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Abstract. Modern production processes are continuing to move towards more flex-
ible and dynamic conditions, most clearly exemplified by mass customization, but
this flexibility can also be seen in technologies like; Human-Robot Collaboration,
Automated Guided Vehicle fleets for just in time delivery of parts within factories
and reconfigurable manufacturing. Currently, these technologies are developing in-
dependently of one another and the supporting industrial software tools such as line
balancing optimisation tools, Machine Execution Systems and fleet management
tools are similarly developing independently. An alternative to developing individ-
ual technologies for each problem is the use of a shared algorithmic framework that
can support all of these problem types and future research into general smart factory
technology. Monte Carlo Tree Search is a relatively recent Artificial Intelligence
algorithm, sometimes described as a general-purpose heuristic, that has been found
to be very effective in several theoretical and game-related problems. This paper
will review the current growth in research into possible industrial applications of
this algorithm and how a framework utilising this algorithm can help to realise the
aims of the smart factory vision.
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1. Introduction

For the last decade, there has been great interest in what has been called by a variety of
names including Industrie 4.0, the Fourth Industrial Revolution, and Smart Industry. The
concept has been to move from the mass production model found in industries today,
towards a highly flexible production model that can quickly adapt to changing conditions.
This is to be supported by the continued increases in the use of robotics of various kinds
and a similar increase in the use of IT infrastructure, machine learning, simulation and
predictive technologies. The purpose is intended to support; mass customisation where
consumers get products that are tailored to their specific wishes, worker productivity and
resilience in the production process where recovery from issues is handled quickly and
automatically. This is to be done while not sacrificing overall factory productivity and
either maintaining or improving the safety and health of the workers.

A general issue in the smart factory will be the ability to change the behavior of
production lines and cells to react to current conditions or support changes in demand.
For example, in a mass customisation system, each order will be slightly different and
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the system needs to be able to support all the variations while being extensible in the
future and correctly executing all processes. Human-robot collaboration (HRC) provides
an alternative example in which the robot would ideally react to the activities that the
human coworkers perform. In these examples, the decision-making system needs to be
close to real-time to support flexibility and adaptivity within the factory.

Monte Carlo Tree Search (MCTS) is a relatively new Artificial Intelligence (AI)
algorithm that has gained significant attention and success in the field of games. The
algorithm has been described as a general-purpose heuristic, a search process that can be
applied to a wide range of different problems and applications and remain quite effective
within all of them. This paper will look at a recent increase in interest in this algorithm
from within industrial research. It will look at the topics that recent papers have looked
at and several interesting applications that the algorithm can be applied to. The paper
will then discuss the possible application of MCTS to enable a learning factory and will
conclude with a summary of the discussion presented.

2. Literature Review

Monte Carlo algorithms, or algorithms with a stochastic component, are at least as old
as modern computers. Monte Carlo Tree Search is a relatively recent addition to this
collection. It has its roots in research conducted in the late 1980s into stochastic tree
search methods for two-player games [1] and was received its current name 2006 [12].
Researchers using these methods have primarily focused their attention on various games
such as Chess and famously Go where the algorithm was a key component in allowing
researchers to create a Go AI capable of beating a human grand-master [30].

The application of MCTS to industrial problems has also been growing with the
earliest research into potential applications being in the field of industrial planning [10].
More recent interest in planning has looked at logistics [14], flow shop optimisation [22]
and job shop optimisation [21] which is also of use in achieving flexible manufacturing
systems. A more specific type of planning that is important for future industrial systems
is planning related to robots. These applications can take the form HRC [32,29] or of
Autonomous Guided Vehicles (AGVs), which introduce the issue of multi-robot plan-
ning [18]. Other researchers are examining combining MCTS with other industrial ap-
proaches such as Digital Twins [24]. A more complete review of recent applications, in-
cluding examples of industrial planning, scheduling, optimisation and transport planning
can be found in [31].

While this industrial interest must be examined it is also important to note possi-
ble limitations of MCTS such as those seen in a comparison with other heuristics meth-
ods [25]. This study showed that MCTS suffers as the time made available between de-
cisions decreases, which indicates an issue that needs to be examined in more detail to
examine the possible impact on a smart factory environment, though it must be noted
that only one problem type (coalition structure generation) was used as the test case.

In recent years there has been substantial growth in interest regarding MCTS and
its possible industrial applications. To explore this growth and the interests that the re-
searchers are focusing on several searches of the online libraries IEEE, ACM DL and Sci-
enceDirect were performed. To examine general growth a simple query for the keywords
“Monte Carlo MCTS”. This was chosen after it was found that MCTS alone would also
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Figure 1. Illustrative charts of the number of papers being published in MCTS generally and specifically
related to industrial manufacturing. The dip visible in 2021 is noticeable however at the time of writing only
half of the year had passed, providing a plausible explanation for this drop.

find papers related to the MCT-4 protein which was not relevant to the interests of this
paper. The data for the industrial interest in MCTS was found using two queries the first
being “Monte Carlo MCTS industrial” the second “Monte Carlo MCTS robot”. Some
sanitisation of the data was performed after checking the retrieved paper titles. Since
MCTS was only named in 2006 we limited the date range to 2006-2021. All documents
needed to at least mention Monte Carlo Tree Search as opposed to monte carlo simula-
tions but not MCTS. Some other sanitisation was performed since some papers on unre-
lated topics were returned such as some related to radiotherapy and papers with identical
titles were not counted twice. The results of these searches, divided by source, can be
seen in Figure 1. As can be seen, there is an increase in interest in MCTS generally which
is also followed, though more sharply, by the industrial interest.

To examine the interests expressed in these papers the tool VOSviewer [33] was
used. The approach taken was to generate a graph based on the keywords attached to
each paper. Some mild sanitisation of these keywords was used, such as unifying a num-
ber of variations on MCTS into a single keyword. The graph was generated where each
keyword’s importance was based on the number of papers that refered to it and connec-
tions between keywords was based on collocation in an individual papers keyword set.
The resulting chart can be seen, using a heatmap visualisation, in Figure 2.

Figure 2 shows a pattern with 5 major areas, the center and 4 branches, however a
general observation is that the most common terms appearing are quite varied, though
they might refer to similar areas of interest, such as convolutional neural networks and
the more general deep reinforcement learning. Despite this three of the branches ap-
pear to coalesce into sub-topics; simulation, coordination/multi-agent systems & plan-
ning/explainable planning. The core itself also includes the terms trajectory and robotic
exploration which appear to suggest robotics as a key interest in many of these papers.
The final branch is harder to classify including the very specific bridge maintenance
policy but also the more general internet-of-things.

The keywords that are focused on in this diagram can be broadly mapped to topics
previously mentioned such as HRC, with the interest in coordination and multi-agent
systems, AGVs and multi-robot planning which could include robotic exploration and
planning in general. The remainder of this paper will look in more detail at the topics of
HRC, AGV fleets and replanning in reconfigurable manufacturing.
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Figure 2. A VOSviewer generated graph of keyword pairs and frequency of keyword appearance within recent
papers, providing a cluster map of the interests of papers recently published.

3. An Overview of the Algorithm

The algorithm for MCTS is, at its core, a tree exploration algorithm. Like other tree
search algorithms, it has a root node and a tree of nodes beneath it ending in leaf nodes.
Each node of the tree is either fully explored (all possible actions have been tried) or not
fully explored yet. For a process that has a definite end, such as a game, some leaf nodes
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will not be able to be expanded further. In each iteration of the algorithm, a single node
is selected that has not yet been fully explored. A single available action is applied to
the node to create a new node. These actions vary depending on the application, it might
be the move in a game of Chess, a navigation decision for an AGV or the next step in a
factory production process.

Where MCTS differs from traditional tree search methods is that after each node is
created the algorithm performs a simulation step, where the problem (such as a game of
chess) is explored until a terminal condition is reached, however, all actions are applied
randomly and during this process. The result of this simulation phase (for instance a
win or loss in a game) is then recorded on the new node as an estimate of that nodes
quality. The result of the simulation is then added to each parent node going backwards
to the root of the tree. In this way, each expansion adds a new simulation and some new
information to a series of nodes in the search tree regarding the kinds of results that will
happen from taking particular actions. When the time comes to make a decision, it will
be the option that leads from the root node to the node that is currently judged best in
the root’s direct children. An illustration of how an MCTS search develops can be seen
in figure 3.

Select Expand Simulate Backpropagate

Node values
updated

Open leaf selected
for further examination

Single new state
computed

Random exploration to sample 
a possible final result

Iteration 1

Iteration 2

Iteration 3

Figure 3. A diagram of the process that an MCTS tree grows through. This has been adapted from [11].

As a quick example, let us consider using MCTS on chess. Each node will represent
a chessboard with the position of pieces and which player should move next, just as in
any other search process. At each stage the algorithm will pick a node that is not fully
explored to expand, which involves selecting a piece and moving it, creating a new board
and storing this in a new node. The new node will be weighted (white 0, black 0) to
indicate that there is no information regarding which player is likely to win initially.
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The simulation phase now begins with random moves applied to the chess game until a
player wins, or there is a draw. Each node on the path from the root of the tree to the
newly created node is then updated, increasing the score of whichever player won in
that simulation by 1. Over time bad moves should lead to random simulations that will
show the other player winning, and vice-versa. At the time a move must be made in the
real game the balance of scores on each node will represent a probability for how the
game is likely to turn out if that move is made. MCTS has been called a general-purpose
heursitic [8] because can be applied to almost any problem which can be represented
as a tree with a branching function and will quickly begin to produce this probabilistic
measure of the quality of possible actions.

In much research into MCTS, a key question has been what order to explore nodes
in so that the algorithm gives the best possible decisions. Different strategies have been
developed including a round-robin strategy, Upper Confidence Bound and the use of
Neural Networks [26] to learn how to prioritise the expansion order. How well an expan-
sion strategy will work will depend on the particular domain that the algorithm is being
applied to. For a more complete examination of different strategies see [8].

The final issue in implementing MCTS is very similar to those that exist for other
tree search algorithms, how to model the problem and how to implement a branching
function. For games such as Chess and Go, the model of the game will be the same as
for other kinds of tree search such as depth-first and breadth-first search. The first issue
in a manufacturing system will be how to easily model the state of the system and the
possible actions that can be taken at any time. One approach to this has been called Monte
Carlo Action Programming (MCAP), an approach that applies MCTS search over a state
action model of a problem [5]. Engineering, Manufacturing and robotics also present
other issues, such as continuous environments (an AGV is not just in location A or B but
at any point between) and continuous time [2]. Another difference between a game and a
manufacturing process is that there may not be a clear endpoint, since it may be possible
to begin producing a new product as soon as the current one is complete. This might give
rise to an infinite search process. One way to solve the infinite search process issue is to
track the expected time of operations, and hence how far the search and simulation have
gone, and limit the depth of the search by time as seen in [29]. The precise modelling
approach to make use of will vary by application.

This section has presented a brief overview of the algorithm. For those interested in
further details of the MCTS algorithm other much more in-depth tutorials and surveys
exist [16,8].

4. Human Robot Collaboration

Human-Robot collaboration is defined in [4] as performing a shared task as a team and
this survey noted several issues that would need to be considered, including; “decision
making, planning, learning” and that “Efficient collaboration requires a common plan
for all involved partners.” Other examinations of HRC have proposed a series of levels
of the relationship between robot and worker such as in [34] where the levels used are;
complete separation, coexistence (shared space), synchronisation, cooperation and full
collaboration. However, at present, despite collaborative robots becoming more common
in real industrial applications, safety constraints continue to limit how closely humans
can work with robots.
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There are a range of requirements for a fully safe and collaborative robotic tool
including; intention recognition, sensors and flexible automatic planning and decision
making. It is this last aspect of HRC that several researchers have begun to investigate
using the MCTS algorithm to resolve.

The benefits of using MCTS to provide planning for cooperation, or the solving
of problems using more than one agent, has been of general interest to MCTS re-
searchers [35,13] and HRC is an example of such a cooperative multi-agent system where
agents are either human or robot. To provide collaboration between humans and robots
MCTS can be utilised to provide the planning and decision-making system for either
the robotic/mechanical components of a cell responding to human actions via sensors or
include humans directly via an instruction system. One approach to implementing the
MCTS algorithm is to model the state of the components of the cell, the possible actions
that can be utilised under various conditions and how long different actions will take. It
is important that the actions are composable and ideally that some actions can be reused
in various chains, such as moving a robot arm from one location to another. This follows
the concept of modelling using an action programming system and then searching using
MCTS as seen in [5]. Such an approach has previously been shown on a single robot [32]
and in a test cell designed for one robot and one or two human co-workers [29]. It should
also be mentioned that another successful approach to HRC has utilised Partially Ob-
servable Markov Models [7] and that MCTS can also be used as a search strategy within
such as system.

A system utilising MCTS would be expected to run a search process, growing the
MCTS tree, for as long as it can between actions being performed. Several actions could
be running at the same time, on the condition that the agent (robot or worker for example)
is not the same for each action and that other parts of the system, modelled as stateful
variables, are not shared inappropriately. For a practical system to be implemented it
must also respond to events. These might be sensor events, command events or most
commonly the end of a running operation. An event interrupts the MCTS search process
and causes some state variables to be changed and choices to be made based on the
current data harvested from the tree. A small example of how such a state-action model
might look is given in Fig 4.

State Variable State Set

Gripper {Open, CarryPtA, CarryPtB, Closed}
Rob {LocA, LocB, LocC}
RobAvailable {True,False}

(a) State Variables

Action Time Preconditions Effects

Open Gripper 3s Gripper=Closed & RobAvailable Gripper→Open
TakePartA 9s Rob=LocA & Gripper=Open & RobAvailable Gripper→CarryPtA

(b) Robot Actions

Figure 4. A small illustrative example of how possible actions in a robot cell might be represented using a
simplified state-action modelling system.
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5. Autonomous Guided Vehicle Fleets

Another task in the future smart factory will be automated warehousing and delivery
of required parts to the workers. This task is expected to be handled by autonomous
robots and Amazon Warehouses can be looked at for a current industrial example of
such a system. One issue in such environments is studied under the title of Conflict-Free
Routing, where the task is to give instructions to all the AGVs such as to avoid deadlock,
collisions and optimise the system. This is one example of such an algorithm [17].

MCTS has been examined for use in multi-robot path planning [18] and more gener-
ally, as with HRC, an MCTS based system would be expected to adapt to changing con-
ditions (such as unexpected blockages) in the environment or changing tasks. This sort of
dynamic planning has been recently considered for AGVs, particularly when navigating
around other independent agents (potentially human workers) [15]. A similar use case is
found in the issue of planning actions for automatic driving [20]. In future this research
will either be found in autonomous vehicles providing transport between sites or AGVs
within factories. This approach used a state-action system to model possible actions and
outcomes.

While implementing the MCTS system for an AGV fleet could make use of a pure
state-action system such as that looked at in the section on HRC, the number of possible
states and actions would be expected to increase quickly as the size of the environment is
increased. An alternative approach used by [28] is to combine a state-action system for
requirements like the current load of the AGVs but to make use of a graph for navigation
in the environment. It is easy to imagine such a model growing to manage heterogenous
AGVs, each with different capabilities, their recharging requirements and the need to
adapt to a shared environment with human workers. The use of an MCTS based planner
also allows for the possibility of adding new actions to the search process at runtime and
having them automatically incorporated into the planning cycle.

6. Software for Reconfigurable Manufacturing

Another issue that smart factories often discuss is that of mass customisation [27], the
requirement for small lot sizes or even every item being unique. It has been suggested
that simply allowing for more variations in an otherwise traditional production line will
not be enough to support these demands upon the industry [19]. Hence research has been
ongoing into Reconfigurable Factories, where machines will be easily replaced, moved,
adapted and reprogrammed to support the current desired output of the company.

There are several issues to consider before fully reconfigurable factories can be
achieved [6] and of these two issues that computer systems are used for are production
planning and process planning. Various methods exist including those that address well-
known problems such as flow and job shop optimisation, or simulation-based methods.
In the previous HRC example the robot, and indeed the cell, was planning in direct re-
sponse to the current conditions of the production process. This can be seen as a form
of process or production planning, depending on the scale the MCTS system is being
applied to.

While MCTS can be used directly as a planning agent [23] the state-action approach
offers a further possible benefit in the application of reconfigurability. In Fig 4 a set of
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states and actions was shown. The actions are relatively small and can be composed to-
gether. Hence when working with rapidly changing production requirements one action
might be used in several ways, where appropriate. Additionally changing the set of states
and actions, through adding or removing items, is relatively easy (subject to how easily
the underlying operations can be written). Once a change is made the new configuration
will be taken into account almost at once in the planning process. This allows the capa-
bility of a machine or robot to be changed by adding new actions alone, not describing
directly how these actions should be sequenced. When a machine is moved, some old
actions might need to be removed, but others might remain and get reused. It will be
important when making these changes to check the reachability of states in a process,
and the safety and correctness of the possible sequences that the algorithm is capable of
finding. While potentially difficult in large systems, checking the capabilities of a set of
states and actions is possible using simulation tools.

In conclusion, given the evidence in the AGV and HRC sections of this paper, it
seems likely that MCTS can also provide useful capability in the field of reconfigurable
manufacturing.

7. Learning in the Smart Factory

As was noted earlier in the paper, one variation of MCTS that has been found to be very
successful is utilising neural networks to provide the expansion guide heuristic. This
provides a combination of strict rules within the underlying MCTS algorithm, with the
advantages of machine learning applied to previous experience or simulated experiences.
The possible application of this to robotic systems is beginning to be explored [26].

One of the various proposed characteristics of future smart factories is that they will
make use of machine learning to automatically adapt how they react to changing condi-
tions. MCTS offers one possible approach to achieving safe decision making combined
with learning. The MCTS search process can only consider actions that are possible from
a current state. The generation of legal actions would be provided either by human pro-
grammers (as in the previous HRC example) or automatically generated by other external
programs. As previously discussed these actions would need to be composable but also
safe to use under the conditions that allow their activation. In an offline simulation of
a factory, a neural network to manage the tree expansion method could then be trained.
This training process could use either historical data or randomly generated situations,
so long as these would still be within the expected requirements of the factory. Once a set
of actions and the related neural network are prepared these would then be downloaded
back to the machines of the real factory, completing the learning cycle. This proposal can
be seen in Fig 5.

8. Summary

The focus of this paper has been the MCTS algorithm and its potential application in the
future of smart factory development. There is an increasing interest in this algorithm and
researchers are finding applications for it in many tasks that require either machines or
entire production processes to react to quick changes in their environment. These changes
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Figure 5. A diagram of where the MCTS algorithm, with learning algorithm for the search strategy optimisa-
tion, could fit into a future smart factory environment.

can be caused by human coworkers as seen in HRC or vehicle navigation, or demands
placed on the factory as seen in mass customisation and reconfigurable manufacturing
applications.

Other potential uses that have not been discussed here for lack of space include 3D
printing tool path planning [36], offline flow shop optmisation [23], predictive mainte-
nence [9] and recovery from error through automatic replanning. Both predictive mainte-
nance and recovery from issues in a production process aid in supporting the resilience of
a manufacturing system. Several of the examples cited here also make use of the combi-
nation of machine learning with MCTS to further strengthen their approach. This implies
a more general use of MCTS as a useful bridge between the intentions of data gathering,
machine learning and automatic improvement and adaptation that is often described as
of interest for smart factories.

MCTS continues to be explored in a range of other domains and one recent paper [3]
points towards further research in using the nature of MCTS to explain the decisions be-
ing made. Being a tree search algorithm it is potentially possible to harvest data about the
decison making process from it, and use this to provide explanation of the final actions.
This could also be of great interest in future industry, where understanding the reason for
the behaviour of a smart factory or machine could provide great insight into efficiency,
performance, errors and support root cause analysis.

In conclusion this paper proposes that MCTS is an algorithm that is gaining consid-
erable interest at present and appears to have the potential to address a range of tasks in
smart industry. This implies that the algorithm is flexible, both in terms of the applica-
tions it can be applied to and also how it can be adapted or retrained at runtime. It can
cope with stateful environments and react quickly to changing conditions or accept new
options and make use of them with limited manual configuration. This paper proposes
that the algorithm is deserving of even greater focus within research on smart factories.
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