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a b s t r a c t   

Many high-level technical products are associated with changing requirements, drastic design changes, lack 
of design information, and uncertainties in input variables which makes their design process iterative and 
simulation-driven. Regression models have been proven to be useful tools during design, altering the re-
source-intensive finite element simulation models. However, building regression models from computer- 
aided design (CAD) parameters is associated with challenges such as dealing with too many parameters and 
their low or coupled impact on studied outputs which ultimately requires a large training dataset. As a 
solution, extraction of hidden features from CAD is presented on the application of volume simulation of 
curtain airbags concerning geometric changes in design loops. After creating a prototype that covers all 
aspects of a real curtain airbag, its CAD parameters have been analyzed to find out the correlation between 
design parameters and volume as output. Next, using the design of the experiment latin hypercube sam-
pling method, 100 design samples are generated and the corresponding volume for each design sample was 
assessed. It was shown that selected CAD parameters are not highly correlated with the volume which 
consequently lowers the accuracy of prediction models. Various geometric entities, such as the medial axis, 
are used to extract several hidden features (referred to as sleeping parameters). The correlation of the new 
features and their performance and precision through two regression analyses are studied. The result shows 
that choosing sleeping parameters as input reduces dimensionality and the need to use advanced regression 
algorithms, allowing designers to have more accurate predictions (in this case approximately 95%) with a 
reasonable number of samples. Furthermore, it was concluded that using sleeping parameters in regression- 
based tools creates real-time prediction ability in the early development stage of the design process which 
could contribute to lower development lead time by eliminating design iterations. 

© 2022 The Authors. Published by Elsevier B.V. 
CC_BY_4.0   

1. Introduction 

High-level technical products (such as airbags and jet engine 
components) that are characterized by having iterative and simu-
lation-driven design processes, often suffer from long development 
lead time. These products are associated with having a large number 
of manual simulation loops in the early stages of the design process 
(Arjomandi Rad, 2020). Supporting tools for simulation-driven de-
sign include knowledge management systems to capture both tacit 
knowledge and knowledge objects and create an ability to mimic the 
reasoning of experts in simulation and design (Fatfouta and Le- 

Cardinal, 2021). Additional supporting tools include creating auto-
mated systems with CAD (Computer-aided design) and CAE (Com-
puter-aided engineering) to save time and reduce human error. This 
common practice is widely investigated by the fields of design sci-
ence and design automation (Chakrabarti and Blessing, 2016; La 
Rocca, 2012). However, running complex simulations repeatedly, 
even in an automated manner is time and energy-consuming and 
can be quite unfeasible. Increasing computational power, utilization 
of parallel or cloud-based techniques are other effective methods to 
decrease simulation time but they have not been used to solve the 
lead time problem since in product development one simulation 
iteration can be dependent on the previous iteration’s simulation 
results. 
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Machine learning (ML) belongs to a larger family of algorithms 
that are part of the Artificial Intelligence (AI) branch, depicted in  
Fig. 1. ML is “A form of applied statistics with increased emphasis on 
the use of computers to statistically estimate complicated functions 
and a decreased emphasis on proving confidence intervals around 
these functions” (Goodfellow et al., 2016). Within the design pro-
cesses as support, ML has been used to estimate the results of 
iterative assessment tasks. For instance, a method called Kansei en-
gineering is a good example of the application of ML in the early and 
conceptual phases of product design and development. The method 
is used to generate the shape of the product by inputting specific 
design elements. The attempt tries to map the form of the product as 
the design variables to the feelings of consumers as an indication for 
the output (Fan et al., 2014; Wang et al., 2016). 

Individual and independent pieces of information, being input 
into the system is called a feature in machine learning (Goodfellow 
et al., 2016). A large body of theoretical literature deals with con-
siderations that ought to be made for selecting features when 
building predictors or classifiers. Selecting the best features has been 
done by measuring the relevance of the feature such as correlation 
coefficient, and ranking them (filters), assessing features’ influence 
on the performance of the predictor (wrapper), or incorporating the 
feature selection as part of the training process (embedded) (Guyon 
et al., 2008). Feature construction (feature extraction) is a method 
that aims to build more compact features to increase prediction 
performance and feature reduction reduces the number of them in-
tending to acquire better predictors by removing irrelevant and re-
dundant features to defy the curse of dimensionality (Guyon and 
Elisseeff, 2003). All mentioned methodologies consist of many 
methods that are used as a pre-processing step in machine learning 
to improve prediction efficiency and accuracy. The proposed method 
in this paper of correlation-based feature extraction which is used 
for ranking features based on various correlation matrices (Guyon 
et al., 2008) is found effective when used in the process of selecting 
features and it best works with supervised learning methods 
(Hall, 1999). 

Using data-driven approaches in the engineering design of con-
sumer products has been reviewed recently (Chiarello et al., 2021). 
By identifying the tools, algorithms, and data sources that have been 
used in engineering design, the authors touch upon challenges and 
gaps that need to be tackled in the future. For instance, one of the 
listed challenges is “Identifying latent features (e.g. temporal fea-
tures, behavioral features) hidden in CAD data”. Indeed, real-time 
analysis of the design is a common practice but collecting analyses of 
the design and deriving performance or cost indicators, or in other 
words ‘data mining’ for new product development is still not ad-
dressed in the literature (Bertoni et al., 2017). The research gap 

which this paper tries to fill is to address common problems asso-
ciated with using ML-based predictors in the design of consumer 
products, namely dimensionality and parameterization. The problem 
arises when creating configurations of the geometry using CAD 
model parameters as features (also known as inputs or variables). 
Often to produce samples, designers are required to fully define the 
CAD with many parameters and constraints and then to fully cover 
design space in turn, leads in having cumbersome training process. 

Being obliged to follow the standard parameterization conven-
tion through the designing process naturally limits the designer and 
suppresses creative solutions because then the designers will be 
forced to follow the same parameterization convention that is used 
when training sets are created. Therefore, in complex geometries, 
designers usually avoid using any constraints and parameterized 
CAD models, because doing so will either limit the ability to ma-
nipulate the design shape or result in having a sparse training set in 
the design space. Another practical problem is that CAD designers 
are not the same as the CAE simulation engineers and they might not 
sit in the same company or work environment. This becomes an 
issue if a higher level of competence in each area is needed which is 
often the case for a high-level technical product. This fact triggers a 
back-and-forth work between several engineers or departments in 
the company and thus negatively influences the development lead 
time of the design processes. The conceptual phase of a design 
process encompasses an evaluation stage (Pahl and Beitz, 2013) in 
which having an independent prediction tool (A live prediction 
model) could make CAD designers aware of the consequences of 
their decisions on CAE results. This evaluation stage can significantly 
increase the development speed by avoiding the costly simulation 
loops, thus such a tool can fill the aforementioned gap. Therefore, 
the presented concept in this paper is an effort to overcome the high 
dimensionality in engineering design that is one of the common 
problems in applying data science in engineering design (Chiarello 
et al., 2021). 

This paper introduces a correlation-based feature extraction ap-
plication in CAD for regression-based machine learning algorithms. 
After an introduction that outlines the existing gap, the next section 
explores the related works, and the case study used throughout this 
paper is introduced in the third section. Using finite element simu-
lations in the next section, a parametric study is performed to study 
the effect of each CAD parameter on the volume. Separately, the latin 
hypercube sampling method is used to generate and study a group of 
100 design samples and their volumes as an output. It was shown 
that CAD parameters alone, would not lead to effective prediction 
accuracy. In the fifth section, with utilizing the concepts of different 
geometric entities (such as area, circumference, or the medial axis), 
new parameters referred to as sleeping parameters are defined and 
studied as a performance indicator for the inflated curtain airbag. It 
was demonstrated that new features have better correlations with 
the volume. And they can be extracted from geometry without any 
need for model parameterization which maintains freedom in de-
sign. Two regression analyses performed in the sixth section, com-
pare and validate the performance of extracted parameters in a 
regression model by showing the ability of these parameters in re-
ducing the prediction error margins. The discussion in the last sec-
tion explains the effectiveness of the sleeping parameters, such as 
the ones studied in this paper. This will allow designers to build 
simple but accurate regression models with a low number of fea-
tures and sample points (small training set). 

2. Related works 

Statistical approximating methods in engineering design (e.g. 
response surface methodology, Taguchi methods, neural networks, 
inductive learning, and kriging) has been used for a long time to 
address computation-intensive design problems (Simpson et al., 

Fig. 1. A Venn diagram showing AI categorization with examples (Goodfellow 
et al., 2016). 
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2001; Sun and Wang, 2019; Wang and Shan, 2007). One application 
of these modeling techniques is to build regression models to reduce 
the number of simulation iterations. But their focus is on reducing 
computational cost rather than reducing problem dimension. Thus, 
modeling techniques in engineering design do not address high di-
mensionality problems, and the literature in this section is very 
scarce. (Wang and Shan, 2007). The first metamodeling techniques 
to tackle High-dimensional Expensive Black box (HEB) problems 
utilized radial basis functions with a high dimensional model re-
presentation which basically offers an explicit function expression 
and thus shows the contribution of each design parameter (Shan and 
Wang, 2010). Since then, other metamodeling techniques that 
combat the curse of dimensionality are published, for instance, by 
improving kriging surrogates of high-dimensional design models by 
partial least squares dimension reduction (Bouhlel et al., 2016), by 
using convolutional neural networks (CNN) to study over hundred- 
dimensional and strong-nonlinear product design problems (Li et al., 
2017), etc. This area of research aims to find better metamodeling 
techniques with proposing sophisticated algorithms yet due to the 
scope of this paper, they are not reviewed extensively in this section. 

The common ground for any metamodeling method is that they 
require pre-performed simulation data or experiment data as input 
for the approximation and this makes most of them a data-driven 
approach. A data-driven solution is not only about the size of data 
under study but also more about decisions making based on data 
analysis and interpretation. This can be inferred from the consensus 
definition for the data-driven approach “Using computational sys-
tems to extract knowledge from structured and unstructured data” 
(Chiarello et al., 2021). As discussed in the Introduction, using CAD 
model parameters as input with any data-driven approach to map-
ping CAD input to CAE output could pull forward problems such as 
dimensionality and parameterization. 

To overcome the mentioned problems many studies have tried 
to simplify the geometry to reduce the number of parameters. For 
instance, Wang et al. digitally created simple n-fold symmetric 
shapes representing cohesive contact zone in stereo-lithography 
(SLA) as input for a neural network. For output vector calculation 
they used finite element simulation and proposed a network that 
enabled a fast prediction model for stress distribution in the 
separation of the 3D printed part during the pull-up process of the 
bottom-up SLA technique. (Wang et al., 2018). Additionally, Yoo 
et al. used a large number of CAD models and CAE results for 
training a deep learning algorithm. The presented framework is 
applied to the road wheel design process, in seven stages; starting 
from 2D generative design based on topology optimization prin-
ciples and ending in analysis and visualization of the CAE results 
(Yoo et al., 2020). In this framework, the ML algorithm first 
generates a large number of 3D CAD models by minimizing the 
distance from a reference design, and later the designers manually 
verify and select suitable designs for further modifications. Using a 
simple design geometry that has only three design parameters and 
applicability of the framework on large datasets are among the 
limitation of this study. Though, a simple geometry, as well as a 
less computationally expensive CAE method (modal analysis), 
contributes to the success of this approach. As mentioned earlier, 
running thousands of finite element simulations to build large 
machine learning databases will require a huge computational 
power. Just, for instance, assuming 5 min simulation run time 
for 10,000 simulations requires 35 days of run time. Other sim-
plification methods also exist in literature such as data mining 
design methodology (Du and Zhu, 2018) which was suggested for 
high-dimensional design problems and it essentially simplifies the 
design space by shrinking the changing interval of the design 
parameters, using the decision tree technique. Approaches with 
simplifying geometry or abstracting problem dimensions are lim-
iting the design (Sun and Wang, 2019) in various forms and this 

means the designer needs to follow certain limiting rules to have a 
feasible design case. 

As another approach to overcome the mentioned problems, some 
studies in the literature have increased the number of variants 
drastically. For example, Ramnath et al. investigated the potential of 
applying data science into engineering design (Ramnath et al., 2019, 
2020) by an automated method for creating big datasets of 3D CAD 
models. Several approaches, such as design catalogs/tables, user- 
defined features, and other variant creation techniques are used for 
generating many variants (60,000) of an automotive hood in CAD 
software. Their framework was based on creating a variety of con-
figurations and then filtering out the infeasible cases which fail 
during CAD work (Ramnath et al., 2019). A workflow for correlating 
geometric configurations according to several performance and 
safety requirements was also demonstrated to attain validity for 
created training data set (Ramnath et al., 2020). However, these two 
studies do not propose any automatic FEA model for mesh genera-
tion, and corresponding simulations were not performed. More ex-
amples from increasing the size of samples can be found in the 
literature. Secco et al. used input parameters such as the wing 
planform, airfoil geometry, and flight condition as inputs to con-
struct a neural-network-based prediction model for aerodynamic 
coefficients of transport airplanes. The output was calculated for a 
huge library (100,000) with a full-potential multiblock structured 
code with an average time of 21.8 s per airplane (Secco and de 
Mattos, 2017). This could have not been possible to perform if the 
computational time was over one minute for each simulation run 
because of exhaustive run time. 

More data-driven approaches exist in literature with less em-
phasis on geometrical CAD model parameters as features. Rahman 
et al. used the designer's sequential design behavioral data stored in 
the design action log file (.JSON) of a CAD program to train a ma-
chine-learning algorithm and predict the next stage in the process as 
immediate design action (Rahman et al., 2019). This approach is a 
novel way of using CAD software as a data source and clearly em-
phasizes the gap in engineering design literature to explore alter-
native ways of using CAD to extract features for data-driven 
approaches (Chiarello et al., 2021). Yet, based on performed litera-
ture study, extraction of hidden features based on CAD geometry has 
not been proposed. But many applications of feature extraction and 
feature reduction exist in other domains and each of them is an 
independent research topic backed with a substantial number of 
publications. Such topics are vibration analysis and signal processing 
with the aim of condition monitoring in mechanical systems like 
bearings or gears (Caesarendra and Tjahjowidodo, 2017) or me-
chanical defect prediction models using either supervised or un-
supervised learning methods (Kondo et al., 2019) or image 
processing and pattern recognition where the number of features 
requires a lot of preprocessing on the input images (Kumar and 
Bhatia, 2014) or electronic circuits design automation where feature 
extraction is being practiced on generating new circuit topology 
(structure) with reusing learned patterns (Huang et al., 2021). Sen-
sitivity analysis methods such as Principal Component Analysis 
(Yuce et al., 2014) or analysis of variance (ANOVA) (Khalkhali et al., 
2017) together with Taguchi are widely used dimension reduction 
strategies to select the most important parameters and reduce the 
dimensionality of the model. Yet, considering how large the number 
of parameters and constraints in a real CAD model and how small 
their effect on simulation output can be, running higher-order Ta-
guchi arrays add up to existing computational complications. 

3. Studied case 

Since its invention in the early 1990s, the side curtain airbags 
have become an important part of vehicle restraint systems and they 
are widely used to prevent serious injuries by increasing head 
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protection for both front and rear seat occupants. For the US market, 
one measurement is the safety criteria (Federal motor vehicle safety 
standards, 2011) that include measuring the amount that a human 
head can go out of the widows (in millimeters) and is called, Ejection 
Mitigation (EjM). One of the principal requirements for inflatable 
curtains is to shield the occupants from intruding objects (Evans and 
Leigh, 2013). The coverage area must be communicated to airbag 
manufacturers (Suppliers) from car manufacturers (OEMs) as re-
quirements to be met during the design process. This is considered 
for various occupants and positioning of car pillars, roof rail, door 
glass, occupant seats, and components in front of occupants such as 
dashboard and steering wheel. A typical curtain airbag design for a 
sedan class is shown in Fig. 2. The front and rear chambers (marked in 
the figure) are responsible for cushioning the head of the occupant 
by filling the space between the head and windows. Each chamber 
has one or two so-called islands (inner sewing lines) to prevent the 
cushion from becoming a balloon (or like a pillow). The non-inflated 
fabric around the chambers is responsible for holding the integrity of 
the whole bag and it protects the occupants from broken glass and 
other intruding objects at the time of the crash. 

The number of islands and the size of chambers depends on the 
size of the designed bag which in turn is affected by the size of the 
car. So, for a large SUV with three rows of seats, another chamber 
could be added to the bag shape and a higher capacity of inflators 
might be necessary to fill in the bag. Likewise, for a small coupe 
vehicle, designers could design one big chamber instead of two and 
consequently choose a lower capacity. It also influences the cost of 
the bag as suppliers (airbag manufacturers/sellers) tend to sell the 
bigger capacities while OEMs (car manufacturers/buyers) try to 
settle on a smaller one. This is because it is easier to meet the safety 
requirements with bigger capacities, but it will be also more costly. 
The design process continues back and forth until a design case 
meets all requirements (Dix et al., 2012). 

The curtain airbag design process is characterized as being 
iterative and simulation-driven (Arjomandi Rad, 2020). Meaning 
that from early conceptual phases designers are front-loading si-
mulations to meet requirements such as volume and EjM, etc. Finite 
element simulations are used with separate simulation models 
(varying in complexity) for each requirement. Fig. 3 shows how 
coverage requirement (req.) is met first in a CAD environment and 
then volume and EjM are calculated within a separate finite element 
simulation model. Looping between volume and coverage or looping 
between EjM and coverage could happen as frequently as 50–60 
loops and the design process will continue until all three are sa-
tisfied. This looping between requirement gates in the design pro-
cess is a common workflow for components in the automobile 

industry (Fatfouta and Le-Cardinal, 2021). Considering the time 
spent by engineers for pre-processing, processing, and post-pro-
cessing, the importance of an automated prediction model in early 
phases is highlighted. 

There has been a lot of research performed to study curtain air-
bags. Song et al. introduced three types of simplified models in 
curtain airbags mainly intending to save modeling and simulation 
time (Song et al., 2011). It was argued that due to a variety of re-
quirements from different safety organizations, there is a need for 
different configurations with regards to positioning impactors and 
dummies in the simulation models. In a different study, the airbag 
shape design has also been studied (Chavare et al., 2013) to increase 

Fig. 2. Typical curtain airbag design for sedan class. 
(with copyright permission from MarkLines Co.). 

Fig. 3. The inflatable curtain design process in the conceptual phase.  
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the performance of curtain airbags by applying Knowledge-Based 
Engineering (KBE) methodology on the packaging and positioning 
dummy and seat with respect to a set of interior design require-
ments. The result was a curtain airbag module configuration that 
ensures protection zones for occupant body regions. Furthermore, 
they used 3D clearance/interference volume between dummy, seat, 
and vehicle side combined to arrive at the airbag cushion geometry, 
volume, and inflated chamber size. Yun et al. presented the curtain 
airbag design procedure (Yun et al., 2014) with two phases to first 
select important parameters affecting head impact criteria (HIC) 
using sensitivity analysis, and second to optimize the function based 
on Taguchi orthogonal arrays to minimize HIC. Another study (Park, 
2017) aims to establish a design procedure and an optimization 
process for airbags using CAE techniques mainly to minimize de-
velopment time. Parameterized airbag shape and morphing techni-
ques were used to generate surrogate sled models. The direct 
optimization method (not meta-model-based) is used for airbag 
shape optimization regarding multiple load cases. 

In this paper, to study how parameters are affecting the volume 
of the airbag and to find out the most influencing parameters on the 
simulation output, a subsystem of an actual airbag is considered as a 
generic prototype. The shape of the designed prototype is inspired 
by the front chamber of an actual curtain airbag depicted in Fig. 2 
and it holds most of the features necessary for full analysis of an 
actual curtain airbag shape. Fig. 4 shows the designed prototype 
with 14 selected parameters which is being studied in this paper. 
Moreover, Table 1 presents the names of the parameters which are 
tagged with numbers to ease the lookup. 

Design parameterization guidelines including the Independence 
axiom and Information axiom were used when selecting the men-
tioned 14 parameters (Suh, 1998). The Independence axiom main-
tains the independence of design intent, and the Information axiom 
attempts to minimize the information content of the design intent 
(Chang, 2016). To meet the independence axiom all 14 parameters 
are bound into an interval that allows them to change between a 
minimum and a maximum range. Table 1 presents all selected 
parameters and their associated bounds. To meet the information 
axiom all parameters are selected in a way that allows all possible 
design cases with a minimum number of parameters. For example, 
among all the variations of parameters that could have described an 
island’s shape and position, 5 parameters are selected based on their 
ability to create the most frequently used shapes and the rest of the 
parameters are assumed constant. For instance, the radii and the 
control points for the curves on top of the island are assumed con-
stant because they are rarely changed in the actual curtain airbag 
design. 

4. Problem definition, sampling techniques 

This section deals with identifying the problem area. To study 
parameters and investigate each parameter’s effect, two studies have 
been carried out. One factor at a time study, where only one para-
meter at a time is changed, and latin hypercube study where all the 
parameters are changed with the help of a latin hypercube sampling 
method. In both studies utilizing macro tools in CATIA® and Visual 
Basic for Applications (VBA) programming, a parameterized CAD 
model is modified based on each design sample and the generated 
geometry is exported as a ‘.igs’ file. The choice for this file format 
was based on the experience of the designers in the industry. As for 
the simulation technique, there are several finite element (FE) codes 
in the literature to simulate airbag deployment but studying which 
is superior over the other is out of this paper’s scope. Yet for the 
current paper, the uniform pressure method is used mostly because it 
is faster to create and run and it gives sufficient precision for early 
design phases. This method assumes uniform pressure and tem-
perature everywhere inside the airbag. This is a close approximation 
of the airbag after it is fully inflated and stabilized so the airbag 
geometry is considered without any fold (Zhang et al., 2004). In this 
way, All the generated geometries in both studies are used in this 
finite element analysis (FEA). Meshing is done with ANSA® and 
generated key files are submitted to the LS-DYNA solver. Post-pro-
cessing is carried out with META® and the volume-time curve is 
extracted for each design sample. Fig. 5 shows one of the curves as 
an example for the volume-time ratio. 

In all the simulations the pressure is raised to 40 kPa with a 
smooth step function and then kept constant until the simulations 
end in 100 ms (ending criteria). From Fig. 5 it is clear that the 
maximum volume (recorded as 33.7 Liters) is reached in the last 
20 ms of the simulation. At this time where the maximum volume is 
reached, the pressure is maintained constant at 40 kPa. The run time 
for each design sample ranges between 10 and 15 min, depending on 

Fig. 4. Studied prototype representing all curtain design features.  

Table 1 
Selected 14 CAD parameters and their varying bounds.       

Parameter Name Min (mm) Max (mm)  

1 Offset1 50 100 
2 Offset2 50 100 
3 Radius1 40 135 
4 Offset12 40 135 
5 Radius2 40 60 
6 Offset22 35 70 
7 Radius3 40 100 
8 Radius4 60 100 
9 IslandOffset 100 250 
10 IslandR1 10 50 
11 IslandR2 10 50 
12 IslandAngle 40° 130° 
13 IslandLength 150 220 
14 IslandBottom 40 180 

Fig. 5. Volume - time ratio for one of the performed simulations.  
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the size of the bag. Fig. 6 shows one of the simulations performed on 
a 25 ms interval. 

In the One factor at a time study, 14 aforementioned parameters 
(Table 1) on the geometry have been altered in five steps, so the 
results for volume change are shown in Fig. 7 for the total of 70 
simulations. During the study, only one parameter is changed, and 
others are kept constant. In this figure, the vertical axis shows the 
volume in terms of liter and the horizontal axis represents the 5 
changes in each parameter, normalized with respect to the average 
of the five steps (each parameter’s average). The length of steps and 
in horizontal axis shows how much that parameter has been 

changed in comparison to others. For example, the smaller length 
(‘Radius2′) shows that the parameter had a smaller boundary to 
change in CAD due to the defined constraints. The slope of the curves 
shows the sensitivity of the volume to each parameter’s change. For 
instance, ‘Offset12′ and ‘Offset22′ have more or less the same sensi-
tivity. As it can be inferred from the figure, length-like parameters 
(e.x. Offset1, Offset2, etc.) are linearly correlated with the volume and 
the radius-like parameters (e.x. Radius1, Radius2, etc.) are correlated 
quadratically. As expected, the more a parameter is affecting the area 
of the geometry, the more it is changing the volume. Another in-
teresting effect happens with the parameter ‘IslandOffset’ and ‘Is-
landAngle’ where the volume with their increase first decreases and 
then increases. This behavior can be explained considering the 
thickness of the bag (how much it becomes inflated). 

It should be mentioned that throughout this paper, for evaluating 
the correlation between two sets, Pearson coefficient (R2) which is a 
popular method in machine learning for ranking features and fil-
tering them has been used (Guyon et al., 2008). This correlation 
coefficient for a feature with values x and output with values y is 
defined as Eq. (1). 

=R
x x y y

x x y y

( )( )

( ) ( )
i i i

i i i i

2
2 2

(1)  

Where x is the mean of feature data set, and y is the mean of the 
output data set. If R2 is 0, it means that there is no correlation, and 
input parameters cannot predict the value of the output. Similarly, if 
its value is 1, it means that input parameters will always be suc-
cessful in predicting the output. The R2 value is always 

< <0 R 12 and for this criterion 0.9 or above is considered as ex-
cellent precision, 0.8 or above good, and in some cases, 0.6 or above 
is considered satisfactory (Rad and Khalkhali, 2018). 

In the second study, a latin hypercube is used to generate design 
samples. A python module called ‘diversipy’ (Wessing, 2018) is used 
as an implemented version of latin hypercube to create 100 nor-
malized design samples between the aforementioned bounds for the 
parameters. All cases are mapped into desired intervals and using 
CATIA knowledge ware bench work, a parameterized model is 
modified with a VBA script, and all the CATIA models are generated 
the same as described before. Fig. 8 illustrates the three most cor-
related parameters (out of 14) with the volume for 100 design 
samples generated with the latin hypercube. As can be seen, these 
CAD parameters are correlating with the volume with the R2 value of 
0.037, 0.018, 0.044 which means almost no correlation. Other para-
meters are also similar to the depicted ones, so they were not in-
cluded as they don’t yield more information. This lack of correlation 
among all CAD model parameters and the simulation output can be 
explained by the effect of each parameter on the volume change. As 
it can be inferred from Fig. 7 some parameters have so small effect 
(for example, ‘Radius 3′ or ‘Radius 4′), and some have very high (for 
example, ‘IslandLength’ or ‘IslandAngle’). If one parameter with high 
impact increases the volume and one other parameter with low 
impact reduces it. The effect of the one with low impact will be 
faded or maybe even out with each other when they are changed 
together. This problem with these parameters will affect the accu-
racy of the machine learning regression model negatively because 
the regression function will not be able to properly map inputs to the 
output. 

In other words, the algorithm might have difficulties finding a 
meaningful relation between input and output. Consequently, using 
low correlated features will require either having large training sets 
or having a higher number of features. As mentioned in the in-
troduction, filtering methods are a group of feature selecting 
methods that are based on the increased correlation between fea-
tures and the output (or label tags in classification problems) (Cai 
et al., 2018). The feature extraction on CAD proposed in the next 

Fig. 6. Studied prototype simulation in a 25 ms step time.  
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section is using the filtering method as a base. Some new parameters 
are extracted and ranked according to firstly being independently 
(from the parameterization) measurable and secondly having a high 
correlation with the volume as output. This will ensure their impact 
when they are used to create a machine learning regression model 
and will increase the accuracy of such a model which is proposed 
and verified in the last section. 

5. Sleeping parameters 

The parametric study in the previous section shows how much 
area can be effective in the final volume output, which is no surprise. 
Yet, it refers to more possible geometrical entities associated with 
the airbag shape which can show a correlation with the volume. 
Therefore, a more in-depth study is carried out on finding more 
parameters with the same characteristics, and the results are pro-
vided in this section. Overall, underlying parameters of this kind that 
can be obtained independently and fast from the geometry are an 
example of a feature extraction application for machine learning in 
the CAD environment. In this paper, the term sleeping parameters is 
used to address them and more examples of such parameters are 
presented further in the text. They are called ‘sleeping’ because they 
are not primely linked to the CAD model parametrization, and are 
derived from the model without any special treatment before or 
during the design process. The extraction can simply be done after 
the design is finished and when the design is ready for the simula-
tion stage. To gather a handful of Sleeping parameters, a workflow as 

illustrated in Fig. 9 has been used during the next sections. In this 
figure, if a geometric entity or an extracted parameter satisfies two 
conditions, it is added to a non-dimensional array (Ndarray). Later, 
we use all extracted parameters to train a regression model and 
measure its accuracy. This is looped until we reach the expected 
accuracy. 

5.1. Area and circumference 

Using the 100 samples acquired from the latin hypercube in the 
previous section, a CATIA VBA script is used to read out the area of 
each model. The correlation between area and volume is studied and 
depicted in Fig. 10 (top). The figure also demonstrates the correlation 
coefficients between two sets. The amount of correlation in this 
figure makes the area an interesting parameter to estimate the vo-
lume in the early design phases. The figure also shows when the area 
is increased so does the volume. It has been proven that the increase 
in volume is always greater than the increase in the surface area 
(Emert and Nelson, 1997). This is true for cubes, spheres, or any other 
polyhedron object whose size is increased without changing its 
shape (only undergo geometric change and not topological change). 
Additionally, two upper and lower boundary lines are obtained and 
shown in the figure with their corresponding functions. Using the 70 
samples from the parametric study in the previous section and the 
same script Fig. 10 (bottom) is acquired, which shows the correlation 
between the volume and the area for mentioned samples. In this 
figure, the purple points show the area of the design samples in 

Fig. 7. One factor at a time study on fourteen selected parameters.  

Fig. 8. Three example parameters out of 14 in the second study with 100 design samples.  
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which only island-associated parameters have been changed. These 
parameters are namely IslandOffset, IslandR1, IslandR2, IslandAngle, 
and IslandLength. Blue points show samples associated with the 
change of other parameters. Two differentiated sets of parameters 
clearly display a different behavior with the volume. 

As another instance, the circumferences of the 100 bags (same as 
area) are studied, and the results for correlation between 

circumference and volume are shown in Fig. 11 (top). Upper and 
lower bounds are quadratic and with small deviation at the begin-
ning and end of the plot (small and large circumferences) and large 
deviation in middle range circumferences. 

Moreover, to find out the reason behind observed behavior, the 
circumference of the design samples from the parametric study, are 
separated into two sets in the same way with the same color code as 
illustrated before and the results are presented in Fig. 11 (bottom). 
Interestingly, the same island parameters, namely IslandOffset, Is-
landR1, IslandR2, IslandAngle, and IslandLength are the reasons for 
this behavior. In this figure, purple points are associated with the 
simulations where the island parameters are changed, and the blue 
points are depicting the rest of the simulations (where other para-
meters are changed). To find out more parameters other geometric 
entities have been taken into account in the next section. 

5.2. Using medial axis to extract more parameters 

To find out parameters that can represent thickness, the medial 
axis length of the bag shape in 2D is studied. The medial axis (also 
known as the topological skeleton) is a fundamental geometrical 
entity, first proposed by Blum (Blum, 1967) to describe a shape. 
Utilizing this concept allows representing a virtual shape by geo-
metric location of the center of circles inscribed inside instead of its 
outer boundary. The medial axis is represented in a 2D planar as a 
line and in 3D, as a surface. What follows is the mathematical de-
finition of the medial axis for a 2D object (a simple polygon). Let G 
denotes the boundary of a 2D object, then the medial axis M(G) is 
defined by a set of points like y (see Equation 2) which is tangent to 
the boundary G at two unique points like x and x . And as such, these 
points must be equidistant to the medial axis point y. This distance 
can be measured by using a distance function d y( )x which shows the 
distance between any x and y (Ramamurthy and Farouki, 1999) as 
shown and Fig. 12. 

Distance function d y x y: ( ) minx
x (2.1)  

Fig. 9. The process used in this section to extract Sleeping parameters.  

Fig. 10. Correlation between area and volume (top: latin hypercube study, bottom: 
One factor at a time study). 

Fig. 11. Correlation between circumference and volume (top: latin hypercube study, 
bottom: One factor at a time study). 
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= =Medial Axis M G y x x X d y x y x y: ( ) { ; , ( ) }x

(2.2)  

Voronoi diagram (VD) which is another fundamental geometrical 
entity associated with a closed bounded planar domain, can be used 
to obtain the medial axis. As defined in the mathematical definition 
shown in Equation 3. Let ei denotes a nonempty site in a collection of 
sites, E in the space 2. The Voronoi regions VR e( )i , is the set of all 
points whose distance to ei is not greater than the distance to any 
other site e Ej , where j i. Consider a distance measure d x A( , )
shown in Fig. 13 which denotes the distance between point x and the 
subset A, this is typically the Euclidean distance (Fabbri et al., 2002). 
The Voronoi region is then given by the definition 

Voronoi regions VR e x d x e d x e e e: ( ) { , ( , ) ( , ), }i i j i j
2 (3.1)  

The Voronoi diagram is then given by the union of the bound-
aries of the Voronoi regions 

Voronoi diagram VD E VR e: ( ) ( )
i

i
(3.2)  

Voronoi diagram and its close associates such as the medial axis 
are typically grouped under the term ‘Skeletons’. They have been 
extensively studied and used in a wide range of applications such as 
shape matching, surface reconstruction, dimensional reduction 
(Suresh, 2003), morphing (Ilies, 2006), mesh generation (Yan et al., 
2013), etc. 

In this paper, the Voronoi component in commercial software 
Rhino/Grasshopper has been used to create the medial axis of the 
100 design samples generated by the latin hypercube sampling 
method. Grasshopper is a visual programming tool that has been 
used in several applications, such as in design science to solve design 
automation transparency problems by displaying input/output re-
lations on a canvas (Heikkinen, 2021). Using the built-in component 
for python scripting in grasshopper, each design sample is imported 
as a ‘.igs’ file and the boundary of the shape which is a closed-loop 
curve is split into 300 points (Fig. 14-A). Using these points as the 
center of circles for Voronoi regions and by increasing the radius, it is 
possible to create Voronoi regions with all the center points in the 
edge of the geometry (Fig. 14-B–E). Within higher radii, two meeting 
regions create a curve that has two close points on the geometry and 
correctly approximates the medial axis (Fabbri et al., 2002). Through 
a selection procedure in grasshopper, the medial axis is isolated and 
measured for its length (Fig. 14-F). The length of the medial axis is 
studied to find out the correlation with the volume of the bag when 
being inflated. 

Fig. 15 shows the plot for the length of the medial axis in cor-
relation with volume for 100 design samples created by the latin 
hypercube sampling method. As it can be seen, when the length of 
the medial axis increases so does the volume. 

Although the derived medial axis length for each design sample 
due to its correlation with volume is a good feature to be used in 
regression models. However, it does not represent the largeness of 
the areas that are inflated ‘balloon-ability’. Another drawback is that 
it is not sensitive to the small changes on the island. If the island 
moves a little bit toward the right side (change in parameter 9 of  
Fig. 4), it has a negligible effect on the length of the medial axis but 
since the left area gets bigger, the pressure could create a bigger 
balloon in that region and the volume could increase. To solve these 
problems the maximum radii among the circles that are used to 
generate the medial axis is derived and the result is plotted with 
respect to volume in Fig. 16. The figure shows ‘maximum radius’ is a 
better representative of the balloon-ability since it can have a better 
reflection of the island’s movement on the volume, and thus it can 
be useful in the regression analysis. 

As it is demonstrated in Fig. 14 medial axis is the collection of 
points that are created when two circles meet each other in the 
middle of the geometry. To study the characteristics of the circles 
that construct the medial axis, all circles inscribed in the geometry 
are drawn as illustrated in Fig. 17-A. As it is shown in this picture, the 
medial axis is exploded into equally distanced points and circles are 
drawn on the x-z plane to be tangent with the nearest edge. Then, all 
circles are flipped around the x-axis making their plane change from 
the x-z plane to x-y. This is like drawing them in a perpendicular 
plane to the bag’s geometry which is shown in a perspective view in  
Fig. 17-B. The new circles prove that they are representing the vo-
lume better (since they are correlating better) than previously ex-
tracted parameters, this representation is clear in Fig. 17-C which is 
the top viewport of the same circles in Fig. 17-B. The top view 
(looking into the x-y plane from above) shows that whenever one 
side of the bag has an opportunity to get bigger, the size of the radius 
of the circles inscribed also grows, and this aligns well with de-
picting the degree to which the bag becomes balloon-like. Inter-
estingly, the radius of the circles inscribed (see Fig. 17) in the 
geometry has a potential application to be extracted as an in-
dependent feature. However, for ease of the process, the cir-
cumferences of all the circles are calculated as a coefficient of the 
radius. 

Additionally, the maximum radius from Fig. 15 only represents 
one side of the island (the bigger one), and thus, the effect of in-
scribed circles in the smaller chamber is not represented with this 
parameter. To address this problem, and to fully benefit from the 
radius of these circles, the sum of the circumference of all the circles 
inscribed in the geometry is plotted against the volume in Fig. 18. 

To illustrate how much building a regression analysis on ex-
tracted features (sleeping parameters) can increase the efficiency 
and precision of the regression models, the next section presents a 
comparison and analyses on the performance of these parameters in 
regression models. 

5.3. Regressions and analyses 

The presented framework in the previous section for extracted 
sleeping parameters is all about finding independent (from para-
meterization), and measurable features that show a high correlation 
with the output volume. To illustrate this, a comparison between 3 
sleeping parameters with the 3 CAD parameters is presented in  
Table 2 which shows a big improvement in the correlation of the 
extracted features with the volume as simulation volume. 

In addition, a Multivariate Linear Regression (MLR) analysis to-
gether with the gradient descent method is used to create a pre-
diction model for the simulation output (volume) using extracted 

Fig. 12. Medial Axis definition.  

Fig. 13. A simple Voronoi diagram defined by three sites.  
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features. The reason for using this method is that multivariate ana-
lysis is one of the simplest machine learning algorithms available. If 
sleeping parameters with such a simple model result in good ac-
curacy, then it proves and validates the hypothesis about how these 
features are better inputs than direct CAD parameters in regression- 
based machine learning for envisioned prediction models. Another 
advantage with choosing this method is that a simple regression can 
be easily implemented by any CAD designer or industrial designer 
utilizing ready-made libraries and modules. The applicability serves 
the aim of being utilized as a tool for the early phases of the design 
process. 

Two models are trained through multivariant linear regression. 
One model with 14 CAD parameters is introduced in Table 1 and the 
other model with 3 of the extracted sleeping parameters from the 
previous section (the selection was based on better correlation cri-
teria) namely: Area (Fig. 10 top), Length of the medial axis (Fig. 15), 
and Sum of circumferences of all circles inscribed (Fig. 18). In the 
training process, for minimizing the cost function, gradient descent 
is chosen because of its performance in convergence. The cost 
function (J) is used with both models, where it deducts y (the ori-
ginal output) from the hypothesis h (the predicted output) in 
Equation 4. In the h x( ), the weights of the prediction model are 
denoted by . .. n0 and x x. .. n0 are the response variables. n is the 
number of variables, m is the number of data points and is the 
learning rate. 

= + + + …+h x x x x( ) n n0 1 1 2 2 (4.1)  

… =
=

J
m

h x y( , , , , )
1

2
( ( ) )n i

m i i
1 2 3 1

2
(4.2)  

= J ( )j j
j (4.3)  

For both problems, the training was performed in 5 folds. In this 
way, data for 100 design samples are normalized and then divided 
into 5 sections. Minimum (worst) accuracy among all sections is 
reported as the output precision. Each section with a total of 20 
samples is used as a training set and one section with 80 as a testing 
set. The low number of training samples was chosen to make the 
training a little challenging and show the performance difference 
between the two problems clearly. As for learning rate, 5 different 
learning rates were chosen based on best practices in literature and 
subsequently were tried out and one was chosen as = 0.2, based 
on its performance in minimizing the cost function for both pro-
blems. The convergence rate of the algorithm using three sleeping 
parameters is compared to its rate when using 14 CAD parameters 
and the result shows slightly better convergence for the sleeping 
parameters as depicted in Fig. 19. 

For the regression model trained by sleeping parameters, final 
values for were extracted according to Eq. (5) where y implies the 
output volume and the x1 is the area, x2 is the length of the medial 
axis and x3 is the sum of circumferences of all circles inscribed. 

= + +y x x x33.36 1.87 1.26 3.351 2 3 (5)  

Fig. 14. Using Voronoi diagram to calculate medial axis in Rhino/Grasshopper.  

Fig. 15. Correlation between length of medial axis and volume.  

Fig. 16. Correlation between maximum radius and volume.  
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To maintain a high level of interpretability and to further de-
monstrate the effectiveness of the proposed approach a Support 
Vector Regression (SVR) is applied to the same training data. In 
contrast to MLR that fits a line, SVR tries to fit a street of lines (hy-
perplanes), a characteristic that equally penalizes high and low 
misestimates and makes the algorithm robust to outliers. It also 

enables SVR to free computational complexity from the di-
mensionality of the input space (Awad and Khanna, 2015). Even 
though the underlying optimization is complex, but the application 
is easy to employ if one uses ready-made implementations. The 
python module ‘scikit-learn’ (Pedregosa et al., 2011) implementation 
of SVR was used throughout this study since it is a free and open- 
source library and has good interoperability with other python li-
braries. Three different kernels namely, polynomial, radial basis, and 
linear are tried out and the best performance that belonged to 
polynomial was chosen with commonly used hyperparameters from 
literature. Other model hyperparameters are also selected based on 
best practice from literature and trial and error on the dataset. 

Each regression model (MLR and SVR) is fed one time by all 14 
CAD model parameters and the second time by the selected 3 
sleeping parameters and the results are compared. The error be-
tween the result of the volume from the prediction model with the 
result acquired from FEA models (i.e testing data) is studied with 
common accuracy matrices in machine learning, the MSE, and R2 

coefficient and the result is shown in Table 3. 
Mean Squared Error (MSE) is taken into account to make sure the 

difference between two compared sets is significant. The MSE metric 
measures the squared and averaged number of differences between 
predicted and expected sets. Since this metric is on the scale of the 
data point, its high number shows higher error or lower accuracy 
(Rad and Khalkhali, 2018). In this criteria, since there is no optimal 
range, the lower the error rate the better, and 0 means the model is 
perfect. 

6. Discussion 

In this section, the results from two previous sections will be 
discussed, and some important design keynotes will be highlighted. 
The correlation coefficient for area and volume is R2 = 0.829 as is 
depicted in Fig. 10 (top). It can be inferred that with calculating area 
from CAD software (without any FEA simulation) using two equa-
tions for lower and higher bounds shown on the figure, designers 
will be able to have a rough estimation on volume, however, the 
error margin will be high according to error criteria. Moreover,  
Fig. 10 (bottom) reveals that without islands or inner sewing lines 
the ‘area’ would be sufficient in predicting the ‘volume’ since there is 
a highly linear correlation between them. And this is expected be-
havior since without the inner sewing lines (the ones that create the 
inner island) the bag shape will become similar to a box shape with 
round edges. Moreover, it can be inferred that the deviation from the 
trend line in Fig. 10 (top) is the result of a change in these island- 
associated parameters. This information can enable designers to 
have a better understanding of the decisions that they are making in 
the concept phase when meeting requirements over coverage and 
volume. Overall, independence from other CAD parameters when 
measuring the area and high correlation with the volume makes the 

Fig. 17. Study of the circles inscribed in geometry that are used to generate medial axis.  

Fig. 18. Correlation between the sum of circumferences of all circles inscribed and 
volume. 

Table 2 
Comparison of the correlation between CAD and Sleeping parameters.    

Name of the parameter (refer) R2 Correlation with the 
output (Volume)  

Offset1 (Fig. 8)  0.037 
Island Length (Fig. 8)  0.0183 
Island Angle (Fig. 8)  0.0441 
Area (Fig. 9 top)  0.829 
Length of the medial axis (Fig. 14)  0.752 
Sum of circumferences of all circles 

inscribed (Fig. 17)  
0.8816 

Fig. 19. Convergence of gradient descent with learning rate = 0.15 using sleeping 
parameters. 
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area an interesting sleeping parameter to be used in regression 
analysis. 

As it can be inferred from Fig. 11 (top), circumference with vo-
lume shows a weak correlation R2 = 0.37 but the study is interesting 
from the design perspective. This parameter gives intuition on the 
behavior of the island and can help the designers have a better es-
timation when working with island design. As shown in this picture, 
if the change in bag dimensions results in increasing circumference, 
the volume increases rapidly which verifies previous findings. Yet 
from Fig. 11 (bottom) it is inferred that with increasing the cir-
cumference in the island's dimensions the volume is decreasing. This 
can be explained since the bigger size of the island limits how much 
the bag can get larger which in turn means less thickness for the bag. 

The medial axis length also shows a good correlation with vo-
lume with R2 = 0.75 as depicted in Fig. 15. This parameter also is 
interesting because it is possible to calculate it like area with the 
help of a raw geometry independent from the parameters that are 
used to generate the shape. And therefore, has been considered as 
another sleeping parameter to build regression models for pre-
dicting volume in the previous section. The high correlation can be 
explained since longer the medial axis naturally means that the 
geometry has narrow and twisted chambers and in other words, 
smaller chambers will lead to having a lower thickness. However, if 
the geometry has a big open area that can be inflated and become 
thickened, the medial axis length will become shorter. 

The correlation between maximum radius and volume is de-
picted in Figure16. However, the figure shows a lack of precision for 
design samples that have a maximum radius between 180 and 
230 mm. This can be inferred from R2 = 0.52 which is due to a clear 
higher deviation from the trend line over the mentioned region. To 
fully understand the relation of circles that are used to create medial 
axis their circumferences are added up as described The sum of all 
the circles inscribed in the geometry and the volume demonstrate an 
excellent correlation with R2 = 0.88 and thus it can be argued that it 
is a better feature and can increase the precision in regression 
analysis. 

All extracted features can be obtained independently from other 
CAD parameters and this allows designers to have freedom when 
designing. The reason is when creating a parameterized CAD model, 
the designers need to always follow a unique convention and use the 
same features (such as curves, constraints, etc.) in the geometry. 
Obtaining these independent features can be done very fast and in 
an automatic way within the CAD environment. Moreover, correla-
tion with simulation output will increase the accuracy and efficiency 
of the regression models in the machine learning process and will 
facilitate a live prediction model concerning decision-making in the 
design process. 

As discussed in the introduction, the literature conveys that 
correlation can be a good criterion for selection features in machine 
learning. Therefore, Table 2 can be used to argue that the 3 extracted 
features in this table, with 80 + correlation, are superior in building a 
regression model than using direct CAD parameters. Another com-
parison between the two regression models is presented in Table 3. 
As it can be seen from the table, the accuracy for the model trained 
by sleeping parameters is R2 = 0.95 and for the model trained by 14 
CAD parameters is R2 = 0.63. The maximum range for this error 
criteria is R2 = 1, so it can be interpreted that the use of these 

parameters helps to get to an excellent regression precision over the 
estimated values. To make sure of the performed R2 error compar-
ison results, the MSE of the two sets is also performed and depicted 
in Table 3 which confirms the findings. For the model trained by 3 
sleeping parameters, MSE is almost 7 times smaller than the one for 
the model that is trained by CAD parameters. Since smaller values 
for MSE shows better performance, we can once again confirm that 
the model trained by sleeping parameters is more accurate than the 
one trained by usual CAD parameters. Thus performed analysis 
proves the benefit of using sleeping parameters and its ability to 
perform accurate regressions with a small number of samples and 
with no need for complex machine learning algorithms. 

The goal of the presented feature extraction framework is to 
simplify the problem so the regression can be done with any simple 
and easy-to-handle estimation model. To ensure that a more ad-
vanced algorithm can not perform better with the 14 CAD para-
meters, and also to ensure how good a job is MRL is doing on the 
sleeping parameters, the Support Vector Regression model is applied 
on both datasets. As it is shown in Table 3 the CAD parameters are 
giving R2 = 0.8 when applied on 14 parameters, which is considered 
relatively underperformed. The model however reports the accuracy 
R2 = 0.95 as seen from the same table when it is trained with 
sleeping parameters. The MSE error criterion is also showing an 
improvement from 14.34 to 1.77 which is considered substantial. 

The fact that MLR and SVR have very close accuracy rates when 
trained with sleeping parameters, proves that these new features 
have successfully reduced the model order so it is now actually 
possible to regression the problem with MLR as good as SVR. This 
shows that sleeping parameters by increasing the quality of training 
features, have made it possible to get an acceptable result with MLR 
and there is no need for advanced and complicated regression al-
gorithms such as SVR. Which was the aim from the beginning and is 
indeed an advantage and justification for pursuing feature extraction 
on CAD using the proposed framework. 

The calculated simple regression will empower designers in the 
early stage of airbag design to have a real-time prediction model and 
therefore potentially will reduce the development lead time. This 
model can be added to a CAD environment so when designers 
change a length and/or a radius and/or an offset they can quickly see 
the impact of their decisions on the volume of the bag without any 
need to perform a complex finite element analysis. Moreover, in-
dependence from conventional parametrization in CAD will provide 
the flexibility for being creative with new solutions since they will 
not be forced to follow one standard parameterization in complex 
geometries which is very much needed in today’s industry. 

The proposed methodology is transferable to all volume simu-
lations in airbag models that are using 2D geometries as inputs such 
as knee and side airbags that deploy from the passenger seat. 
Additionally, this methodology can be utilized by other simulations 
that use 2D shapes as inputs such as the design of wire patterns for 
seat heaters in the automotive industry. Other inflatable structures 
that require volume simulation can benefit from the finding of this 
paper, such as high-pressure vessels, inflatable tunnel plugs, in-
flatable rubber dams, different kinds of inflatable boats, etc. The 
methodology is also scalable to any performance evaluation that 
requires good enough accuracy but fast evaluation for decision- 
making in the early stages of the design process. 

Table 3 
Comparison of the accuracy between the regression model trained by two sets of parameters.        

Multivariant Linear Regression Support Vector Regression  

Accuracy of the regression model among 
predicted and expected sets 

All 14 CAD model 
parameters 

Selected 3 Sleeping 
parameters 

All 14 CAD model 
parameters 

Selected 3 Sleeping 
parameters 

R2 0.6318 0.9505 0.8027 0.9544 
MSE 14.7304 1.8802 14.3419 1.7784    
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7. Conclusion 

This paper applies correlation-based feature extraction on CAD 
model parameters. The aim is to have better features as input in 
machine learning which will in turn help to build more accurate 
regression-based models. Performed literature study, confirms the 
identified gap in the literature for lack of novel ways of utilizing CAD 
as input for data-based tools. It also confirms that potentially such 
tools could add to the efficiency of design processes by removing 
iterative loops (such as metamodels) in early development phases. 
First, the inefficiency of using CAD parameters alone, as input for 
estimation tools was investigated by showing how these parameters 
lack correlation with volume. Finite element simulation was used to 
study the effect of each parameter alone on the volume output 
through a parametric study. Using the concept of fundamental 
geometrical entities such as area, circumference, and medial axis, a 
group of parameters that are referred to as sleeping parameters are 
extracted. Rhino/Grasshopper was employed for creating the medial 
axis and measuring the parameters. Utilizing a correlation coeffi-
cient, it was shown that these parameters have a better correlation 
with volume as simulation. Multivariate Linear Regression as an 
example of a simple, and Support Vector Regression as an example 
of sophisticated machine learning algorithms are used on sleeping 
parameters and the usual CAD geometry parameters. The compar-
ison between the two trained models proves that these extracted 
parameters are superior to be used in regression models. In future 
work, the generalization of this method on other case products will 
be carried out to show that it is possible to extract such sleeping 
parameters from other products’ CAD models. A framework to ex-
tract and rank features from CAD models can be developed for de-
signers in the next study. 
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