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A B S T R A C T   

The local environment and land usages have changed a lot during the past one hundred years. Historical doc-
uments and materials are crucial in understanding and following these changes. Historical documents are, 
therefore, an important piece in the understanding of the impact and consequences of land usage change. This, in 
turn, is important in the search of restoration projects that can be conducted to turn and reduce harmful and 
unsustainable effects originating from changes in the land-usage. 

This work extracts information on the historical location and geographical distribution of wetlands, from 
hand-drawn maps. This is achieved by using deep learning (DL), and more specifically a convolutional neural 
network (CNN). The CNN model is trained on a manually pre-labelled dataset on historical wetlands in the area of 
Jönköping county in Sweden. These are all extracted from the historical map called “Generalstabskartan”. 

The presented CNN performs well and achieves a F1-score of 0.886 when evaluated using a 10-fold cross 
validation over the data. The trained models are additionally used to generate a GIS layer of the presumable 
historical geographical distribution of wetlands for the area that is depicted in the southern collection in Gen-
eralstabskartan, which covers the southern half of Sweden. This GIS layer is released as an open resource and can 
be freely used. 

To summarise, the presented results show that CNNs can be a useful tool in the extraction and digitalisation of 
non-textual information in historical documents, such as historical maps. A modern GIS material that can be used 
to further understand the past land-usage change is produced within this research. Previously, no material of this 
detail and extent have been available, due to the large effort needed to manually create such. However, with the 
presented resource better quantifications and estimations of historical wetlands that have been lost can be made.   

1. Introduction 

Historical maps hold crucial information about the landscape of the 
past, which is an important part in understanding ecological changes 
over time (Saar et al., 2012). Older historical maps are drawn by hand 
without any modern systems to aid, making the layout not fully 
consistent. It is therefore a time consuming challenge to extract desired 
information from them. The conventional approach to extract such in-
formation is through manual annotation, with the help of various GIS- 
software. This labour intensive approach causes most current studies 
of historical landscapes and ecologies to be limited in size and only 
focusing on smaller areas or regions of particular interest, such as the 
study by Cousins (2009). 

In some cases, automatic extraction of certain certain land covers can 
be done based on the colouring (Herrault et al., 2013). The tool Hist-
MapR (Auffret et al., 2017) is an example of software that has been 
proven useful for such automatic extraction. However, the fading of 
colour and the yellowing of old paper is a disadvantage when analysing 
historical documents. There are also historical maps that are drawn, or 
digitalised, in black and white and hence do not carry any colouring 
information. The different land cover, therefore, need to be extracted by 
methods that analyses the different textures in the map, or discover 
different land cover implicitly, by analysing the surrounding landscape. 

In this paper, we show how artificial intelligence (AI) can take 
advantage of previous manual annotation efforts that have been con-
ducted. More specifically, it is shown how a convolutional neural network 
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(CNN) can be trained using annotated data and thereafter be used to 
automatically detect areas of specific land cover in an old hand-drawn 
map. As a proof of concept we show how a CNN can be trained to 
detect wetlands in the around one hundred years old Generalstabskartan 
Swedish Mapping, Cadastral and Land Registration Authority, which 
depicts the terrain and land-usage in Sweden. The presented method is 
trained and evaluated on data from one county in Sweden (Jönköping 
county). Besides this experiment, the model is also applied to historical 
maps covering the whole southern part of Sweden, with the aim of 
generating an overview of historical wetland areas. This overview can be 
used to quantify the historical wetland coverage. Such quantification 
enables analysis of the substantial loss of wetland area on a large scale. 
Hence such material is valuable when deciding where and how wetland 
restoration projects can be conducted. The result of the presented 
analysis, together with the source code for the method, is therefor 
released for public use. 

CNNs are known to perform well at partitioning images into different 
segments, based on their content (Minaee et al., 2021). Approaches 
similar to the one in the presented work have been used to study his-
torical maps. For example, Saeedimoghaddam and Stepinski (2020) use 
a CNN to detect road intersections in historical maps provided by the 
United States Geological Survey (USGS). Another study that uses DL to 
extract information from historical maps is Weinman et al. (2019) who 
find and transcribe text from historical maps. There are also some 
studies on more recent historical maps, such as Le Bris et al. (2020) who 
segments historical orthoimages coupled to digital surface models 
(DSM) from the 1980s into different land cover. 

Besides the analysis of historical maps, there are several applications 
utilising CNNs to more recent cartographic material. One such appli-
cation is the detection and segmentation of different land cover from 
multi-spectral remote sensing images (Huang et al., 2018). Beside 
detecting and classifying larger areas, CNNs have been used to detect 
very specific objects in remote sensing images and they can be applied 
with enough granularity to provide information about different species 
of trees (Branson et al., 2018). If more granularity than satellite images 
can provide is needed, drones can be used to photograph an area. The 
material, which is collected by the drone, can be analysed with the help 
of CNNs, and important objects can be detected and extracted. Such 
approaches have been used to analyse and assess the ecological status of 
areas and also to detect and track different species Gray et al. (2019a, 
2019b). 

All these cases highlight that CNNs can be useful in ecological ap-
plications that require visual analysis. In this work we show that a CNN 
based method can be applied to historical maps in order to extract in-
formation concerning the occurrence of wetlands. Hence, the presented 
method can be used to minimise the manual labour that is required for 
analysing such data. Using data from one region in southern Sweden, the 
County of Jönköping, we show that the method achieves both an high 
average precision, recall and F1-score. 

2. Materials and methods 

2.1. Geographical area of analysis 

The presented analysis is conducted on the southern part of Sweden. 
The limitation to just analyse the southern part arises from the earlier 
choice of drawing the southern part in a different scale than the northern 
part. Furthermore, the model is trained on only one of the regions that 
the material covered. The region that is selected is the Jönköping region, 
where pre-labelled data already existed. In addition, this region covers 
several different nature types and a significant part of the region has 
historically been covered by wetlands. 

2.2. Convolutional neural networks 

The idea behind convolutional neural networks (CNNs) was first 

presented by Fukushima and Miyake (1982) but the big breakthrough 
came some years later when Krizhevsky et al. (2012) won the Imagenet 
competition, which is a competition focusing on object recognition in 
images. CNNs are a special type of artificial neural networks and are 
inspired by the receptive fields of the human visual system. The core 
strength of CNNs are their shift invariant property that allow them to 
detect a specific pattern in grid-like topologies, for example in an image, 
independently of the position of the said pattern. 

A CNN consists of several layers where, in each layer, a linear kernel 
is applied to a local area of the previous layer and by this produces a set 
of new latent features, as depicted in Fig. 1. Directly after the kernel a 
non-linear function is applied, in the presented research this is a leaky 
Rectified Linear Unit (ReLU) (Xu et al., 2015). The kernel is repeatedly 
shifted over, and applied to, the previous representation creating a new 
grid-structure. An example of the whole process, when a CNN model is 
used to estimate the probability of a pixel in a historical map to be part of 
a wetland, is shown in Fig. 1. 

In the research literature it is common to include pooling layers after 
some of the activation functions. Such layers aggregate several neigh-
bouring features into a single representation. Hence, condensing the 
information of a larger area into a single representation. A typical choice 
of pooling function is the max or the sum function. 

2.3. Approach 

As a proof of concept for the usefulness of deep learning, and more 
specifically CNNs, in the analysis of historical maps, this paper presents 
a case study where a historical map of one county in Sweden is analysed. 
A description of the map is presented in Section 2.4. The CNN method 
presented in this paper is a full convolutional network, having 7 con-
volutional layers but no pooling layers. The full configuration of the 
network is presented in Appendix A. The lack of pooling layers let the 
input signal flow directly from the input to the output, where the value 
of the pixel is determined. Furthermore, no padding is added to the 
image, resulting in the loss of pixels close to the border of the image. 
However, this is handled when the image segments are extracted from 
the full map, so that the overlap between the extracted images is large 
enough to make sure that no area of the map is missed out. 

A 10-fold cross validation is performed in order for the result to be 
generalizable for the remaining maps, to which the CNN is also applied. 
To create the 10 different sets for the cross validation, we split the map 
by placing a 3 × 3 grid over the map. The region that is studies is not 
shaped as a square, and the central cell contains more area than the 
other 8. This cell is, therefore, split into two cells making it 10 sets in 
total. The division of the different sets are shown in Fig. 2. During the 
training of the CNN 9 of these sets are used for the training and the final 
one is used for evaluation. A challenge to the CNN is that the terrain 
differs in the different areas, as well as the style of the maps, and thus 
splitting the dataset in this way would give a good hint on the capability 
of the CNN to generalise. Among the samples that are used for the 
training 20% is used as a validation set to prevent the method from 
overfitting. These samples are selected randomly from all areas that are 
used in the training set, and are never used to fit the model. The model is 
trained for 150 epochs and with a batch size of 128. Dropout (Srivastava 
et al., 2014) with a rate of 0.3 is used during the training to make it more 
stable. Furthermore, ADAM optimisation (Kingma and Ba, 2014) with a 
learning rate of 0.0001 is used to find optimal weights in the neural 
network in order to minimise the cross entropy loss between the net-
work’s predictions and the pre-labelled data. 

2.4. Data pre-processing 

As mentioned in the previous sections, the data is first split up into 
several larger blocks, depending on coordinates, with the purpose to 
cross validate the model. These blocks are then split into many smaller 
areas of 80 × 80 pixels, due to limitations in the available amount of 
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memory. These splits are conducted in an iterative manner so the 
smaller areas are side by side to each other. In addition, a padding of 27 
pixels is added as a frame around the area used as input in order to 
counter the size reduction that occurs within the CNN. This process 
creates 41,601 smaller segments, which can be viewed as small images, 
that are all handled independently by the model. 

2.5. Data post-processing 

Some post-processing is required to transform the result of the CNN 
into an easy accessible GIS-resource. This is primarily done to produce 
and refine the material covering southern Sweden, as well as making it 
easily accessible for further analyses. This process consists of several 
steps. In the first step, the pixel predictions from the CNN are rounded, 

so all predictions with predicted value larger than 0.5 are considered as 
wetlands and all predictions below are non-wetlands. This creates a 
raster over the whole map, where each pixel is either deemed to be part 
of a wetland or not. The next step is to convert this raster representation 
into a vector representation, to enable further analyses. This conversion 
is also conducted to minimise storage space and making it easier to 
distribute. 

In the final step, smaller wetlands, which are likely to arise due to 
noise and oddities in the map, are removed. To achieve this, all wetlands 
with a total are of less than 1000m2 are removed. 

2.6. Software and hardware 

All code that are used to produce the results in this paper is released 

Fig. 1. A CNN with four layers. A single 
pixel is highlighted with a dark blue colour 
in each of the layers. The values of all 
feature channels in this pixel are derived 
from the areas marked in green in the pre-
vious layers. In the very first layer the 
feature channels correspond to the RGB 
channels of the image, depicting the histor-
ical map. The right side of the figure shows 
the kernel being shifted one step to the right, 
compared to the left side. This shift results in 
the prediction of one pixel to the left in the 
final layer. (For interpretation of the refer-
ences to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   

Fig. 2. Cross validation of the model. The model is cross validated in such a way that the analysed area is split into 10 sub-areas. These sub-areas varies in terrain 
type and hence, let us validate the generalisation behaviour of the model to areas with slightly different. 
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as open source and is available at Github1 The model and all supporting 
programs are written in Python 3.7 and the model is implemented using 
PyTorch (Paszke et al., 2019). Furthermore, Rasterio (Gillies et al., 
2013) is used for the alignment of the map and the areas that are an-
notated as wetlands as well as for the rasterisation of the input. Finally, 
Q-GIS and OpenStreetMap (OpenStreetMap contributors, 2017) are used 
to visualise the output and generate the output shown in Fig. 5. 

3. Results 

The presented method acquired a F1-score, measured over all folds, 
of 0.886 where the precision of the model is 0.871 and the recall is 
0.901. The distribution over each of the different folds, of these three 
metrics, are shown in Fig. 3. To further dissect how the model functions 
a smaller excerpt of the map and how the model classifies the different 
areas are shown in comparison with the annotated areas, in Fig. 4. The 
total area that was covered by wetlands in the Jönköping region, when 
the studied maps were drawn, is estimated by the CNN to be 1.805 * 
109m2. This is an overestimation of the wetland area by 0.3% compared 
to the area that is annotated by humans, which is 1.8 * 109m2. When the 
same model is applied to the historical maps that cover the whole 
southern Sweden, the result of this is shown in Fig. 5, the model esti-
mates the total wetland area in the analysed area to have been 1.96 * 
1010m2 at the time that the map was drawn. This can be compared to the 
modern-day wetland coverage in the analysed area of 7.82 * 109m2, 
which is provided by the Swedish Mapping, Cadastral and Land Regis-
tration Authority. The results shown in Fig. 5 is published in Geo-
datakatalogen,2 a portal for sharing data that is hosted by the Swedish 
County Administrative Boards, and are available at no cost. Further-
more, it can be seen that areas that are known to be densely covered by 
wetlands today are also the areas which are most densely covered by 
wetlands in the models predictions, based on the historical map. 

Another trend that can be spotted in the detected areas of wetland in the 
map is that areas that have historically been subject to agriculture 
contain few wetlands and have already been drained when the historical 
maps that are analysed were drawn. 

4. Discussion 

Different AI methods are, more and more, used to reduce the work-
load that is currently needed to analyse different types material to form a 
basis for future decisions. This paper explores how a CNNs can be used to 
detect and segment different land-usages from cartographic material. 
Several works, which analyse historical cartographic material using 
CNNs, has been been presented earlier with promising results, for 
example Le Bris et al. (2020) and Huang et al. (2018). However, most of 
these works are focused on modern multispectral images, most often 
extracted from remote sensing imagery, which hold less noise and have a 
coherent standard. It is, however, shown in this paper that this type of 
approach that can be used, with promising performance, even for his-
torical maps that are full of particularities and only follow a few 
standards. 

The lack of pre-labelled material of high quality, which can be used 
in the training of supervised models, is a major bottleneck for full scale 
digitalisation of historical maps. In the presented case, it is shown that 
data from a single region, covering 173,718 separate wetlands, where 
the smallest wetland is 3527m2, is sufficient to get a model with 
acceptable performance. These wetlands are only selected due to their 
availability and no formal sensitivity study about the amount of data, or 
its internal variability, needed to get sufficient performance is con-
ducted within this study. Due to the great heterogeneity of different 
historical cartographic maps any sensitivity analysis would be depen-
dent on the studied nature type as well as the variability of the repre-
sentations within the map. Wetlands may be on the easier end of nature 
types to detect, due to the simple texture, but, there is a risk to confuse 
the texture with the texture representing hills. Furthermore, the exam-
ples that are used, both in the training and the testing, comes from a 
specific region. Hence, in order to not be biased, a future sensitivity 
analysis should be done over a multitude of tasks and using samples that 
are uniformly sampled over the whole area where predictions are ex-
pected to be performed. 

Since the collection and annotation of data for the training of models, 
as the one in this paper, is a labour-intensive process, it would be 
valuable to perform such profound investigations and quantify the 
amount of data that may be needed. Another way forward, which avoids 
the labour intense labelling, would be to look for already annotated data 
that have been used for other purposes and then use that data to build AI 
models. One technique, which needs to be further investigated, in order 
to facilitate the collected data better, is to generate additional synthet-
ical samples from the annotated dataset, using generative adversarial 
models, such as in the presented work by Fang et al. (2019) and Li 
(2019). In such approaches, several new samples are created in a real-
istic way, adding more variation and more samples to the original 
dataset. Hence, a small dataset can be extended with samples that are 
realistic augmentations of the original dataset (Shorten and Khoshgof-
taar, 2019). However, even generative methods requires some anno-
tated data to get started and it is uncertain if artefacts from the 
generative process will be kept in the generated data and how these 
artefacts will be expressed. 

The presented method only considers the historical maps and no 
connection to the modern landscape is present. This may cause the 
generated information concerning the prevalence of wetlands to suffer 
from retrification errors as well as the preservation of artefacts and other 
flaws from the original map. A future avenue for this research would, 
therefore, be to couple the generated information together with modern 
information, of much higher quality, such as soil and elevation data, 
following a similar approach to Le Bris et al. (2020) where a CNN model 
with multiple inputs is utilised. Hence, the model would be provided 

Fig. 3. The distribution of precision, recall and F1-score over the ten 
different folds. 

1 https://github.com/stan-his/GSK-NET  
2 
https://ext-geodatakatalog.lansstyrelsen. 

se/GeodataKatalogen/GetMetaDataById? 

id=4a0e6d1c-abf5-4a30-8819-c4d8e1253bc7&showmetadataview 
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with a modern GIS-representation of the analysed area and compute an 
abstract representation of it. This representation would then be merged 
with an abstract representation of the historical map and the final 
wetland classification output would, thus, depend on both of these. 

5. Conclusions 

The presented research in this paper shows that it is viable to extract 
environmental information from historical maps with the help of con-
volutional neural networks. Our results shows that the performance of 
the CNN is on par with the human annotations and could minimise the 

burden of the manual digitalisation of historical maps. The presented 
model achieves a F1 score of 0.87 when a 10 fold cross validation is 
performed on the data. The disagreement between the CNN and the pre- 
defined annotation can, furthermore, be explained by small disagree-
ments on how the outline borders of the wetlands should be drawn. This 
is supported by the fact that the agreement on a macroscopic level, 
where the agreement between the human annotator and the CNN is 
almost in unison. In this case, the total area estimated by the CNN 
differed less than 0.3% compared to the area that was marked by human 
annotators. 

Fig. 4. An excerpt of the map is shown in (a). The areas that are annotated as wetlands, produced by a human, is coloured with blue and shown in (c). The cor-
responding annotation that is produced by a CNN, which has not seen this part of the map during training, is shown in (d). The similarities and differences between 
these two annotations are shown in (b). Here the areas for which the human and the CNN annotations are the same are displayed in green. The areas where the CNN 
annotate the land as wetland but the human did not (false positives) is displayed in pink. Finally, the areas that the humans annotated as wetland but, the CNN did 
not recognise as such (false negatives) are displayed in orange. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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layer of the model result is available through the Geodatakatalogen,3 a 
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trative Boards, and are available at no cost. The full code to reproduce 
the performed experiment is available to download from: 
https://github.com/stan-his/GSK-NET. 
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Fig. 5. The CNN models estimation of wetlands in the southern part of Sweden, based on the map generalstabskartan. The background map is obtained from 
OpenStreetMap (OpenStreetMap Contributors, 2017). 
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Appendix A. Network architecture  

Table 1 
Parameters for the CNN model that is used.  

Hidden layers = 6 

Neurons = 128, 64, 64, 32, 32, 32 
Kernel sizes = 9 × 9, 9 × 9, 7 × 7, 7 × 7, 7 × 7, 5 × 5, 5 × 5 
Dropout rate = 0.3 
Optimiser = Adam 
Learning rate = 0.0001  

References 

Auffret, A.G., Kimberley, A., Plue, J., Skånes, H., Jakobsson, S., Waldén, E., 
Wennbom, M., Wood, H., Bullock, J.M., Cousins, S.A., et al., 2017. Histmapr: rapid 
digitization of historical land-use maps in R. Methods Ecol. Evol. 8 (11), 1453–1457. 

Branson, S., Wegner, J.D., Hall, D., Lang, N., Schindler, K., Perona, P., 2018. From google 
maps to a fine-grained catalog of street trees. ISPRS J. Photogramm. Remote Sens. 
135, 13–30. 

Cousins, S.A., 2009. Landscape history and soil properties affect grassland decline and 
plant species richness in rural landscapes. Biol. Conserv. 142 (11), 2752–2758. 

Fang, B., Kou, R., Pan, L., Chen, P., 2019. Category-sensitive domain adaptation for land 
cover mapping in aerial scenes. Remote Sens. 11 (22), 2631. 

Fukushima, K., Miyake, S., 1982. Neocognitron: a self-organizing neural network model 
for a mechanism of visual pattern recognition. In: Competition and Cooperation in 
Neural Nets. Springer, pp. 267–285. 

Gillies, S., et al., 2013. Rasterio: Geospatial Raster i/o for Python Programmers. 
Gray, P.C., Bierlich, K.C., Mantell, S.A., Friedlaender, A.S., Goldbogen, J.A., Johnston, D. 

W., 2019a. Drones and convolutional neural networks facilitate automated and 
accurate cetacean species identification and photogrammetry. Methods Ecol. Evol. 
10 (9), 1490–1500. 

Gray, P.C., Fleishman, A.B., Klein, D.J., McKown, M.W., Bezy, V.S., Lohmann, K.J., 
Johnston, D.W., 2019b. A convolutional neural network for detecting sea turtles in 
drone imagery. Methods Ecol. Evol. 10 (3), 345–355. 

Herrault, P.-A., Sheeren, D., Fauvel, M., Paegelow, M., 2013. Automatic extraction of 
forests from historical maps based on unsupervised classification in the cielab color 
space. In: Geographic Information Science at the Heart of Europe. Springer, 
pp. 95–112. 

Huang, B., Zhao, B., Song, Y., 2018. Urban land-use mapping using a deep convolutional 
neural network with high spatial resolution multispectral remote sensing imagery. 
Remote Sens. Environ. 214, 73–86. 

Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint 
arXiv:1412.6980.  

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep 
convolutional neural networks. Adv. Neural Inf. Proces. Syst. 25, 1097–1105. 

Le Bris, A., Giordano, S., Mallet, C., 2020. Cnn semantic segmentation to retrieve past 
land cover out of historical orthoimages and dsm: first experiments. In: ISPRS Annals 
of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2, p. 1013. 

Li, Z., 2019. Generating historical maps from online maps. In: Proceedings of the 27th 
ACM SIGSPATIAL International Conference on Advances in Geographic Information 
Systems, pp. 610–611. 

Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N., Terzopoulos, D., 2021. 
Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. 
Intell. 

OpenStreetMap Contributors, 2017. Planet Dump. retrieved from. https://planet.osm. 
org. https://www.openstreetmap.org. 

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., 
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., 
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019. Pytorch: 
an imperative style, high-performance deep learning library. In: Wallach, H., 
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