html. [Accessed 01
June 2022].

[48] Jang-Jaccard J, Nepal S. A survey of emerging threats in cybersecurity. J Comput
System Sci 2014;80(5):973–93, Elsevier.

[49] Ecker W, Müller W, Dömer R. Hardware-dependent software. In: Hardware-
dependent software. Springer; 2009, p. 1–13.

[50] Yang Z, Salakhutdinov R, Cohen WW. Transfer learning for sequence tagging
with hierarchical recurrent networks. 2017, arXiv preprint arXiv:1703.06345.

[51] Fuzzywuzzy: Fuzzy string matching in python. 2021, https://github.com/
seatgeek/fuzzywuzzy. [Accessed 01 June 2022].

[52] Haldar R, Mukhopadhyay D. Levenshtein distance technique in dictionary lookup
methods: An improved approach. 2011, arXiv preprint arXiv:1101.1232.

[53] OpenSSL. 2022, https://www.openssl.org/. [Accessed 01 June 2022].
[54] CVSS V3 documentation. 2022, Forum of incident response and security

teams, https://www.first.org/cvss/v3.1/specification-document. [Accessed 01
June 2022].

http://refhub.elsevier.com/S2590-0056(22)00055-8/sb1
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb1
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb1
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb2
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb2
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb2
https://www.cve.org/
https://www.first.org/cvss/
https://nvd.nist.gov/vuln
http://arxiv.org/abs/2006.15074
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb7
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb7
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb7
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb7
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb7
https://www.securityfocus.com/
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb9
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb9
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb9
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb9
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb9
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb10
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb10
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb10
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb10
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb10
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb11
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb11
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb11
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb11
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb11
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb12
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb12
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb12
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb12
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb12
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb13
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb13
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb13
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb13
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb13
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb14
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb14
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb14
https://cpe.mitre.org/
https://www.cisa.gov/uscert
https://msrc.microsoft.com/update-guide/vulnerability
https://msrc.microsoft.com/update-guide/vulnerability
https://msrc.microsoft.com/update-guide/vulnerability
https://www.shodan.io/dashboard
https://github.com/offensive-security/exploitdb
https://github.com/offensive-security/exploitdb
https://github.com/offensive-security/exploitdb
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb20
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb20
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb20
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb20
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb20
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb21
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb21
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb21
https://www.metasploit.com/
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb23
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb23
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb23
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb23
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb23
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb24
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb24
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb24
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb24
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb24
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb25
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb25
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb25
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb25
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb25
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb26
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb26
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb26
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb26
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb26
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb26
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb26
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb27
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb27
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb27
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb27
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb27
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb28
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb28
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb28
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb28
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb28
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb28
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb28
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb29
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb29
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb29
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb29
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb29
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb30
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb30
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb30
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb30
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb30
https://cve.mitre.org/cve/cna.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html
https://us-cert.cisa.gov/ics/advisories
https://us-cert.cisa.gov/ics/advisories
https://us-cert.cisa.gov/ics/advisories
https://cert-portal.siemens.com/productcert/pdf/ssa-212009.pdf
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb35
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb35
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb35
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb35
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb35
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb36
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb36
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb36
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb36
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb36
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb37
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb37
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb37
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb38
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb38
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb38
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb38
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb38
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb40
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb40
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb40
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb40
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb40
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb41
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb41
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb41
https://github.com/Yuning-J/NVDFeatureAnalysis
https://github.com/Yuning-J/NVDFeatureAnalysis
https://github.com/Yuning-J/NVDFeatureAnalysis
https://github.com/Yuning-J/VulnerabilityClassifier
https://github.com/Yuning-J/VulnerabilityClassifier
https://github.com/Yuning-J/VulnerabilityClassifier
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb44
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb44
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb44
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb45
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb45
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb45
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb45
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb45
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb48
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb48
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb48
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb49
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb49
http://refhub.elsevier.com/S2590-0056(22)00055-8/sb49
http://arxiv.org/abs/1703.06345
https://github.com/seatgeek/fuzzywuzzy
https://github.com/seatgeek/fuzzywuzzy
https://github.com/seatgeek/fuzzywuzzy
http://arxiv.org/abs/1101.1232
https://www.openssl.org/
https://www.first.org/cvss/v3.1/specification-document

	Towards automatic discovery and assessment of vulnerability severity in cyber–physical systems
	Introduction
	Related works
	Background
	Vulnerability data sources
	Vulnerability severity metrics
	CVSS exploitability property:
	CVSS scope property:
	CVSS impact property:

	Severity score computing process

	Discovering vulnerability severity
	System overview
	Data collection
	Majority voting for inconsistent scores
	Vulnerability severity computing
	Evaluation metrics
	Performance evaluation
	Vulnerability databases
	Security news website

	Cyber–physical systems vulnerability assessment
	CPS taxonomy
	CPS vulnerability filter
	CPS vulnerabilities
	Characteristics analysis of CPS vulnerabilities

	Conclusion and future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

