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Abstract

Preschool children, when diagnosed with Autism Spectrum Disorder (ASD), often ex-
perience a long and painful journey on their way to self-advocacy. Access to standard of
care is poor, with long waiting times and the feeling of stigmatization in many social set-
tings. Early interventions in ASD have been found to deliver promising results, but have a
high cost for all stakeholders. Some recent studies have suggested that digital biomarkers
(e.g., eye gaze), tracked using affordable wearable devices such as smartphones or tablets,
could play a role in identifying children with special needs. In this paper, we discuss the
possibility of supporting neurodiverse children with technologies based on digital biomark-
ers which can help to a) monitor the performance of children diagnosed with ASD and b)
predict those who would benefit most from early interventions. We describe an ongoing
feasibility study that uses the “DREAM dataset”, stemming from a clinical study with
61 pre-school children diagnosed with ASD, to identify digital biomarkers informative for
the child’s progression on tasks such as imitation of gestures. We describe our vision of a
tool that will use these prediction models and that ASD pre-schoolers could use to train
certain social skills at home. Our discussion includes the settings in which this usage could
be embedded.

1 Introduction

Society 5.0 [1] aims to create a human-centered society of the future through better use of
technology. Neurodiversity is an increasingly important topic in today‘s society where the
vision of Society 5.0 can be achieved. A definition of neurodiversity is the viewpoint that brain
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differences are normal rather than deficits. This concept can help reduce stigma around learning
and thinking differences. Neurodiversity describes these natural variations in the human brain,
which affect sociability, learning, attention and mood. Neurodiverse groups include ADHD,
autism, dyspraxia, dyslexia, dyscalculia, dysgraphia, and Tourette syndrome. People who are
‘neurotypical’ are those whose brain works in the way that society expects1. Neurodiverse
people often suffer from stigmatization and lack of inclusion, e.g., children with Autism cannot
follow normal school careers. Neurodiverse individuals have also contributed to society and it
is important that they also continue to do so. Diagnostic advancements lead to an increased
awareness and recognition of neurodiversity by parents, teachers and healthcare professionals.
As a movement, neurodiversity “emphasizes natural variation and the unique skills, experiences,
and traits of neurodivergent individuals” rather than “focusing on pathology and impairment”
[2].

Figure 1: Autism Disease Burden: parent and child (patient) journey

Human suffering along the journey to diagnosis and after diagnosis is illustrated in Figure
1. These are exacerbated through the lack of awareness of neurodiversity and how to address
these in a human centered manner.

Can technology help to build bridges and act as an enabler to better accommodate neuro-
diversity? We aim to investigate whether

1. The interaction with technical devices could enable improved social interaction and com-
munication

2. Digital biomarkers could support the development of new tools to improve daily living by
more comprehensive monitoring and self-advocacy

In this paper we discuss the feasibility of how technology with digital biomarkers could help to
develop self-advocacy in the case of autism spectrum disorder (ASD).

1https://ioni24.wildapricot.org/about-us
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2 Autism Spectrum Disorder (ASD)

Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders that causes per-
sistent deficits in children’s social communication skills and behavior [3].

In the Diagnostic and Statistical Manual of Mental Disorders 5 (DSM-5), social communi-
cation skills are described as (i) deficits in social-emotional reciprocity, (ii) deficits in nonverbal
communicative behavior, and (iii) deficits in developing, maintaining, and understanding rela-
tionships. Recently, the WHO‘s International Classification of Function (ICF) for Autism has
been well received by people affected by ASD and those treating them since it attempts to
embrace the biomedical and neurodiverse paradigms. More importantly, the ICF emphasizes
the strengths and abilities of autistic individuals [4].

ASDs are complex life-long conditions that begin in early childhood and last throughout
a person’s life [5]. The incidence of diagnosed ASD preschoolers is increasing [6], especially
through increased awareness from parents, teachers and healthcare professionals and referrals
to specialist centers by pediatricians.

Early signs of ASD can be noticed by parents/caregivers or pediatricians before a child
reaches one year of age. Nevertheless, symptoms become more consistently visible at the age of
2 to 3 years. Some children show only mild functional impairment related to their ASD until
they start school, after which their deficits may be pronounced when amongst their peers [7].

Social communication and interaction deficits can include for example making little or in-
consistent eye contact, appearing not to look or listen to people who are talking, not responding
or being slow to respond to verbal bids for attention, having difficulties with the back and forth
of conversation, having difficulties to adjust behavior to different social situations or to share
in imaginative play or in making friends.

Restrictive/repetitive behaviors may include for example repeating certain behaviors or
having unusual behaviors, such as repeating words or phrases (a behavior called echolalia),
having a lasting intense interest in specific topics, such as numbers, details, or facts, showing
overly focused interests, such as with moving objects or with parts of objects, becoming upset
by slight changes in a routine and having difficulty with transitions, as well as being more
sensitive or less sensitive than other people to sensory input, such as light, sound, clothing, or
temperature.

One major source of disruption and stress for parents is caring for a child who experiences
difficulty regulating their emotions [8].Children with ASD frequently have emotional regula-
tion difficulties associated with internalizing symptoms, such as anxiety and depression, and
externalizing behaviors, such as aggression and hyperactivity. Not surprisingly, such problem
behaviors have been found to predict stress in parents of children with ASD, suggesting a
possible role of emotion dysregulation in parent quality of life and family functioning [8].

Evidence shows that early intervention may have a positive impact on cognitive, social skill
and language development [9, 10, 11, 12, 13]. However, results demonstrate high heterogeneity
in responses to treatment with some children progressing more rapidly than others [14, 15].
Children with ASD and their families often have to endure long and distressful journeys until
ASD gets diagnosed, and until access to therapy is granted. There is a scarcity in therapists
and early intervention sites creating a bottle-neck for families to access early intervention. The
challenges of implementing large-scale, community-based early intervention have been acknowl-
edged by WHO2. Also, the Swiss government recognized early intervention as one of three key
priorities to improve the care situation of people with ASD in Switzerland [16].

2WHO EXECUTIVE BOARD EB133/4 133rd session 8 April 2013 Provisional agenda item 6.1
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Early intensive intervention, only offered by specialist centers, is resource-intensive and
causes a high economic burden for families and the healthcare system. Cost for early intensive
therapy per child are estimated at 50’000 to 100’000 SFr [17]. Newer publications estimate the
total cost per child for a 2-year intensive treatment up to 200’000 SFr [18].

Health Policy Makers and governments are increasingly faced with the urgent challenge
for more effective resource planning and allocation towards early and intensive intervention
approaches while it is not yet possible to identify which children benefits from which program
[19].

Overall, there is a need to improve and broaden access to personalized and early interven-
tions. Potential options to achieve this are for example:

1. Differentiated medical decision making and implementation of personalized medicine:
identify profiles of children that are likely to respond to early treatment and/or moni-
tor and evaluate their progress

2. Therapeutic aids or monitoring tools tailored to individual needs of children with ASD
that for example parents/caregivers could use in their home settings complementary to
therapist sessions

Advancement in digital health and in digital biomarker research, as described in the next
section, can offer a solution path to address above mentioned unmet needs and could facilitate
transition phases from parent dependent care to self-advocacy during the development from
childhood to an adult independent person (Figure 2)

3 Potential Role of Digital Biomarkers in Autism

The use of endophenotypes for psychiatric disorders is one of the proposed methods for con-
necting behavioural symptoms, disease diagnosis with genetic risk variant detection. It is being
increasingly used in developmental disabilities, particularly looking at highly heritable polyge-
netic conditions such as ADHD, autism, and many psychiatric disorders [20]. Endophenotypes
are heritable, objective biological markers that can be measured directly [21]. These may be
categorized as neurophysiological, endocrinological, neuroanatomical, or cognitive. Since these
are directly measured and quantifiable, endophenotypes may be more insightful to traditional
methods of diagnoses and/or measure of disease progression and follow ups [21].

Sensory phenotypes are an example of endophenotypes for psychiatric disorders [21]. Pa-
tients with Autism show heightened sensorimotor function which prompts atypical sensory
reactivity and sensory over-responsivity. This is characterized by an extremely negative re-
sponse to sensory stimuli. ASD’s sensory over-responsivity correlates to abnormal changes in
the connectivity between the thalamus and the cortex [21].

Digital phenotyping is a method for measuring phenotypes using digital technology, such
as smartphones and wearable devices, allowing continuous collection of clinical data [22]. Col-
lection of data can be passive e.g., GPS, accelerometer, gyroscopes or active e.g., surveys and
audio samples.

Eye tracking is being researched as a tool to measure social orienting in Autism, with mixed
results and currently, considered as inconclusive [23]. The majority of the eye tracking studies
have reported less attention to faces, defined as fixation time in Autistic young children in
comparison to their typically developing (TD) peers. In contrast, some studies did not observe
differences in attention to faces between these two groups. Possible confounds for this difference
in results may include presentation of the face stimulus, social context and stimuli such as the
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Figure 2: The potential role of Digital Biomarkers in Autism

number of people involved, and the complexity of the communication i.e., with or without
social interactions, child directed speech, and eye contact [23]. Hence, Autistic young children
showed diminished attention to faces when the stimulus is more socially engaging and/or social
intricacy escalates.

This level of social orienting at baseline appears to be a promising predictor of early devel-
opment trajectories and outcomes of young children with Autism [14, 15]. Social motivation
theory postulates that reduced social attention towards complex social engagement negatively
impacts social learning experiences [23]. This then impacts the development of social skills in
early development such as Joint Attention, Turn Taking and Imitation.

Another critical aspect relates to the definition of positive compared with no or minimal
outcomes in Autism research [19]. Current outcomes measures might not be sensitive enough
to record gains in children making very slow or small gains. However, these small progressions
might be meaningful to their parents, teachers, therapists, health care professionals and most
importantly, to the child. Parent, Child and Person relevant outcomes are illustrated below.
The use of technologies such as eye tracking is currently being investigated to address this need
in Autism research [23] and potential practical applications [24, 25].

Current unmet needs and these promising results on digital biomarkers in ASD provide
a use case for exploring and implementing a personalized medicine approach among autistic
preschoolers: identifying which children might benefit from which educational approaches soon
after their diagnosis and/or monitoring their progress.
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4 A Feasibility Study

In order to address this use case, we conduct a feasibility study that uses a publicly available
dataset from the DREAM study.

4.1 The DREAMS Dataset

The Development of Robot-Enhanced therapy for children with AutisM Spectrum (DREAM,
[26]) dataset was developed from a randomized-controlled trial comparing robot-enhanced ther-
apy with standard human therapy based on applied behavior analysis (ABA), a structured
intervention following behavioral learning principles. The study was conducted between March
2017 and August 2018.

The clinical trial included 61 children between 3 and 6 years of age, all diagnosed with
ASD. 30 of the children interacted with a humanoid robot (RET-group), and the remaining 31
children received standard human treatment (SHT-group) (see Figure 3).

Figure 3: Clinical Trial Design of the DREAM Study

Following a clinical study protocol the participants underwent an initial assessment fol-
lowed by 8 bi-weekly interventions, and a final assessment. Each intervention targeted three
social skills: imitation, joint-attention, and turn-taking. Each intervention was divided into
three to six parts (“sessions”), following a task script. For comparability reasons, the therapy
environment was designed for the two configurations (RET and SHT) as similar as possible.
Slight variations were undertaken for different tasks, e.g., some tasks used a touch screen placed
between the child and the interaction partner, the so-called Sandtray.

Twelve unique intervention scripts were used, specifying different exercises and three dif-
ficulty levels. As the child reached maximum performance on one level, she/he moved to the
next level. All therapies were recorded using a sensorized intervention table able to record and
interpret the child’s behavior during the intervention (analyzing, for example, eye gaze, body
movement, facial expression).

A total of 3121 therapy sessions were recorded including 306 hours of therapy. To our
knowledge, this is the largest publicly available dataset from a clinical study of ASD.
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The public data set includes, besides Child ID, gender, age in months and date and time
of recording: 3D skeleton data, comprising joint positions for upper body, head position and
orientation and 3D eye gaze vectors, both measured at 25 Hz. Furthermore, the data comprises
the therapy condition (RET or SHT) and task (Joint attention, Imitation, or Turn-taking), as
well as initial Autism Diagnostic Observation Schedule (ADOS) scores.

4.2 Objectives

The objective of our feasibility study is to use the DREAM dataset to build predictive models
which are capable of a) monitoring the performance of ASD pre-schoolers and b) predicting
those who would benefit most from such interventions.

This shall be done by predicting the children’s performance on given tasks on the basis
of the digital biomarkers described above. With the existing DREAM dataset, we can train
machine learning models since e.g. the progression of study participants to higher levels of task
difficulty is known as a ground truth. Later, our models can be fed with biomarkers and predict
children’s performance – such that children can receive a feedback without the presence of e.g.
therapists.

4.3 Proposed Approach

4.3.1 Task definition and data preparation

Before we describe the classifier algorithms that we propose to apply for predicting task perfor-
mance, let us first define the prediction task a bit more precisely: based on the study protocol
described in Section 4.1, we construct data objects to be classified by merging all sessions be-
longing to a given intervention and targeting the same task. We include data from the initial
assessment and from interventions 1 to 7. For instance, it may turn out that child 3 had two
sessions with the task of joint attention in intervention 1 – these two sessions are then merged
and treated as one data object. Each of these data objects is then assigned a class (ground
truth) as follows:

• if the data originated from an initial assessment, we observe the difficulty level that was
used in intervention 1 for the same task. If the child had to start at level 1, we set
class = 0, if the child started on either level 2 or 3, we set class = 1

• for data originating from any other intervention i, we observe the difficulty level used in
intervention i+1 – stagnation, i.e. staying on the same level means class = 0, moving to
the next level results in class = 1

Working only with initial assessment sessions results in 132 data objects, whereas adding the
intervention sessions yields 948. While more data usually leads to better results, we have
already observed in some preliminary experiments that including the intervention sessions has
the drawback that there are only three difficulty levels, i.e. moving to the next level occurs
rarely and, consequently, most sessions have class = 0.

4.3.2 Feature Engineering and Prediction Algorithms

The approach that we propose relies on a comparison of two basic types of algorithm:

• Application of white-box models, i.e., human-interpretable ML models such as decision
trees or rule learners as used in e.g., [27, 28]. Such an approach requires the definition
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of “meaningful” features, e.g., as proposed in [28] – durations of fixations and saccades
(quick eye movements). These features are aggregations of raw measurements over entire
therapy sessions. For our purposes, fixating something for longer periods can generally
be a valuable feature, but fixation of so-called “Areas of Interest” (AoI, see [28]) might
be even more relevant, considering e.g., the face of the robot or therapist, as well as
the sandtray, as relevant AoIs (see Section 3). Since the exact positions of AoI are not
known, we suggest to work with a grid, collecting the number of gazes and/or fixations
falling into each grid cell – with the hope that the machine learning algorithms can detect
which gaze targets (grid cells) lead to success. We further hypothesize that the degree
of motion that a child exhibits during a session – as e.g. measured by the standard
deviation of x, y and z coordinates of the limbs – can be an indicator of attention (where
an excessive amount of motion or null values of coordinates indicates a lack of focus). The
human interpretability of these models is their biggest advantage allowing therapists and
parents deeper insights into a child’s success in performing tasks. A big drawback is the
difficulty to represent the temporal evolution of a child’s behaviour, e.g. whether motion
got stronger or fixations got rarer in certain parts of a session. Human experts need to
define the most reasonable way of aggregating the temporal data – with a high likelihood
of losing relevant information.

• Application of black-box models, i.e. models such as convolutional neural networks
(CNNs) as in [29, 30], which often perform better than their white-box counterparts,
but do not offer directly human-interpretable models. A large advantage of CNNs (or
generally deep learning approaches) is their ability to work with the raw data, e.g. head
gaze vectors recorded at 25Hz – and thus including the temporal evolution of gaze patterns
– and to determine relevant patterns, without the need for experts to define “meaningful”
aggregated features as explained above (which might not be features that are actually most
helpful). Instead, CNNs provide a kind of automated feature learning and extraction
mechanism [31] for tasks like image or text classification that have a large number of
“raw” inputs such as pixels or individual words. Explanations of CNN predictions can be
generated using e.g. SHAP [32] – we will need to investigate whether these explanations
are sufficient for the information needs of parents and therapists.

End results from this research are expected to better describe the heterogeneity in outcomes
and performance trajectories to early educational intervention. We expect that ML has the
potential to discover new patterns on these difficult research questions, i.e. to contribute to
medical insight. Both approaches will employ Good Machine Learning Practices GMLP3

However, both approaches are limited by the fact that the DREAM dataset does not contain
information about the activities of the robot or therapist. In particular, we do not know at which
points in time the child is prompted for an action. Such information would be very valuable
for judging the degree to which the child’s attention (e.g. fixation of an AoI) is required at a
given time. In fact, children may successfully complete tasks even though they hardly fixate
the therapist/robot or sandtray – provided that the scarce fixations that occur happen at the
right moment. Future endeavours (including our own) may benefit greatly from constructing
datasets purposefully to reflect a scenario as described in the next section – including e.g. the
timestamps of prompts for action.

3https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-
learning-software-medical-device
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5 Future Work: Tool Design

The models to be developed are to be provided in the framework of a tool for children diagnosed
with ASD for use in therapeutic or home settings, with optional support from therapists or
special needs teachers, caregivers, or parents. As a result, this design proposal should address
the goals that the infrastructure should be as adequate, portable, affordable, scalable, and
practical as possible. As illustrated by the DREAM dataset [26], it is possible to collect sensor
data in the context of structured therapy sessions using robots and humans.

While the sensor data from the DREAM dataset is extensive, the experimental set-up is
very resource-intensive, most likely not feasible for use in the daily life of children diagnosed
with ASD. With this line of reasoning, there are initiatives to develop applications for robot
assisted therapy for children with ASD to be used in the child’s own home environment, guided
by a parent or caregiver [33]. These systems are typically based on affordable devices such
as tablets or mobile phones and as a result much closer to practical use, but also much more
limited in terms of sensor capabilities.

For this reason, we propose a lightweight/technical approach with the use of mobile devices.
Concretely, an approach with the possible use of consumer tablets is pursued here. An app
to be developed will run on these tablets, on which children already diagnosed can complete
individual therapy exercises or tasks, and the success of the therapy will be displayed for
different stakeholders, see Figure 4. In addition, the app should be able to run therapy or
exercise sessions on the one hand and record or create the exercise session by the therapists
and special needs teachers on the other hand.

Figure 4: The suggested approach using mobile devices

An efficient technical feasibility is given – extensive web technology-based software libraries
for eye movement detection—mostly from the field of web design analysis—are available. In
addition, various augmented (AR) and virtual reality (VR) applications on mobile devices
show that head and/or body movements can also be adequately captured, mostly without
initial training. However, it might be necessary to fix the tablet on a holding device so that
the detection accuracy could be increased. AR and/or VR in particular could offer a more
advanced therapy perspective, similar to the robot-based therapy from the “DREAM” setting
[26]. It would indeed be conceivable —- and still to be investigated and verified -— that the
therapy success could also be increased by the additional use of avatars in addition to human
visages.

The technical requirements are manageable compared to the requirements of the therapy
setting. With the app and the underlying system, it should be possible for the children to use the
app with the support and/or guidance of parents and other caregivers, as well as for therapists
and special needs teachers to use the system themselves to design the practice sessions. These
practice sessions and the whole therapy setting need to be the subject of further research and
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a comprehensive design process. It would be conceivable that a variety of short exercises in
the course of therapy are offered as AR/VR or with videos or livestreams (with two devices).
Furthermore, it should be possible for special educators or support persons to accompany the
session with pre- or post-questions, e.g., via a dialogue system.

Equipped with this analysis strategy, we aim to develop a marketable and reimbursable
digital medical device, meeting Medical Device Regulation MDR and Germany’s DIGA and
similar requirements. We have spoken to the Swiss Autism Patient Organisation, clinicians,
therapists and individual patients verifying that there is an unmet need for such a device, using
DBM, to improve patient advocacy and help their parents and teachers. Our ongoing feasibility
study will deliver an early prototype of a digital tool to identify preschoolers, already diagnosed
for ASD, with the highest likelihood to respond to therapy and monitor their treatment success.
The prototype will be further tested with patient organisations, clinicians, and therapists. Once
the feasibility is verified, we will also conduct more research and will be able to attract investors
for further sustainable economic growth. In 2021, the FDA approved an AI based medical device
to be used by health care providers to aid in the diagnosis of ASD [34]. This can potentially help
facilitate earlier intervention and then more efficient use of specialist resources . This device also
used a video input of the child from the carer‘s smartphone but without DBM, along with other
inputs. Potential impact of the applications of AI: (a) in shortening the journey to diagnosis in
primary care settings and (b) reducing patient and caregiver burden after diagnosis using DBM
from video inputs are encouraging approaches as how technology can be a potential agent of
change towards neurodiversity.

6 Conclusions

Motivated by the urgent need to improve and broaden access to personalized and early inter-
ventions for children diagnosed and affected by ASD, in this paper, we presented the settings
for a feasibility study that aims to find out the extent to which technologies that are based on
digital biomarkers can support neurodiverse children. Specifically, the already existing DREAM
dataset was taken as a ground truth to build predictive models capable of a) monitoring the
performance of children diagnosed with ASD and b) predicting those who would benefit most
from early interventions.

Based on the intermediate findings, we envision an approach that, by incorporating predic-
tive models, will support ASD pre-schoolers to train certain social skills. The approach will
combine sensors for tracking digital biomarkers, to be fed to the machine learning models for
triggering the feedback to children, based on the identified success pattern. Therefore, it makes
advancements in the resolution of an important problem that afflicts Society 5.0.
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