
The Journal of Systems & Software 186 (2022) 111152

S
A
a

b

c

d

e

f

g

n

j
c
a
t
(
e

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Considerations and challenges for the adoption of open source
components in software-intensive businesses✩

imon Butler a,∗, Jonas Gamalielsson a,∗, Björn Lundell a,∗, Christoffer Brax b,
nders Mattsson c, Tomas Gustavsson d, Jonas Feist e, Bengt Kvarnström f, Erik Lönroth g

University of Skövde, Skövde, Sweden
Combitech AB, Linköping, Sweden
Husqvarna AB, Huskvarna, Sweden
PrimeKey Solutions AB, Stockholm, Sweden
RedBridge AB, Stockholm, Sweden
Saab AB, Linköping, Sweden
Scania CV AB, Södertälje, Sweden

a r t i c l e i n f o

Article history:
Received 17 September 2020
Received in revised form30 September 2021
Accepted 19 November 2021
Available online 24 December 2021

Keywords:
Component-based software development
Software adoption
Open source software

a b s t r a c t

Component-Based Software Development is a conventional way of working for software-intensive
businesses and Open Source Software (OSS) components are frequently considered by businesses
for adoption and inclusion in software products. Previous research has found a variety of practices
used to support the adoption of OSS components, including formally specified processes and less
formal, developer-led approaches, and that the practices used continue to develop. Evolutionary
pressures identified include the proliferation of available OSS components and increases in the pace of
software development as businesses move towards continuous integration and delivery. We investigate
work practices used in six software-intensive businesses in the primary and secondary software
sectors to understand current approaches to OSS component adoption and the challenges businesses
face establishing effective work practices to evaluate OSS components. We find businesses have
established processes for evaluating OSS components and communities that support more complex
and nuanced considerations of the cost and risks of component adoption alongside matters such as
licence compliance and functional requirements. We also found that the increasing pace and volume
of software development within some businesses provides pressure to continue to evolve software
evaluation processes.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

‘‘If most of the code comprising your product or service isn’t
open source software, it’s highly likely that you’re wasting
effort and cash reinventing the wheel.’’ Spinellis (2019)

Component-Based Software Development (CBSD) is a domi-
ant paradigm in software development with more than 90% of

✩ Editor: Neil Ernst.
∗ Corresponding authors.

E-mail addresses: simon.butler@his.se (S. Butler),
onas.gamalielsson@his.se (J. Gamalielsson), bjorn.lundell@his.se (B. Lundell),
hristoffer.brax@combitech.com (C. Brax),
nders.mattsson@husqvarnagroup.com (A. Mattsson),
omas.gustavsson@primekey.com (T. Gustavsson), jonas.feist@redbridge.se
J. Feist), bengt.kvarnstrom@saabgroup.com (B. Kvarnström),
rik.lonroth@scania.com (E. Lönroth).
ttps://doi.org/10.1016/j.jss.2021.111152
164-1212/© 2021 The Authors. Published by Elsevier Inc. This is an open access art
business software projects incorporating Open Source Software
(OSS) components (Synopsys, 2020; Tidelift, 2019; Szulik, 2018).
Managers and practitioners in software-intensive businesses us-
ing CBSD frequently make decisions concerning the adoption
of OSS components to be integrated into their tools and prod-
ucts (Franch et al., 2015; López L. Costal et al., 2016; Hauge et al.,
2009, 2010; Stol and Ali Babar, 2010a; Ayala et al., 2011a; Lundell
et al., 2017; Lenarduzzi et al., 2019; Spinellis, 2019; Kazimierczak
et al., 2020). A key economic motivation for many businesses is
the use of OSS as a means of short-cutting resource intensive
software development processes (Spinellis, 2019; European Com-
mission, 2017; Kazimierczak et al., 2020; Petersen et al., 2018;
Badampudi et al., 2016).

During the first ten years of the twentieth century, a number
of formalised processes were proposed for the evaluation of OSS
components (Stol and Ali Babar, 2010b). In general, however,
practitioners and companies developed their own approaches to
support the evaluation and adoption of OSS components (Ayala
et al., 2011a; Hauge et al., 2010). During the second decade, the
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2021.111152
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.111152&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:simon.butler@his.se
mailto:jonas.gamalielsson@his.se
mailto:bjorn.lundell@his.se
mailto:christoffer.brax@combitech.com
mailto:anders.mattsson@husqvarnagroup.com
mailto:tomas.gustavsson@primekey.com
mailto:jonas.feist@redbridge.se
mailto:bengt.kvarnstrom@saabgroup.com
mailto:erik.lonroth@scania.com
https://doi.org/10.1016/j.jss.2021.111152
http://creativecommons.org/licenses/by/4.0/

S. Butler, J. Gamalielsson, B. Lundell et al. The Journal of Systems & Software 186 (2022) 111152

m
h
s
t
A
a
m
d

a
w
t
i
2
2
c
2
e

t
c
t
t
2
o
S
o
T
F

o
c
o
p
M
1
l
m
p
I
e
a
T
o

s
s
i
t

t
a
S
s
t
m

otivations of software developers to adopt OSS components
ave evolved (Lenarduzzi et al., 2019). Developers moved from
eeing OSS components as a cost free alternative, to something
hat requires investment of effort for businesses to adopt and use.
ccordingly they prioritised the ease of software customisation
nd the availability of support from either community or com-
ercial sources as key factors when evaluating software (Lenar-
uzzi et al., 2019).
The challenge of OSS component adoption is more complex

nd nuanced than simply identifying functionally suitable soft-
are (Spinellis, 2019). Businesses need to consider multiple addi-
ional factors, for example, the software licence of the component
n the context of their own licensing policy (Stol and Ali Babar,
010a; van der Burg et al., 2014; Spinellis, 2019; Petersen et al.,
018), and also the viability and stability of the OSS project
ommunity that develops the component (Stol and Ali Babar,
010a; TODO Goup, 2018; Franch et al., 2015; López L. Costal
t al., 2015, 2016).
Some factors for software adoption have been found to be

ractable to software repository mining methods and the appli-
ation of metrics. For example, the RISCOSS project developed
ools to assess activity in GitHub projects, which can then con-
ribute to a business’s evaluation of the software (Franch et al.,
015). Ongoing licence compliance checks for the software bill
f materials (SBoM) are being automated through the use of
PDX (SPDX. Workgroup, 2020); examples include systems devel-
ped by Siemens AG (Fendt and Jaeger, 2019), the Open Source
ooling Group (OSTG) (Geyer-Blaumeiser, 2019), and the Linux
oundation (ACT, 2020).
Much recent research has focused on aspects of the process

f OSS component adoption. Meanwhile the extent to which
ompanies adopt and use OSS components has increased (Syn-
psys, 2020; Tidelift, 2019) with only limited accounts of the
ractices used within companies to support component adoption.
ore formalised schemes for evaluating OSS software described
0 years ago by Stol and Ali Babar (2010b), among others, no
onger feature in the academic and practitioner literature and
ore recent research has shown that attitudes towards OSS com-
onents within businesses are changing (Lenarduzzi et al., 2019).
n the absence of formalised methods, and given changes in the
xtent and scale of OSS component adoption, what work practices
re businesses using to evaluate OSS components for adoption?
o provide an answer to this question we use two research
bjectives.

O1 To identify and analyse the work practices used in software-
intensive businesses to support the evaluation and possible
adoption of OSS components in CBSE.

O2 To understand challenges faced by software-intensive busi-
nesses when evaluating OSS components for adoption, and
how those challenges contribute to the work practices used.

To meet these objectives we undertake a multi-case study of
oftware-intensive businesses in Sweden. The businesses range in
ize and operate in the primary and secondary software sectors
n a variety of domains including IoT, security, engineering, and
he provision of cloud infrastructure.

The following section gives an account of the background
o the problem of selecting and evaluating OSS components for
doption in CBSD and reviews the relevant academic research. In
ection 3 we give an account of the methodology used for the case
tudy. Section 4 reports findings which are then discussed Sec-
ion 5. We draw our conclusions and summarise the contribution
ade by the article in Section 6.
2

Fig. 1. Strategies for open source software adoption and project engagement.
Source: Reproduced from Lundell et al. (2017).

2. Background & related work

CBSD has become a conventional way of working for many
software-intensive businesses, and OSS is one source of compo-
nents for integration into tools and products (See path 3 in Fig. 1).
Businesses evaluate software components that are candidates
for adoption and for OSS components the criteria considered
include licensing (Cohn and Spiegel, 2011; Copenhaver, 2010)
and the nature of the OSS project (Hauge et al., 2010; Franch
et al., 2015), as well as functional requirements (Spinellis, 2019).
Business considerations are also a factor when choosing between
OSS components, internal development and proprietary software
components, because the adoption of OSS may offer cost advan-
tages in the short term, but can require additional resources in
the longer term (Petersen et al., 2018) While the selection and
adoption of a component is initially a linear process, there is
also a need for an iterative, ongoing evaluation of adopted OSS
components because of functional changes to the software as
it evolves, as well as changes within the supporting OSS com-
munity, and, sometimes, changes to the licence used for the
software (Copenhaver, 2010; TODO Goup, 2018).

A variety of formal and semi-formal schemes to evaluate OSS
components have been proposed. Stol and Ali Babar (2010b)
identified twenty evaluation methods and frameworks devel-
oped between 2003 and 2009, but their adoption has been lim-
ited. Research has instead shown that practice is often less for-
malised (Hauge et al., 2010; Ayala et al., 2011b; Lenarduzzi et al.,
2019; Franch et al., 2015; López L. Costal et al., 2016). A system-
atic literature review by Hauge et al. (2010) found six distinct
approaches recorded by researchers for evaluating OSS software,
including components to be used in software products. A key
challenge identified was that of estimating the cost of component
integration (Hauge et al., 2010). Ayala et al.’s (2011b) extensive
study of OSS adoption, including the integration of OSS compo-
nents, found companies used a range of processes to evaluation
components. Some businesses used no formal process, others per-
formed no evaluation, while some used third parties to undertake
or lead the evaluation process, and some had established their
own process and methods (Ayala et al., 2011b).

A recent study by Lenarduzzi et al. (2019), replicating two ear-
lier surveys (del Bianco et al., 2011; Taibi, 2015), found changes in
developers’ motivations to adopt OSS components between 2010
and 2016. A key shift identified was from considering OSS compo-
nents as free to understanding that the adoption of OSS is a cost
to the adopting company (Lenarduzzi et al., 2019). Developers
prioritised the ease of software customisation and the availabil-
ity of support from either community or commercial sources
as key factors, while their managers prioritised the availability
of commercial support. Factors considered almost as important

S. Butler, J. Gamalielsson, B. Lundell et al. The Journal of Systems & Software 186 (2022) 111152

w
2
m
c
t
n
w
s
a
O
w
c
c
a

i
e
o
t
v
e
h
a
c
i
g
F
d
t

t
s
(
m
i
a
a
i

p
i
u

c
a
e
2
a
c
t
C
s
b
J
l
p
i
k
t
p
o
e
(
i
b
a

a
d

f
p
t
u
p
S
i
d
d

3

r
t
i
r
m
v
t
r

S
f
b
p
w
g
n
l
w

p
r
a
a
b
a

ere quality, flexibility, maturity and reliability (Lenarduzzi et al.,
019). Research has also shown the complexity of the decision-
aking within businesses when selecting the source of software
omponents for integration (Petersen et al., 2018). There are
rade-offs for a business when choosing between OSS compo-
ents, internal development and proprietary software, each of
hich requires careful consideration (Petersen et al., 2018). A
ystematic literature review by Badampudi et al. (2016) identifies
largely common process for evaluating proprietary software and
SS components for adoption in CBSD. The main considerations
hen selecting external components were found to be purchase
ost, cost of maintenance, integration effort and quality, with
riteria used differing for commercial-off-the-shelf components
nd OSS (Badampudi et al., 2016).
Franch et al. (2015) and others have mined OSS project repos-

tories and mailing lists to extract metrics that can be used to
valuate OSS projects in terms of activity levels and the number
f individuals involved, amongst other factors. One simple metric
hat has been explored is the Truck Factor, the number of indi-
iduals critical to the functioning and survival of a project (Rigby
t al., 2016; Cosentino et al., 2015; Ferreira et al., 2017). Others
ave looked in more detail at assessing communication within
project community as an indicator of project vitality and risk,
onsidering both the volume of messaging and the number of
ndividuals involved in activities such as bug fixing. The metrics
ive a wider picture of the health of a project (Yahav et al., 2014).
urther work in the RISCOSS project (Franch et al., 2013, 2015)
eveloped a configurable tool for assessing GitHub communities
o support risk assessment during the software adoption process.

In addition to risks arising from within project communities,
here are also threats arising from decisions made by companies
upporting software development in OSS projects. Zhou et al.
2016) studied the impact on developer participation of com-
ercial backing for three Java projects, including Apache Geron-

mo. The study found that company backing has both positive
nd negative effects on the OSS projects and can lead to an
brupt cessation of development work when company support
s withdrawn (Zhou et al., 2016).

Research related to RISCOSS has developed models of the
rocesses of OSS software evaluation and OSS project adoption,
ncluding the adoption of OSS components for inclusion in prod-
cts (López L. Costal et al., 2015, 2016).
Other researchers have considered the challenges of licence

ompliance, particularly in large software products containing
mixture of proprietary and OSS components (Harutyunyan

t al., 2019; Riehle and Harutyunyan, 2019; Fendt and Jaeger,
019). Interactions between OSS licences are complex (German
nd Hassan, 2009; van der Burg et al., 2014), and can be a
hallenge that is not always resolved through manual inspec-
ion (van der Burg et al., 2014). The Linux Foundation’s Open-
hain project (The Linux Foundation, 2019) has created standards
uch as SPDX (SPDX. Workgroup, 2020), for example, that can
e used to support automated compliance checking. Fendt and
aeger (2019) and Harutyunyan et al. (2019) examine the chal-
enge of managing OSS licensed components in large software
rojects. Fendt and Jaeger (2019) describes work at Siemens AG to
mplement tool chains for licence compliance checking in CI/CD. A
ey concern is that the process of licence clearance or establishing
he licensing of source code as opposed to accepting what the
ackager declares the licence to be, is an expensive task, and
ne that in a complex SBoM should only be completed once for
ach package (Fendt and Jaeger, 2019). Riehle and Harutyunyan
2019) summarise the problem, some potential solutions, and
dentify some unanswered research questions. Automation can
e used, but there are limitations to current solutions that require

dditional tooling to be developed (Harutyunyan et al., 2019). g

3

In summary, OSS component evaluation practices are evolving
in response to changes in software development methods (Fendt
and Jaeger, 2019; Harutyunyan et al., 2019; Riehle and Harutyun-
yan, 2019), and changes have also been observed in software
developers’ motivation to adopt OSS (Lenarduzzi et al., 2019).
However, the focus of much recent research is on solving partic-
ular challenges in OSS component adoption rather than consid-
ering the wider process. In this study we seek to understand the
work practices businesses use to manage entire process of OSS
component adoption.

3. Research approach

In this work we undertake a descriptive case study (Gerring,
2017; Yin, 2018) of the challenges faced and work practices used
for OSS component adoption in purposefully sampled (Patton,
2015) software-intensive businesses in Sweden.

3.1. Case selection and setting

The subjects for the case study (see Table 1) were selected
to be part of the LIM-IT project1 (Lundell et al., 2017) to reflect

variety of companies of different sizes working in multiple
omains in the primary and secondary software sectors.
Combitech AB is computer consultancy with around 30 of-

ices in Sweden that works in a variety of domains in both the
rivate and public sectors. Husqvarna AB develops and manufac-
ures forestry and gardening tools for professional and domestic
se. PrimeKey Solutions AB specialise in public key cryptogra-
hy applications and manages OSS projects including EJBCA and
ignServer. RedBridge AB is a computer consultancy specialising
n the delivery of cloud solutions in Sweden. Saab AB is a large
efence, aeronautics, and security company. And Scania CV AB
evelops and manufactures commercial vehicles.

.2. Data collection and analysis

Software developers and managers in each of the companies
epresented by the coauthors were informed about the study
hrough emails sent internally by the respective coauthors and
nvited to participate in the research. Each prospective participant
eceived an explanation of the purpose of the research and the
ethod, written by the first author, which also emphasised the
oluntary nature of participation, and that participants were able
o withdraw from the research prior to the anonymisation of
esponses.

Written questions were provided to respondents in both
wedish and English. Questions were drafted in English by the
irst author, a native English speaker, and translated into Swedish
y the second author, a native Swedish speaker. The translation
rocess was iterated where necessary to ensure the questions
ere asked as consistently as possible in both languages. Both En-
lish and Swedish were used because a small proportion of tech-
ical staff working in Sweden speak English as a first or second
anguage and have limited knowledge of Swedish. Respondents
ere able to give answers in their preferred language.
Each respondent was asked to answer general questions to

rovide background information about their company role, the
ole that they play in the software adoption process, and to give
n overview of the adoption process used. Respondents were also
sked to give an account of the process of selecting and evaluating
etween one and four OSS components considered for adoption
nd use in products. The questions about the software evaluation

1 https://www.his.se/en/research/informatics/software-systems-research-
roup/lim-it/.

https://www.his.se/en/research/informatics/software-systems-research-group/lim-it/
https://www.his.se/en/research/informatics/software-systems-research-group/lim-it/

S. Butler, J. Gamalielsson, B. Lundell et al. The Journal of Systems & Software 186 (2022) 111152

T
T

w
t
e
t
f

s
a
w
A
c

m
2
f
a
t
S
a

H
t
t
o
T
s
i
b
p

4

p
d
i
c

4

s
l
w
w
e
t
u
t

c
c
t
a
p

s
c
i
a
c
w
F
p
u
m
t
a

4

i

a
c
a
t
f
a
c

able 1
he businesses participating in the study.
Business Main areas of activity

Combitech AB Computer consultancy
Husqvarna AB Engineering, IoT
PrimeKey Solutions AB Security applications
RedBridge AB Cloud services
Saab AB Engineering, Safety-critical Systems
Scania CV AB Engineering, Safety-critical Systems

and selection process were designed to allow respondents to an-
swer expansively. Respondents were also asked, where possible,
to include an account for at least one OSS component that had
been rejected with the intention of obtaining richer insights. (The
questions used are given in Appendix.)

The distribution of questions and collection of responses
ithin each business was coordinated by the author working in
hat company. For each company, responses were reviewed to
nsure that sensitive company information was not disclosed, and
hat the responses were anonymised, before being returned to the
irst author.

We received a total of 13 responses from companies repre-
ented by the authors (See Table 2). In addition, the first three
uthors also had limited access to documents supporting the soft-
are component evaluation processes used by Saab and Scania.
ccess to documentation was constrained for reasons of business
onfidentiality and security.
The responses were analysed by the first author using se-

antic thematic analysis (Braun and Clarke, 2006; Braun et al.,
018). Responses in Swedish were translated to English by the
irst author and the translation reviewed, revised if necessary,
nd approved by the second author. The English responses and
ranslations were the primary input for analysis, and the original
wedish responses were referred to as required to confirm the
nalysis.
The academic literature — particularly Ayala et al. (2011a,b),

auge et al. (2010) and Stol and Ali Babar (2010a) — was used
o inform the thematic analysis of the responses. Summaries of
he results and analysis were discussed iteratively by the authors
ver a two month period. The discussions served two purposes.
he first was to refine the categorisation developed during the
emantic analysis (McDonald et al., 2019). The second was to
dentify and analyse points made by respondents that could then
e drawn together into topics for the discussion. Discussions took
lace by phone, video conferencing, and email.

. Findings

In this section we first report findings related to the work
ractices used for software component adoption, namely who is
oing the work and how the evaluation and adoption process
s organised. Subsequently, we report findings related to the
hallenges of OSS adoption and how they are addressed.

.1. O1: Work practices used for OSS component evaluation

Table 2 summarises the work roles for each respondent and
hows that those evaluating software components all have some
evel of responsibility within the business. Table 2 also indicates
hether the respondent works in a group when evaluating soft-
are components, and the type of role that they have in the
valuation process. Not all respondents gave sufficient informa-
ion for them to be assigned to a category. Most respondents
ndertake evaluation of software components in groups and only

wo work alone. The supervisory roles reported by respondents

4

fell into two categories. One was the perspective of an experi-
enced practitioner providing oversight to ensure that processes
had been followed. The other was to provide oversight from a dif-
ferent role, in the case of R4 a more business oriented perspective
that further informs the evaluation and adoption process. In two
cases, respondents also stated that they had designed evaluation
processes.

Two respondents were explicit that a formalised process of
evaluation is being used within the respective businesses. In both
cases the business has a set of requirements for OSS components
that support the software evaluation process, and in one case
(R11) have led to the design of a process that is applied to the
evaluation and adoption of both OSS and proprietary components.
A respondent in a third business (R5) drew attention to a decision-
making process where the size and relative importance of the
software being evaluated allowed for a choice of evaluation pro-
cess. R5 identified a relatively light-touch developer-led process
for smaller libraries, particularly for prototyping, and a more
formal process at the team and departmental level for larger
components.

Only two respondents reported working alone when evalu-
ating software components. Both had supervisory or oversight
roles where they reviewed evaluations made by others which
accounted for much of their lone working.

Processes for continuing evaluation and compliance checking
were also considered by respondents. Activities included moni-
toring activity in the OSS project, and checking licences remain
suitable; specific details are reported in the following subsec-
tion. One respondent advocated change to the business’s current
way of working: R13 expressed the need to automate routine
ompliance checks, such as monitoring source code for licence
hanges. R13 manages a number of products with the business and
he development teams under their supervision work at a scale
nd pace that makes using the business’s formalised evaluation
rocess extremely difficult and time-consuming.
As well as the responses from individuals, we had some con-

trained access to documentation related to the evaluation pro-
esses used within Saab and Scania, the two largest companies
nvolved in the study. In both cases, practitioners and managers
re provided with a framework within which to evaluate OSS
omponents. While both facilitate a diligent evaluation of soft-
are components, there are differences in scope and features.
or example, Saab apply a single framework to evaluate both
roprietary and OSS software. Scania provide a list of commonly
sed OSS licences with ‘‘traffic light’’ colours so that practitioners
ay easily recognise which licences are safe to use (green), those

hat require deeper consideration (yellow), and some that are not
pproved for use (red).

.2. O2: Challenges of OSS component evaluation

The evaluation of software components for potential adoption
s multi-dimensional. As R4 summarises the process:

‘‘Evaluation of software in general includes stating require-
ments from different perspectives and then narrowing the
selection of available options down.’’

For reporting, the challenges of evaluating OSS components
re divided into four categories. Three categories – technical,
ompliance and OSS project attributes – are largely separate,
nd a fourth category, risk, is in part a cross-cutting concern for
he first three categories as well as identifying some additional
actors considered by respondents for component evaluation. The
spects of OSS components considered by the respondents in each
ategory are summarised in Tables 3, 4, 5 and 6.

S. Butler, J. Gamalielsson, B. Lundell et al. The Journal of Systems & Software 186 (2022) 111152

T
R

s
w
p
s
c
w
c
b
m
t
e
m
O

r
a
o
n
s
r

able 2
espondents’ work roles and responsibilities for OSS component evaluation.

Respondent

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13

Work Role
Manager ✓ ✓ ✓ ✓ ✓
Architect ✓ ✓ ✓ ✓ ✓ ✓
Development team manager ✓ ✓
Development team leader ✓ ✓
Developer ✓ ✓

Evaluates
Alone ✓ ✓
Group ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Additional Responsibility
Designer ✓ ✓
Reviewer ✓ ✓
Supervisor ✓ ✓ ✓
Table 3
Technical aspects of OSS components considered by respondents during evaluation.
Category Description

Feasibility Is it feasible to use the component being considered, i.e. can it be integrated?

Good-Fit A potential component must be a good fit with existing components, i.e.
limited reworking of existing software, or the component, would be required
to integrate the component.

Limited Alternatives That an OSS component is one of a few (if not the only) components that
meet the functional requirements.

Long-Term Maintenance A need for, or expectation of, or assessment of long-term maintenance of a
component. Minimum threshold considered by some respondents is 10 years
or so.

Maintenance That the software component is well-maintained.

Maintenance In-House The action of taking over a proportion of the maintenance of an OSS
dependency. This might, for example, be the creation of a fork that is then
maintained internally, or it can be that a business takes over a leading role in
the OSS project.

Non-Trivial The requirement that an OSS component should solve a non-trivial problem.

Requirements That the OSS components meets functional requirements.

Safety-Critical That the software meets safety-critical requirements.

Security That adopting the software creates no security issues, and that the software is
secure in use.

Software Adaptation The overhead of adapting the software for integration or for the purpose it is
being used for.

Standards That the software component implements a standard.

Time-Saver Adoption of an OSS component must save in-house development time.
4.2.1. Technical factors
The majority of components evaluated by respondents were

oftware libraries. The GNU compiler collection (GCC) and Java
ere also discussed, as were middleware libraries and other com-
onents used in distributed systems and product delivery systems
uch as containers. GCC, for example, needs to be considered as a
omponent because it requires runtime libraries to be distributed
ith compiled binaries. Consequently, any business using the GCC
ompiler suite has to consider the compiler runtime libraries to
e a component of the product. Similarly, Java requires a virtual
achine to be installed to support the product at runtime. While

he licensing of runtime components permits their use, suppli-
rs do sometimes change licences and there are, for example,
ultiple Java platforms available (e.g. openJDK, Amazon Corretto,
racle) with some differences in licence model.
One of the first questions in an evaluation process reported by

espondents focused on the need for the component and an early
ssessment of its value to the business. R1 summarised this part
f the process in the requirement, ‘‘A component must solve a
on-trivial problem or save a lot of time’’. R7 also identified time-
aving as a factor saying that using the Apache Commons libraries

educed development time by eliminating a need for routine

5

coding. (The technical aspects of an OSS component considered
by respondents are summarised in Table 3.)

Components need to meet, or get close to meeting, the func-
tional requirements of the business. R12 expressed this require-
ment as, ‘‘Does the component solve my problem?’’ and R8 poses
the question, ‘‘. . . does it have functionality we are looking for[?]’’,
and R9 also specifies that a component ‘‘should, so far as possible,
follow standards’’. R5 also said that smaller components were ‘‘Se-
lected only if a given library solves the functional requirements’’.

Non-functional requirements were also considered during
evaluation. R6 and R11 both evaluate the security of a compo-
nent. R11 expressed concerns about whether a given component
was secure in operation, and R6 considered security risks more
generally. R9 also considered performance:

‘‘The library or product should, either through our own or
another’s evaluation, show that it is stable and has good per-
formance for the use case it is intended to be used for.’’

That R6 values the evaluations of others is related to the wider
use of the OSS component, which is considered further in Sec-

tion 4.2.3.

S. Butler, J. Gamalielsson, B. Lundell et al. The Journal of Systems & Software 186 (2022) 111152

f
t
c
i
c
n
s
A
r
m
w
i
o

Table 4
OSS licence considerations during component evaluation.
Category Description

Compatibility That the licence of the software being evaluated is compatible with the
licence used in the product/tool it will be incorporated in. Includes
understanding of interaction of the licence with that of non-OSS components,
and whether the OSS licence permits commercial use.

Revision That a company might ask that an OSS project revise the licence to make it
compatible with that required by a business.

Obligations Whether the licence used include obligations for the company, the product
(e.g. copyleft licences), or obligations to the upstream project.
Table 5
OSS project attributes considered during evaluation.
Category Description

Active Development That there is software development and maintenance activity in the OSS
project. Also in the case of an adopted component, it may be that a decrease
in development is an indicator that it is time to move away from the project

Active Support That OSS community mailing lists and other support forums are active.

Community Activity The there is activity within the OSS project community, e.g. that there are
multiple, regular participants in a range of software development and
community activities, that there is discussion of development priorities.

Documentation That the software is well documented.

Project Structure The ownership, governance, community and so on.

Support Options A consideration of whether there is the opportunity to pay for support.

Supported Project That the OSS project is organised or managed by a (larger) company or
organisation such as a foundation.

Wide Use That the software is widely used.
Table 6
Risks assessed by respondents during OSS component evaluation.
Category Description

Commercial Terms That software may have some licensing terms that allows commercial use, but
there is a risk that the licensor may withdraw those terms, and change the
licence for commercial use.

Dynamic That OSS projects and components are dynamic, as is software development
within the business and thus risk is also changing.

Financial That there are financial costs associated with adopting a component. Usually
expressed in terms of labour required to adapt software prior to integration,
or costs of paid support.

Lock-In The risk of a lock-in effect.

Maintenance A concern that the software may or will cease to be maintained, or the
realisation of that risk.

Obsolescence The risk that a software component will become obsolete through external
changes or through the developing organisation (company or OSS project)
stopping to support the software

Project Supported That the organisation behind an OSS component considered for adoption may
itself be considered to be a risk.

Reputation A risk related to the business’s reputation by association with the component,
which includes potential issues related to marketing.

Security Security risks as a consequence of using the component

Skills The concern that the company has and retains staff with the necessary
competence to use the software, and perhaps contribute upstream.
While a software component may meet functional and non-
unctional requirements, additional work can be required to in-
egrate it with an existing product, and indeed integration with a
ompany’s software may be impossible. Integrating a component
nto a company’s software product can be an expensive and time-
onsuming task, and the extent of any required integration work
eeds to be understood as part of the component evaluation. In
ome cases, such as middleware which implements a standard
PI, R9 observed that the overhead of integrating the new or a
eplacement component is minimal. Other components require
odifications either to the component or to the company’s soft-
are. Reasons include incomplete functionality or architectural

ncompatibilities. R2 highlighted this factor in the evaluation of
ne component where:
6

‘‘. . . we rejected several candidates . . . because we assessed
that it would take too much time (if it was even possible) to
integrate them with our system.’’

R1 emphasised the need for good documentation, saying ‘‘A
component must be well-documented and well maintained’’. R9
also saw documentation as a necessity:

‘‘. . . in the case of complex components where the function-
ality cannot easily be read from the code there is also an
emphasis on documentation being available.’’

Documentation supports component integration, future main-
tenance and possible extension of the component to meet the

S. Butler, J. Gamalielsson, B. Lundell et al. The Journal of Systems & Software 186 (2022) 111152

b
d
c

l
m
h
A
i
r
p
n
i
s

R
p
t
w
l
o
c

4

a
c
l
e
i

n
b

o
l

f
a
a
i
a
n
w
s
c

s
w

usiness’s needs. A lack of documentation is potentially an ad-
itional cost for a business and R12 reported having rejected a
omponent because it was ‘‘sporadically’’ documented.
A further challenge for software development teams is the

ong-term maintenance of components. Having made an invest-
ent within the business to incorporate a component, the over-
ead of switching to a different component is a cost to be avoided.
second factor is the long-term maintenance of the product

tself. R12 identified about 10–15 years of maintenance being
equired for the product, for example. Accordingly, the evaluation
rocess must consider the prospects for the long-term mainte-
ance of any component on a comparable timescale to the antic-
pated lifespan of the product. R1 also implied the importance of
tability of supply for maintenance saying:

‘‘A component must come from a larger, well-known organi-
sation if the component is to form part of the solution . . . ’’.

12 highlighted the value of paid support for OSS projects to sup-
ly long-term maintenance of components. For some OSS projects
he option of paid support is not available, and development
ithin the project can stop, regardless of whether a business or

arge organisation supports project development. The challenge
f such events for businesses adopting software components is
onsidered further in Section 4.2.4.

.2.2. Compliance
Licensing of software, and OSS licence and legal compliance

re important aspects of the evaluation and adoption process
onsidered by all respondents. Respondents referred mostly to
icence compatibility between the licence of the software being
valuated and the licence used in the product or tool it will be
ncorporated in (See Table 4). R5 highlighted a key condition for
licences for components to be used in a business’s products:

‘‘Important that the licence agreement permits inclusion in a
product where not all components are open source . . . ’’

Some respondents also reviewed licences from the perspective
of obligations. R2 said that they consider:

‘‘The licence model and the requirements it places on us as an
organisation and for our products.’’

While R4 used more pragmatic terms to explain the purpose of
reviewing the licence:

‘‘. . . to secure that we are allowed to do what we want and
need to . . . ’’

R5 was similarly pragmatic, saying:

‘‘. . . and that the licensing model does not impose any restric-
tions on how the library can be used.’’

Typically the evaluations reported included concerns about the
implications of copyleft licences on the businesses’ products, and
also whether the licence might include obligations to the OSS
project. Similarly, part of the oversight of component evaluation
described by R10 includes a long-term perspective of the licence:

‘‘. . . to understand what implications the licence can have for
the project [now] and in the future . . . ’’

While R10 was not explicit, it is clear that should the business’
eeds or use of the component change, then the licence needs to
e appropriate in those cases.
Licenses were not always seen as inflexible. R7 described an

ccasion where the business asked an OSS project to revise the

icence used in a library.

7

‘‘We found an open source project (development library) that
had the functionality we required. However, the licence was
not compatible with the licence that we use. We asked the
developers of the library about it, and they changed the licence
to one that is compatible with our licence. We chose to use
the library based on the functionality, limited complexity of
the library, and active developers.’’

The requested licence revision – in this case from GPL v3 to
LGPL v3 – retains the copyleft aspect of the licence for modifica-
tions to the library, but allows the library to be incorporated into
products without a copyleft obligation applying to the product
itself.

4.2.3. OSS project attributes
Attributes of the OSS project developing the component were

also identified as important inputs to the evaluation process (See
Table 5). Most respondents stated that the software should be
actively developed and that the project community should be
active. R2 and R5 also specified that the mailing lists and support
orums should also be active. R5 expressed this aspect of evalu-
tion as follows, ‘‘Activity in the project, most recently updated,
ctivity in user forum etc’’ and R10 characterised key attributes
n the questions, ‘‘Is the community active, are there commercial
ctors that support the development?’’ R12 described a compo-
ent evaluation process where an OSS library was available, but it
as found that the software lacked maturity and had a relatively
mall community developing and supporting the software; the
omponent was rejected.
As well as active support in the OSS project community, re-

pondents also emphasised that good documentation of the soft-
are was a factor for evaluation, as noted above. R6, R9 and R10

further considered opportunities for paid support as part of their
evaluation processes. Learning to use software libraries is a cost
in the adoption of a component. Support in the form of good
documentation reduces cost for the business, and paid support
may further reduce costs in the longer term.

Wide use of a component was a consideration for some re-
spondents as an indicator of expectation of continuing develop-
ment and availability of support in the future. R12 characterised
this consideration as the question, ‘Is the component ‘‘popular’’?’
and R10 asks the question, ‘‘How common is the product?’’ R8
selected one component, in part, on the grounds that ‘‘An active
community and widespread use gave us confidence that it was a
long-term solution.’’ However, respondents also report that while
popularity is a desirable factor, it was not always decisive, and
this topic is considered further below.

4.2.4. Assessing risks
Another key challenge for businesses is assessing the risk

involved in the adoption of a specific OSS component. Indeed,
respondents, as noted above, often acknowledge change, and
consequently risk, as an inherent aspect of component evaluation.
Some of the risk areas identified by respondents are related to
the initial adoption of the software component, while others are
longer-term, dynamic risks that require vigilance and reassess-
ment during the period the adopted component is used for.
Assessment of the longer-term risks will also inform the initial
assessment, in part at least. Some risks are characterisations
of factors already identified in terms of risk. Others, however,
were only described by respondents as risks. The areas of risk
considered by respondents are summarised in Table 6.

R6 described the evaluation process in terms of risk:

‘‘When requirements arise and a suitable alternative is identi-
fied from a technical perspective, a risk analysis is undertaken

that focuses on the licence type, the structure of [project]

S. Butler, J. Gamalielsson, B. Lundell et al. The Journal of Systems & Software 186 (2022) 111152

t
a

h
t
a
a
w
S
a
t
l
u
R
a

s
b
w

t
t
o

o
t
O
a
a
t
p
s
T
O
c

i
a
d
i
o
s
c

c
c
p
R
s
i

s
d

s
o
c
i
u

R
j
s
c
t
a

5

5

n
o
p
a
i
c
p
c
o
p
t
i
b

ownership and support opportunities, [software] lifecycle (ac-
tivity level and longevity) and other risks (commercial, such
as marketing related and possible cost).’’

Other respondents’ description of risk also fall into similar
echnical, project, and compliance areas described by R6, as well
s threats or risks to the business itself.
While software licences are not changed often, a change may

ave consequences for some users. For a business it may mean
hat it becomes impossible to use particular versions of software,
nd that a replacement component may need to be evaluated
nd adopted. R13 reported the business ceasing to use MongoDB
hen the software licence was changed to the MongoDB Server
ide Public License in 2018. R8 also discussed undertaking risk
nalyses where components are licenced with additional terms
hat permit commercial use. Where such a clause exists the
icensor may choose to withdraw the permission for commercial
se at some point, with consequences for the business. Similarly,
10, as noted previously, identified future implications of licences
s something to consider early in the evaluation process.
Activity within the OSS project developing the software can be

een in terms of risk, because, for example, levels of activity might
e open to interpretation. R2 outlines the need for judgement
hen assessing project community activity.

‘‘How active the community around the component is and
how mature the solution seems to be. The combination of
these is of interest, depending on what the component is. A
mature solution with few updates can indicate stability, but
also that it is abandoned. Depending on what the component
is and how good a fit it is currently you must consider the risks
in each case.’’

A similar idea was expressed by R8 as a series of questions
o assess risk, ‘‘[is there] visible and expected maintenance, will
he project continue, or will we need to take care of maintenance
urselves?’’
The concerns expressed by R2 and R8 are, in part, evaluations

f the risk of the business facing additional costs by adopting
he component concerned that may arise from change in the
SS project. The initial assessment is one of the likelihood of
dditional costs and avoiding them. However, to paraphrase Her-
clitus, change is the only constant and there is a need to protect
he business from the consequences of external change, where
ossible, such as respondents’ remarks above on ensuring paid
upport is available for the duration of the use of the component.
echnologies nonetheless continue to develop, and markets and
SS communities change, consequently the evaluation of OSS
omponents is a continuous process.
A technical risk identified by R11 is that of lock-in effects. Lock-

n may arise for technical reasons alone, for example through
dopting a specific standard or technology. Other respondents’
escriptions of integration overhead recognise elements of lock-
n effects that arise as a consequence of the cost to the business
f integration. The concern that then arises, regardless of the
ource of the lock-in effect, is the cost of migrating to alternative
omponent, should it become necessary.
The business risks identified by the respondents concern direct

osts to the business, in terms of the expense of adopting a
omponent. The overhead of integration has been mentioned
reviously, and there are additional sources of risk. For example,
6 identifies potential reputational risks which may arise from as-
ociation with a specific component, or a company that supports
t.

Another risk is that the OSS project will stop developing the
oftware; reasons might include a supporting company with-

rawing funding, or the core developers changing their focus. i

8

Respondents discussed two specific instances. R1 commented
on Hystrix (Netflix, 2020), software that adds resilience to dis-
tributed systems, which is no longer actively developed. Hystrix
was developed by Netflix, who have since changed their ap-
proach to network resilience, and, at the time of writing, Hystrix
is maintained. R1 said that the business has a period within
which to select and adopt a replacement component. In a case
reported by R7, the company used a library that implemented an
IETF specification. The OSS project that created the component
stopped developing the software. The business decided to take
maintenance of the library in-house, because the implementation
was mature, and they had the necessary knowledge and skills to
maintain it. However, it was not a long-term solution, and an-
other OSS library, already used in R7’s product, later implemented
the functionality.

A challenge faced within the business is the that of obtaining
and retaining competence, both in the short and long terms. R4
highlighted that the business needed to ensure:

‘‘. . . we have people skilled enough to use and contribute to
the development.’’

How this can be achieved in the long term was not addressed
in detail by respondents, but where a component requires inte-
gration there will always be a need to retain skills to manage
the integration, just as there is a need for long-term maintenance
in the upstream OSS project. R8 commented on expertise within
the business being a factor in the adoption of a component, and
implied that the more than one individual had the requisite skills.

Returning to R4’s observation that the evaluation process con-
iders a number of perspectives and narrows down the available
ptions, some respondents observed that the selection of a spe-
ific library can involve making judgements about trade-offs. R5
dentified one such case, where there appear to be reasons not to
se a particular library:

‘‘Despite complex integration and the relatively low activity
in the project, this component was selected because it closely
matched the functional requirements and there was synergy
with other projects’’

2’s comments above on assessing project activity reflect a similar
udgement of risk and illustrates that while some factors con-
idered during component evaluation and adoption are simple
hoices, others are considerably more nuanced, and related to
he circumstances of businesses and trade-offs in the form the
cceptance of some risks and costs.

. Analysis

.1. Discussion

The greater part of the process of evaluating an OSS compo-
ent for adoption described by respondents might be viewed as
ne of risk assessment. There are clear criteria that can be seen as
otential ‘dealbreakers’, as Spinellis (2019) describes them, such
s an incompatible licence or absent functionality, that may make
t easy to reject a particular component. Otherwise the process of
omponent evaluation is less clear and was reported as more a
rocess of appraisal and judgement than one of applying clear
ut rules; although a business may have firm lines of the kinds
f risks are acceptable. The process might be likened to that of
urchasing a house, where a survey gives an understanding of
he positive and negative physical attributes of the property, but
s only one of a number of factors contributing to the decision to
uy the property.
The challenges for businesses of OSS adoption fall largely
nto the categories identified by Stol and Ali Babar (2010a) and

S. Butler, J. Gamalielsson, B. Lundell et al. The Journal of Systems & Software 186 (2022) 111152

r
a
t
a
O
i
t
t
t
a

a
o
s
m
i
m
t
i
p
m
s
t
s

C
c
l
f
e
r
a
e
p
d
f
m
c
w

c
w
p
a
a
a
m
J
B
a
l
c

v
w
h
l
t
t
v
f
s

p
i
t
t

eiterated more recently by Spinellis (2019), among others. What
ppears to have changed is the volume of OSS that is available and
he extent to which it is used in products and to provide services,
nd that businesses and organisations have greater experience of
SS adoption for CBSD. The businesses whose staff participated
n the study have developed processes that are appropriate for
heir structure and capabilities. Further there is an awareness
hat software development is evolving, both within and outside
he business, and that the process for OSS adoption develops
longside technological change.
There is also a relationship between integration overhead and

form of lock-in implied in some responses. Given the overhead
f integrating a given library, replacing it will also require some
ort of overhead also. For drop-in replacements, such as the
iddleware examples, where there is a standardised API then

ntegration overhead is zero, and, so long as there is a replace-
ent, there is no lock-in. Where there is integration overhead,

hen there is a degree of commitment to the component that
s costly to undo, and thus contributes to a lock-in to the com-
onent. Effectively then, the process of assessing the long-term
aintenance of the software and viability of a project can be
een as mitigation of the consequences of this form of lock-in by
rying to ensure that the software component will have a lifespan
imilar to the product in which it is incorporated.
A recurring theme amongst the responses is that of change.

hange is inevitable and businesses when evaluating software
omponents for use in tools products are trying to identify so-
utions that are less likely to change in ways that are unhelpful
or the business. Or to have some form of mitigation in place, for
xample in the form of contracted long-term maintenance. Many
espondents considered a large company or organisation backing
n OSS project to be a desirable attribute in their component
valuation process. The implication in responses is that such OSS
rojects are more stable, and that the software will continue to be
eveloped and maintained. However, as one respondent identi-
ied, it is not always a guarantee and a large supporting company
ay develop new technological needs and stop development, or
hange direction of development, in a way that is incompatible
ith the adopting business’ needs.
One respondent also talked about a further dimension of

hange: the way in which the pace and scale at which they were
orking is making aspects of the company’s software evaluation
rocess difficult to follow. An aspect of continuing vigilance for
dopted software components is that of compliance checks. There
re methodologies for assessing compliance such as OpenChain
nd solutions for automated licence checking and component
anagement are being developed (e.g. by Siemens AG (Fendt and

aeger, 2019), the Linux Foundation (ACT, 2020), (HERE Europe
.V., 2020) and OSTG (Geyer-Blaumeiser, 2019)). Such automated
pproaches are not a replacement for the initial evaluation of
icence compliance in a software component, but support the
ontinuing compliance checks.
Questions for future work concern the type and extent of

igilance needed by a business to evaluate an adopted soft-
are component continuously. The introduction of automation
as limitations in that it can currently detect changes made to
icences, perhaps, and variations in activity in OSS communi-
ies. However, given the subtle and nuanced decisions made in
he component adoption processes identified in this article, how
igilant does a company need to be in order to protect itself
rom potentially detrimental changes within the OSS project or

oftware? And, what form should that vigilance take? m

9

5.2. Threats to validity

As with any empirical study, there are threats to the validity of
this work. We consider threats to construct validity and external
validity. We do not consider threats to internal validity because
no claims for causality are made, and statistical conclusion va-
lidity is not discussed because no statistical inference is used.
There is a threat to construct validity from the semantic analysis
of the interviews be being performed by a single author. The
threat is mitigated in two ways. Firstly, the thematic analysis
was informed by the academic literature and, secondly, iterative
discussions between the authors of interview summaries and
analysis were used to refine the thematic analysis.

Threats to external validity arise from the relatively small num-
ber of participants and that the authors and participants are based
in a single European country. The threats are mitigated by the
diversity of size of the software-intensive businesses represented
by the authors, as well as the range of industries within which
they operate, and the variety of domains in which the businesses
develop software. In addition, while the companies are based
in Sweden, they operate in an international marketplace with
operational offices, collaborators, and partners in other countries
and on other continents. Accordingly, given the contexts within
which the respondents work, the research provides a rich account
of practitioner and business approaches to software evaluation
and adoption which may be generalised for businesses of similar
sizes evaluating and adopting OSS components.

A further consideration is the possible impact of study design
and subject recruitment on the responses received. The study de-
sign is focused on the practices used for OSS component adoption
within companies and individual respondents were invited to
participate through their employer. The intention of this approach
was twofold: first to focus recruitment of potential respondents
within each company on relevant individuals; and, second, to give
each company the confidence to ensure sensitive information
was not disclosed. However, individuals are potentially exposed
to coercion to participate by their employer and may also bias
their responses towards those that the respondent perceives to
be ‘‘right’’ from the employer’s perspective (Vinson and Singer,
2008). Furthermore, the privacy of the participation of individ-
ual respondents (Vinson and Singer, 2008) is compromised to
an extent, and, accordingly, there may have been reluctance or
unwillingness on the part of some individuals to participate on
these grounds.

6. Conclusions

In this article we have reported and analysed results from a
study of the experiences of managers and practitioners in six
businesses in the primary and secondary software sectors in
Sweden involved in the selection and evaluation of Open Source
Software (OSS) components for use in products and internal tools.

The study focused on two research objectives:

O1 To identify and analyse the work practices used in software-
intensive businesses to support the evaluation and possible
adoption of OSS components in CBSE.

O2 To understand challenges faced by software-intensive busi-
nesses when evaluating OSS components for adoption, and
how those challenges contribute to the work practices used.

We found that the businesses each adopt a pragmatic ap-
roach to the evaluation of OSS components. The processes used
n larger companies are informed by guidelines or frameworks
hat practitioners can follow. In smaller companies, practitioners
end to take decisions about software adoption in groups, with

anagerial oversight.

S. Butler, J. Gamalielsson, B. Lundell et al. The Journal of Systems & Software 186 (2022) 111152

b
m
a
F
i
r
a
a
m
m
b
t
i

C

W
m
o
s
F
v
&
e
B
E

D

c
t

A

K
o
t
p
B
C

A

f

Assessment and evaluation of individual components is driven
y technical need in the first instance, and informed by judge-
ents that consider multiple factors related to licence compli-
nce and expected longevity of the OSS product and project.
urther consideration is given to business factors, such as costs of
ntegration and benefits gained from use, as well as the potential
isks of adopting a specific OSS component. While the businesses
re generally risk averse there are factors, such as the scarcity of
lternatives and goodness of fit for individual components, that
ean companies may trade-off increased risk for potential com-
ercial advantages. Additionally, the evaluation processes used
y businesses are under pressure to evolve because of changes in
he pace and scale of software development, as well as changes
n hardware and software technologies.

RediT authorship contribution statement

Simon Butler: Conceptualisation, Methodology, Investigation,
riting – original draft, Writing – review & editing, Project ad-
inistration. Jonas Gamalielsson: Conceptualisation, Methodol-
gy, Writing – review & editing. Björn Lundell: Conceptuali-
ation, Methodology, Writing – review & editing, Supervision,
unding acquisition. Christoffer Brax: Investigation, Writing – re-
iew & editing. Anders Mattsson: Investigation, Writing – review
editing. Tomas Gustavsson: Investigation, Writing – review &

diting. Jonas Feist: Investigation, Writing – review & editing.
engt Kvarnström: Investigation, Writing – review & editing.
rik Lönroth: Investigation, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

This research has been financially supported by the Swedish
nowledge Foundation (KK-stiftelsen) and participating partner
rganisations in the LIM-IT project. The authors are grateful for
he stimulating collaboration and support from colleagues and
artner organisations. We are also grateful for the work of Tomas
igun and Stefan Landemoo of Saab AB, and Jonas Öberg of Scania
V AB in support of this research.

ppendix. Questions sent to respondents

The English version of the questions used in the study is as
ollows:

1. Which of the following role descriptions applies to
your job? (mark more than one if necessary)

• manager
• manager of multiple software development

teams
• software development team leader (multiple

teams)
• software development team leader (one team)
• software developer
• other - please add a brief description

2. Describe how are you involved in the process of OSS
component adoption as part of your job? (e.g. do you
select or evaluate software alone or in collaboration
with others? Do you review or supervise how others
select and evaluate software? Do you design pro-
cesses for the selection and adoption of components?)
10
3. Give a brief description of the processes, and func-
tional and non-functional criteria that you use to se-
lect and evaluate OSS components for possible adop-
tion.

4. For each OSS component that you have evaluated or
contributed to the evaluation of (up to a total of four)
please give a brief account of how the component
was selected for evaluation, and the functional and
non-functional criteria used to evaluate it. If you are
able to give two or more examples, please include
one where the software was rejected with a clear
statement of the reasons for doing so.

References

ACT, 2020. Automated compliance tooling. The linux foundation. URL https:
//automatecompliance.org/. (accessed: 30 September 2021).

Ayala, C., Cruzes, D.S., Franch, X., Conradi, R., 2011a. Towards improving OSS
products selection – matching selectors and OSS communities perspectives.
In: Open Source Systems: Grounding Research - Proceedings of the 7th
IFIP WG 2.13 International Conference on Open Source Systems. OSS 2011,
Springer, pp. 244–258. http://dx.doi.org/10.1007/978-3-642-24418-6_17.

Ayala, C., Hauge, Ø., Conradi, R., Franch, X., Li, J., 2011b. Selection of third party
software in off-the-shelf-based software development — an interview study
with industrial practitioners. J. Syst. Softw. 84, 620–637. http://dx.doi.org/10.
1016/j.jss.2010.10.019.

Badampudi, D., Wohlin, C., Petersen, K., 2016. Software component decision-
making: In-house, OSS, COTS or outsourcing – a systematic literature review.
J. Syst. Softw. 121, 105–124.

del Bianco, V., Lavazza, L., Morasca, S., Taibi, D., 2011. A survey on open source
software trustworthiness. IEEE Softw. 28, 67–75. http://dx.doi.org/10.1109/
MS.2011.93.

Braun, V., Clarke, V., 2006. Using thematic analysis in psychology. Qual. Res.
Psychol. 3, 77–101. http://dx.doi.org/10.1191/1478088706qp063oa.

Braun, V., Clarke, V., Hayfield, N., Terry, G., 2018. Thematic Analysis. Springer
Singapore, Singapore, pp. 1–18. http://dx.doi.org/10.1007/978-981-10-2779-
6_103-1.

van der Burg, S., Dolstra, E., McIntosh, S., Davies, J., German, D.M., Hemel, A.,
2014. Tracing software build processes to uncover license compliance incon-
sistencies. In: Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering. Association for Computing Machinery, New
York, NY, USA, pp. 731–742. http://dx.doi.org/10.1145/2642937.2643013.

Cohn, A.G., Spiegel, G., 2011. Effective open source development business
practices. Comput. Internet Lawyer 28, 1–17.

Copenhaver, K., 2010. Open source policies and processes for in-bound software.
Int. Free Open Sour. Softw. Law Rev. 1, 143–154. http://dx.doi.org/10.5033/
ifosslr.v1i2.27.

Cosentino, V., Cánovas Izquierdo, J.L., Cabot, J., 2015. Assessing the bus factor
of git repositories. In: 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering. SANER, IEEE, Piscataway, NJ, USA, pp.
499–503.

European Commission, 2017. The Economic and Social Impact of Software &
Services on Competitiveness and Innovation. European Union, http://dx.doi.
org/10.2759/949874.

Fendt, O., Jaeger, M.C., 2019. Open source for open source license compliance.
In: Proceedings of the 15th IFIP WG 2.13 International Conference on Open
Source Systems. OSS 2019, Springer International Publishing, Cham, pp.
133–138. http://dx.doi.org/10.1007/978-3-030-20883-7_12.

Ferreira, M., Valente, M.T., Ferreira, K., 2017. A comparison of three algorithms
for computing truck factors. In: Proceedings of the 25th International
Conference on Program Comprehension. IEEE Press, pp. 207–217. http://dx.
doi.org/10.1109/ICPC.2017.35.

Franch, X., Kenett, R.S., Mancinelli, F., Susi, A., Ameller, D., Annosi, M.C., Ben-
Jacob, Y., Franco, O.H., Gross, D., López, M., Oriol, M., Siena, A., 2015. The
RISCOSS platform for risk management in open source software adoption.
In: Open Source Systems: Adoption and Impact - Proceedings of the 11th
IFIP WG 2.13 International Conference on Open Source Systems. OSS 2015,
Springer, pp. 124–133. http://dx.doi.org/10.1007/978-3-319-17837-0_12.

Franch, X., Susi, A., Annosi, M.C., Ayala, C.P., Glott, R., Gross, D., Kenett, R.S.,
Mancinelli, F., Ramsamy, P., Thomas, C., Ameller, D., Bannier, S., Bergida, N.,
Blumenfeld, Y., Bouzereau, O., Costal, D., Dominguez, M., Haaland, K.,
López, M., Siena, A., 2013. Managing risk in open source software

https://automatecompliance.org/
https://automatecompliance.org/
https://automatecompliance.org/
http://dx.doi.org/10.1007/978-3-642-24418-6_17
http://dx.doi.org/10.1016/j.jss.2010.10.019
http://dx.doi.org/10.1016/j.jss.2010.10.019
http://dx.doi.org/10.1016/j.jss.2010.10.019
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb4
http://dx.doi.org/10.1109/MS.2011.93
http://dx.doi.org/10.1109/MS.2011.93
http://dx.doi.org/10.1109/MS.2011.93
http://dx.doi.org/10.1191/1478088706qp063oa
http://dx.doi.org/10.1007/978-981-10-2779-6_103-1
http://dx.doi.org/10.1007/978-981-10-2779-6_103-1
http://dx.doi.org/10.1007/978-981-10-2779-6_103-1
http://dx.doi.org/10.1145/2642937.2643013
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb9
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb9
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb9
http://dx.doi.org/10.5033/ifosslr.v1i2.27
http://dx.doi.org/10.5033/ifosslr.v1i2.27
http://dx.doi.org/10.5033/ifosslr.v1i2.27
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb11
http://dx.doi.org/10.2759/949874
http://dx.doi.org/10.2759/949874
http://dx.doi.org/10.2759/949874
http://dx.doi.org/10.1007/978-3-030-20883-7_12
http://dx.doi.org/10.1109/ICPC.2017.35
http://dx.doi.org/10.1109/ICPC.2017.35
http://dx.doi.org/10.1109/ICPC.2017.35
http://dx.doi.org/10.1007/978-3-319-17837-0_12

S. Butler, J. Gamalielsson, B. Lundell et al. The Journal of Systems & Software 186 (2022) 111152

G

G

G

H

H

H

H

K

L

L

L

L

M

N

P

P

R

R

S

S

S

S

S

S

T

T

T

T

Y

Y

Z

S

adoption. In: Proceedings of the 8th International Joint Conference on
Software Technologies. ICSOFT, pp. 258–264. http://dx.doi.org/10.5220/
0004592802580264.

erman, D.M., Hassan, A.E., 2009. License integration patterns: Addressing
license mismatches in component-based development. In: 2009 IEEE 31st
International Conference on Software Engineering. pp. 188–198. http://dx.
doi.org/10.1109/ICSE.2009.5070520.

erring, J., 2017. Case Study Research: Principles and Practices, second ed.
Cambrige University Press, Cambridge, UK.

eyer-Blaumeiser, L., 2019. Ensuring Open Source Compliance using
Eclipse Foundation Technology. Bosch Software Innovations Gmbh,
URL https://github.com/Open-Source-Compliance/Sharing-creates-
value/blob/master/Presentations/2019_10_22_EclipseConEurope_
EnsuringOpenSourceCompliance.pdf. (accessed: 30 September 2021).

arutyunyan, N., Bauer, A., Riehle, D., 2019. Industry requirements for FLOSS
governance tools to facilitate the use of open source software in commercial
products. J. Syst. Softw. 158, 110390. http://dx.doi.org/10.1016/j.jss.2019.08.
001.

auge, Ø., Ayala, C., Conradi, R., 2010. Adoption of open source software in
software-intensive organizations – a systematic literature review. Inf. Softw.
Technol. 52, 1133–1154. http://dx.doi.org/10.1016/j.infsof.2010.05.008.

auge, Ø., Østerlie, T., Sørensen, C.F., Gerea, M., 2009. An empirical study on
selection of open source software - preliminary results. In: Proceedings of
the 2009 ICSE Workshop on Emerging Trends in Free/Libre/Open Source
Software Research and Development. IEEE Computer Society, USA, pp. 42–47.
http://dx.doi.org/10.1109/FLOSS.2009.5071359.

ERE Europe B.V., 2020. OSS Review toolkit. HERE Europe B.V. URL https:
//github.com/oss-review-toolkit/ort. (accessed: 30 September 2021).

azimierczak, M., Breckwoldt Jurado, A., Wajsman, N., 2020. Open-Source Soft-
ware in the European Union. European Union Intellectual Property Office,
http://dx.doi.org/10.2814/866548.

enarduzzi, V., Tosi, D., Lavazza, L., Morasca, S., 2019. Why do developers adopt
open source software? Past, present and future. In: Proceedings of the 15th
IFIP WG 2.13 International Conference on Open Source Systems. OSS 2019,
Springer International Publishing, Cham, pp. 104–115. http://dx.doi.org/10.
1007/978-3-030-20883-7_10.

ópez L. Costal, D., Ayala, C.P., Franch, X., Annosi, M.C., Glott, R., Haaland, K.,
2015. Adoption of OSS components: A goal-oriented approach. Data Knowl.
Eng. 99, 17–38. http://dx.doi.org/10.1016/j.datak.2015.06.007, selected Papers
from the 33rd International Conference on Conceptual Modeling (ER 2014).

ópez L. Costal, D., Ralyté, X., Méndez, M.C., 2016. OSSAP - A situational
method for defining open source software adoption processes. In: Nurcan, S.,
Soffer, P., Bajec, M., Eder, J. (Eds.), Proceedings of the 28th International
Conference on Advanced Information Systems Engineering. CAiSE 2016,
Springer, pp. 524–539. http://dx.doi.org/10.1007/978-3-319-39696-5_32.

undell, B., Gamalielsson, J., Tengblad, S., Yousefi, B.H., Fischer, T., Johansson, G.,
Rodung, B., Mattsson, A., Oppmark, J., Gustavsson, T., Feist, J., Landemoo, S.,
Lönroth, E., 2017. Addressing lock-in, interoperability, and long-term main-
tenance challenges through open source: How can companies strategically
use open source? In: Open Source Systems: Towards Robust Practices -
Proceedings of the 13th IFIP WG 2.13 International Conference on Open
Source Systems. OSS 2017, Springer, pp. 80–88. http://dx.doi.org/10.1007/
978-3-319-57735-7_9.

cDonald, N., Schoenebeck, S., Forte, A., 2019. Reliability and inter-rater re-
liability in qualitative research: Norms and guidelines for CSCW and HCI
practice. In: Proceedings of the ACM on Human-Computer Interaction 3.
http://dx.doi.org/10.1145/3359174.

etflix, 2020. Hystrix: Latency and fault tolerance for distributed systems.
Netflix. URL https://github.com/Netflix/Hystrix. (accessed: 12 September
2020).

atton, M.Q., 2015. Qualitative Research and Evaluation Methods, fourth ed. Sage
Publications Inc., Thousand Oaks, California, USA.

etersen, K., Badampudi, D., Shah, S.M.A., Wnuk, K., Gorschek, T., Pap-
atheocharous, E., Axelsson, S., Crnković, I., Cicchetti, A., 2018. Choosing
component origins for software intensive systems: In-house, COTS, OSS or
outsourcing? — a case survey. IEEE Trans. Softw. Eng. 44, 237–261. http:
//dx.doi.org/10.1109/TSE.2017.2677909.

iehle, D., Harutyunyan, N., 2019. Open-source license compliance in software
supply chains. In: Fitzgerald, B., Mockus, A., Zhou, M. (Eds.), Towards
Engineering Free/Libre Open Source Software (FLOSS) Ecosystems for Impact
and Sustainability: Communications of NII Shonan Meetings. Springer Singa-
pore, Singapore, pp. 83–95. http://dx.doi.org/10.1007/978-981-13-7099-1_5,
Communications of NII Shonan Meetings (chapter 5).
11
igby, P.C., Zhu, Y.C., Donadelli, S.M., Mockus, A., 2016. Quantifying and mit-
igating turnover-induced knowledge loss: Case studies of chrome and a
project at avaya. In: Proceedings of the 38th International Conference on
Software Engineering. ICSE 2016, ACM, New York, NY, USA, pp. 1006–1016.
http://dx.doi.org/10.1145/2884781.2884851.

PDX. Workgroup, 2020. Software Package Data Exchange. The Linux Foundation,
URL https://spdx.org/. (30 September accessed).

pinellis, D., 2019. How to select open source components. IEEE Comput. 52,
103–106. http://dx.doi.org/10.1109/MC.2019.2940809.

tol, K.J., Ali Babar, M., 2010a. Challenges in using open source software in
product development: A review of the literature. In: Proceedings of the
3rd International Workshop on Emerging Trends in Free/Libre/Open Source
Software Research and Development. Association for Computing Machinery,
New York, NY, USA, pp. 17–22. http://dx.doi.org/10.1145/1833272.1833276.

tol, K.J., Ali Babar, M., 2010b. A comparison framework for open source
software evaluation methods. In: Open Source Software: New Horizons -
Proceedings of the 6th International IFIP WG 2.13 Conference on Open
Source Systems. OSS 2010, Springer, pp. 389–394. http://dx.doi.org/10.1007/
978-3-642-13244-5_36.

ynopsys, 2020. Open source security and risk ananlysis report. Synopsys.
URL https://www.synopsys.com/software-integrity/resources/analyst-
reports/2020-open-source-security-risk-analysis.html. (accessed: 30
September 2021).

zulik, K., 2018. Open source is everywhere: Survey results part 1. Tidelift. URL
https://blog.tidelift.com/open-source-is-everywhere-survey-results-part-1.
(accessed: 30 September 2021).

aibi, D., 2015. An empirical investigation on the motivations for the adoption of
open source software. In: Proceedings of the 10th International Conference
on Software Engineering Advances. ICSEA, IARIA, pp. 426–431.

he Linux Foundation, 2019. Openchain. The Linux Foundation, URL https:
//www.openchainproject.org/. (accessed: 30 September 2021).

idelift, 2019. The 2019 Tidelift Managed Open Source Survey Results.
Tidelift, Inc., URL https://tidelift.com/subscription/managed-open-source-
survey. (accessed: 30 September 2021).

ODO Goup, 2018. TODO Guides: Using Open Source Code. TODO Goup, URL
https://github.com/todogroup/guides/blob/master/using-open-source.md.
(accessed: 30 September 2021).

ahav, I., Kenett, R.S., Bai, X., 2014. Risk based testing of open source software
(OSS). In: 2014 IEEE 38th International Computer Software and Applications
Conference Workshops. pp. 638–643. http://dx.doi.org/10.1109/COMPSACW.
2014.107.

in, R.K., 2018. Case Study Research and Applications: Design and Methods, 6th
ed. Sage Publications, Los Angeles, CA, USA.

hou, M., Mockus, A., Ma, X., Zhang, L., Mei, H., 2016. Inflow and retention
in OSS communities with commercial involvement: A case study of three
hybrid projects. ACM Trans. Softw. Eng. Methodol. 25, 13:1–13::29. http:
//dx.doi.org/10.1145/2876443.

imon Butler received a Ph.D. in computing from The Open University in
2016. He is an associate senior lecturer at the University of Skövde and is a
member of the Software Systems Research Group. His research interests include
software engineering, open source software, program comprehension, software
development tools and practices, and software maintenance.

Jonas Gamalielsson received a Ph.D. from Heriot Watt University in 2009.
He is a senior lecturer at the University of Skövde and is a member of the
Software Systems Research Group. He has conducted research related to free
and open source software in a number of projects, and his research is reported
in publications in a variety of international journals and conferences.

Professor Björn Lundell received a Ph.D. from the University of Exeter in 2001,
and leads the Software Systems Research Group at the University of Skövde.
Professor Lundell’s research contributes to theory and practice in the software
systems domain, in the area of open source and open standards related to the
development, use, and procurement of software systems. His research addresses
socio-technical challenges concerning software systems, and focuses on lock-
in, interoperability, and longevity of systems. Professor Lundell is active in
international and national research projects, and has contributed to guidelines
and policies at national and EU levels.

http://dx.doi.org/10.5220/0004592802580264
http://dx.doi.org/10.5220/0004592802580264
http://dx.doi.org/10.5220/0004592802580264
http://dx.doi.org/10.1109/ICSE.2009.5070520
http://dx.doi.org/10.1109/ICSE.2009.5070520
http://dx.doi.org/10.1109/ICSE.2009.5070520
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb18
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb18
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb18
https://github.com/Open-Source-Compliance/Sharing-creates-value/blob/master/Presentations/2019_10_22_EclipseConEurope_EnsuringOpenSourceCompliance.pdf
https://github.com/Open-Source-Compliance/Sharing-creates-value/blob/master/Presentations/2019_10_22_EclipseConEurope_EnsuringOpenSourceCompliance.pdf
https://github.com/Open-Source-Compliance/Sharing-creates-value/blob/master/Presentations/2019_10_22_EclipseConEurope_EnsuringOpenSourceCompliance.pdf
https://github.com/Open-Source-Compliance/Sharing-creates-value/blob/master/Presentations/2019_10_22_EclipseConEurope_EnsuringOpenSourceCompliance.pdf
https://github.com/Open-Source-Compliance/Sharing-creates-value/blob/master/Presentations/2019_10_22_EclipseConEurope_EnsuringOpenSourceCompliance.pdf
http://dx.doi.org/10.1016/j.jss.2019.08.001
http://dx.doi.org/10.1016/j.jss.2019.08.001
http://dx.doi.org/10.1016/j.jss.2019.08.001
http://dx.doi.org/10.1016/j.infsof.2010.05.008
http://dx.doi.org/10.1109/FLOSS.2009.5071359
https://github.com/oss-review-toolkit/ort
https://github.com/oss-review-toolkit/ort
https://github.com/oss-review-toolkit/ort
http://dx.doi.org/10.2814/866548
http://dx.doi.org/10.1007/978-3-030-20883-7_10
http://dx.doi.org/10.1007/978-3-030-20883-7_10
http://dx.doi.org/10.1007/978-3-030-20883-7_10
http://dx.doi.org/10.1016/j.datak.2015.06.007
http://dx.doi.org/10.1007/978-3-319-39696-5_32
http://dx.doi.org/10.1007/978-3-319-57735-7_9
http://dx.doi.org/10.1007/978-3-319-57735-7_9
http://dx.doi.org/10.1007/978-3-319-57735-7_9
http://dx.doi.org/10.1145/3359174
https://github.com/Netflix/Hystrix
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb31
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb31
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb31
http://dx.doi.org/10.1109/TSE.2017.2677909
http://dx.doi.org/10.1109/TSE.2017.2677909
http://dx.doi.org/10.1109/TSE.2017.2677909
http://dx.doi.org/10.1007/978-981-13-7099-1_5
http://dx.doi.org/10.1145/2884781.2884851
https://spdx.org/
http://dx.doi.org/10.1109/MC.2019.2940809
http://dx.doi.org/10.1145/1833272.1833276
http://dx.doi.org/10.1007/978-3-642-13244-5_36
http://dx.doi.org/10.1007/978-3-642-13244-5_36
http://dx.doi.org/10.1007/978-3-642-13244-5_36
https://www.synopsys.com/software-integrity/resources/analyst-reports/2020-open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/2020-open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/2020-open-source-security-risk-analysis.html
https://blog.tidelift.com/open-source-is-everywhere-survey-results-part-1
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb41
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb41
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb41
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb41
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb41
https://www.openchainproject.org/
https://www.openchainproject.org/
https://www.openchainproject.org/
https://tidelift.com/subscription/managed-open-source-survey
https://tidelift.com/subscription/managed-open-source-survey
https://tidelift.com/subscription/managed-open-source-survey
https://github.com/todogroup/guides/blob/master/using-open-source.md
http://dx.doi.org/10.1109/COMPSACW.2014.107
http://dx.doi.org/10.1109/COMPSACW.2014.107
http://dx.doi.org/10.1109/COMPSACW.2014.107
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb46
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb46
http://refhub.elsevier.com/S0164-1212(21)00244-2/sb46
http://dx.doi.org/10.1145/2876443
http://dx.doi.org/10.1145/2876443
http://dx.doi.org/10.1145/2876443

S. Butler, J. Gamalielsson, B. Lundell et al. The Journal of Systems & Software 186 (2022) 111152

C
2
C
s
e

A
n
o
e
o
i
S
i

T
g
i
r
t

hristoffer Brax received the M.Sc. degree from the University of Skövde in
000, and a Ph.D. from Örebro University in 2011. He is a consultant with
ombitech AB working in systems engineering, requirements management,
ystems design and architecture, and IT security. Christoffer has 18 years
xperience as a systems engineer.

nders Mattsson received the M.Sc. degree from Chalmers University of Tech-
ology, Sweden, in 1989 and a Ph.D. in software engineering from the University
f Limerick, Ireland in 2012. He has almost 30 years experience in software
ngineering and is currently R&D manager for Information Products and owner
f the software development process at Husqvarna AB. Anders is particularly
nterested in strengthening software engineering practices in organisations.
pecial interests includes software architecture and model-driven development
n the context of embedded real-time systems.

omas Gustavsson received the M.Sc. degree in Electrical and Computer En-
ineering from KTH Royal Institute of Technology in Stockholm in 1994. He
s co-founder and current CTO of PrimeKey Solutions AB. Tomas has been
esearching and implementing public key infrastructure (PKI) systems for more
han 24 years, and is founder and developer of the open source enterprise PKI
12
project EJBCA, contributor to numerous open source projects, and a member of
the board of Open Source Sweden. His goal is to enhance Internet and corporate
security by introducing cost effective, efficient PKI.

Jonas Feist received the M.Sc. degree in Computer Science from the Institute
of Technology at Linköping University in 1988. He is senior executive and
co-founder of RedBridge AB, a computer consultancy business in Stockholm.

Bengt Kvarnström received the M.Sc. degree in Applied Physics and Electrical
Engineering from LiU Institute of Technology in Linköping in 1981. He is a
senior systems engineer at Saab Aeronautics and is the current leader of the
group responsible of the Saab Processes, Methodology and Tools for software
development.

Erik Lönroth holds an M.Sc. in Computer Science and is the Technical Re-
sponsible for the high performance computing area at Scania CV AB. He has
been leading the technical development of four generations of super computing
initiatives at Scania and their supporting subsystems. Erik frequently lectures
on development of super computer environments for industry, open source
software governance and HPC related topics.

	Considerations and challenges for the adoption of open source components in software-intensive businesses
	Introduction
	Background related work
	Research approach
	Case selection and setting
	Data collection and analysis

	Findings
	O1: Work practices used for component evaluation
	O2: Challenges of component evaluation
	Technical factors
	Compliance
	OSS project attributes
	Assessing risks

	Analysis
	Discussion
	Threats to validity

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix. Questions Sent to Respondents
	References

