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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Application of reconfigurable manufacturing systems (RMS) plays a significant role in manufacturing companies' success in the current fiercely 
competitive market. Despite the RMS's advantages, designing these systems to achieve a high-efficiency level is a complex and challenging task 
that requires the use of optimization techniques. This study proposes a simulation-based optimization approach for optimal allocation of work 
tasks and resources (i.e., machines) to workstations. Three conflictive objectives, namely maximizing the throughput, minimizing the buffers' 
capacity, and minimizing the number of machines, are optimized simultaneously while considering the system's stochastic behavior to achieve 
the desired system's configuration. 
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1. Introduction 

Reconfigurability of manufacturing systems is an important 
consideration for the manufacturing industry, especially when 
designing a new system. In the current fiercely competitive 
market, manufacturing companies face numerous challenges 
due to aggressive global competition, increasing market 
segments, emerging regional/local requirements, new material, 
and technologies, changing regulations, fluctuating customer 
demands, and ever-increasing demands for new product 
features, etc. [1]. These challenges create uncertainties and 
unforeseen market variations [2,3]. How fast and cost-effective 
a system can adjust its capacity and functionalities according to 
the demand and product changes is one of the major systems 
design characteristics to consider [4,5]. These challenges 
encourage the manufacturing system designers to pay careful 
attention to the reconfigurability of the system. 

The concept of Reconfigurable Manufacturing Systems 
(RMS) can be defined as an attempt to accomplish demand 

fluctuations and scalable capacities in a more efficient manner 
[6,7]. Despite RMS's advantages in handling the challenges 
mentioned earlier, designing these systems is a complex task 
that requires the use of optimization and simulation techniques. 
For decades, several optimization techniques are used to model 
and design the RMS. Considering that most of the complex 
combinatorial problems found in RMS have been classified as 
NP-hard problems, metaheuristic methods gained more 
attention from the researchers in the field [7]. Simulation 
techniques have also been successfully used and established as 
a powerful tool for designing and analyzing manufacturing 
systems [8–11]. Simulation techniques are usually used to 
understand the system's behavior for a set of input variables, 
among other advantages that they provide for testing different 
scenarios. Among the simulation techniques, Discrete Event 
Simulation (DES) is one of the most used in the literature due 
to the RMS characteristics. 

Simulation-based methods are acknowledged to be a 
effective solution technology in the digitalization of 
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[6,7]. Despite RMS's advantages in handling the challenges 
mentioned earlier, designing these systems is a complex task 
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and design the RMS. Considering that most of the complex 
combinatorial problems found in RMS have been classified as 
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techniques have also been successfully used and established as 
a powerful tool for designing and analyzing manufacturing 
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manufacturing systems, especially when different system 
configurations or processes need to be validated [12]. Despite 
both simulation and optimization techniques' attractiveness and 
power, research studies showed their shortcomings when 
applied separately. Most of the optimization studies simplified 
the problem by ignoring the system's uncertainty and 
variability that resulted in inaccurate solutions. On the other 
hand, simulation techniques become computationally 
impractical or unattainable when the complexity of the model 
and the number of input variables increases [13]. To overcome 
these drawbacks, Simulation-Based Optimization (SBO) 
emerged as a powerful method enabling the use of advantages 
of both simulation and optimization. The SBO has successfully 
proven to be a decisive supporting approach for achieving 
improvements in manufacturing systems. In studies like [14–
16], SBO methods have been applied to RMS challenges such 
as configuration and process planning problems. When 
considering multi-objective optimization perspective and the 
RMS challenges, genetic algorithms (GA) have shown a better 
performance in efficiency when finding optimal or near 
optimal solutions [7]. In addition, NSGA-II [17] is one of the 
most employed optimization GAs due to its outstanding 
performance in facing multi-objectives problems [18,19]. 

Although SBO has already been employed to optimize 
RMS, there are less than a handful of attempts to cope with 
multiple objectives and simultaneously deal with several 
design challenges such as task assignment and resource 
assignment to workstations, and system configuration. 

This study contributes to the RMS research domain by 
proposing a simulation-based multi-objective optimization 
(SMO) approach for optimal systems configuration while 
considering the dynamic behaviour of RMS, addressing the 
task assignment and resource assignment, and optimizing three 
objectives simultaneously, namely throughput, buffers' 
capacity, and the number of machines. 

The remaining of the paper is structured as follows. Section 
2 provides a brief overview of the RMSs design challenges and 
some of the previous related works. The proposed SMO 
approach is described in Section 3. Section 4 presents the test 
case used to validate the approach. Finally, results are 
presented in Section 5. 

2. Literature Review 

According to [20], the design of an RMS has to address three 
main areas, namely, the system configuration, the system's 
components, and the process planning. 

The system configuration refers to how machines and 
components are arranged in the system [20]. The way the 
machines of the system are arranged, impacts the functionality, 
productivity, and scalability of the system [21]. Research 
usually focuses on optimizing the assignment of machines to 
the workstations. 

The system's components refer to the type and number of 
machines and components of the system. This considers the 
total number of machines needed to achieve the desired 
production capacity [20]. This is a crucial consideration for 
capacity planning and, therefore, for the scalability of the 

system. Research usually focuses on optimizing the total 
number of machines in the system. 

Process planning refers to how work tasks are allocated to 
the machines and balanced throughout the manufacturing 
system. This activity will directly impact the reconfiguration 
effort and the system's efficiency to change its capacity [22,23]. 
Research usually focuses on finding the optimal allocation of 
work tasks to workstations. 

The three mentioned areas have been tackled by researchers 
using different approaches and methods.  A review of the most 
relevant studies is provided below. 

Youssef and ElMaraghy [24] addressed the system 
configuration area. The authors used a GA and tabu search 
(TB) for the optimization of a multi-part RMS, finding out the 
optimal RMS configuration and the effect of the availability of 
the machines in this process. Goyal et al. [25] also tackled the 
system configuration and presented a GA-based approach for 
obtaining the optimal configuration based on convertibility, 
utilization of machines, and cost. Dou et al. [26] tackled both 
the system configuration and the process planning areas by 
developing a GA-based optimization algorithm to identify the 
optimal configuration, in terms of the tasks assigned to the 
workstations and the type of machines for a multi-part system. 
Koren's et al. [4] study dealt with the system's components and 
process planning areas by proposing a method for designing 
scalable manufacturing systems. This was achieved by 
rebalancing how tasks are allocated in the workstations while 
trying to either minimize the number of machines used to reach 
a certain capacity or maximize the system's capacity for a 
certain number of machines. Some other studies, such as [27–
30] have focused on the process planning area. They have used 
a GA to find the best load balancing by optimizing a single 
objective, e.g., maximize system productivity, minimize setup 
times, minimize reconfiguration cost, etc. 

In summary, the prior efforts predominantly adopted 
optimization methods, but the use of multi-objective 
optimization is scarce. When considering the use of 
optimization for solving RMS challenges, most of the studies 
adopted the GA. Additionally, the three RMS introduced areas 
are widely studied but rarely addressed simultaneously. 
Furthermore, the use of simulation for addressing RMS 
challenges is sporadic and does not involve multi-objective 
optimization. 

To cope with the dynamic and stochastic behavior of RMS 
(e.g., machines failure) and considering multiple objectives 
simultaneously, this study proposes an SMO approach. To the 
best of the authors' knowledge, this is the first attempt to apply 
the SMO approach for dealing with all three main design areas, 
i.e., finding the optimal system configuration, the optimal 
number of machines, and the optimal work task allocation. The 
optimization objectives considered are to maximize the 
throughput, to minimize the buffers capacity and number of 
machines. 

3. The Proposed SMO Approach  

In this study, an SMO is proposed to simultaneously 
maximize throughput per hour (THP), minimize the buffer, and 
the total number of machines, while providing the optimal 
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work tasks allocation for every configuration for the minimum 
and maximum allowed number of machines in an RMS. In 
other words, the SMO approach provides a way to obtain the 
highest possible THP with the minimal number of resources in 
terms of the number of machines and buffers' capacity, 
including the optimal task allocation. This could support the 
system scalability aspect because it can provide the optimal 
way to add resources (machines in this case) to an existing 
RMS. 

The proposed approach needs to consider multiple factors 
simultaneously, which increase the complexity of the problem 
exponentially. The main elements of the SMO are the 
simulation model and the optimization engine. The process 
begins by generating a simulation model of a feasible (existing) 
solution. The simulation enables testing different combinations 
of input parameters according to the optimization objectives 
and the system constraints to find the best output solutions. The 
optimization engine iteratively evaluates the feedback from the 
outputs of the simulation to instruct a new combination of input 
parameters to define the Pareto front. Fig. 1 shows a graphical 
representation of the proposed SMO, including the 
optimization parameters and how the optimization engine uses 
them. This study benefits NSG-II for the optimization part due 
to its outstanding performance in dealing with multi-objective 
optimization problems. 

 

Fig. 1. Graphical representation of the proposed SMO 

The optimization objectives and constraints of the RMS 
considered in this study are presented in equation 1 to 3 and 4 
to 11 respectively. 

 
List of notations 
𝑗𝑗𝑗𝑗 workstation index 
𝑖𝑖𝑖𝑖, 𝑟𝑟𝑟𝑟 task index 
𝑘𝑘𝑘𝑘 machine index 
𝑆𝑆𝑆𝑆 number of workstations 
𝑁𝑁𝑁𝑁 number of tasks 
𝑀𝑀𝑀𝑀  number of machines 
𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  maximum number of machines in each workstation 
𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  minimum number of machines that must be assigned for 
production 

 
 
*  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = #products

simulation horizon−warmup
 

𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗  buffer capacity for workstation j  
𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 minimum safety buffer  
𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  maximum buffer capacity 
𝑇𝑇𝑇𝑇 Set of precedence relationships (𝑟𝑟𝑟𝑟, 𝑖𝑖𝑖𝑖 ∈  𝑇𝑇𝑇𝑇 if and only if task 𝑟𝑟𝑟𝑟 
is an immediate predecessor of task 𝑖𝑖𝑖𝑖) 
𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗  1 if task i is assigned to workstation j; 0 otherwise 
𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗  1 if machine k is assigned to workstation j; 0 otherwise 

Three conflicting optimization objectives are defined as 
follows. 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓1 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇* :Throughput per hour                        (1) 
𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓2 = ∑ 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗−1𝑆𝑆𝑆𝑆

𝑗𝑗𝑗𝑗=2  :Total Buffer Capacity                    (2) 
𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓3 = ∑ ∑ 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗

𝐽𝐽𝐽𝐽
𝑗𝑗𝑗𝑗=1

𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 :Total number of Machines(3) 

 
The following constraints should be satisfied when 

optimizing the RMS. 
Task assignment: each task must only be assigned to one 
workstation.  
∑ 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗 = 1, ∀𝑖𝑖𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆
𝑗𝑗𝑗𝑗=1                                                (4) 

 
Precedence relationships: a task can only be assigned to a 

station only if all its predecessors are assigned to the same 
workstation or earlier workstations. 
∑ 𝑗𝑗𝑗𝑗�𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟𝑗𝑗𝑗𝑗 − 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗� ≤ 0, ∀(𝑟𝑟𝑟𝑟, 𝑖𝑖𝑖𝑖) ∈ 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆
𝑗𝑗𝑗𝑗=1                                                 (5) 

 
Machine assignment: each machine must only be assigned 

to one workstation 
∑ 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗 = 1, ∀𝑘𝑘𝑘𝑘 = 1,2, … ,𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆
𝑗𝑗𝑗𝑗=1                                                       (6) 

 
Technological requirement: a task can only be assigned to a 

workstation if it has the required machinery to perform the task. 
𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 × 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗 ≤ 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗 

  ∀𝑘𝑘𝑘𝑘 = 1,2, … ,𝑀𝑀𝑀𝑀; 𝑖𝑖𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁; 𝑗𝑗𝑗𝑗 = 1,2, . . . , 𝑆𝑆𝑆𝑆                     (7) 
 

Workstation usage: at least one machine should be assigned 
to each workstation  
∑ 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗 ≥ 1, ∀𝑗𝑗𝑗𝑗 = 1,2, … , 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀
𝑘𝑘𝑘𝑘=1                                                  (8) 

 
Space limitation: Workstations cannot have more than a 

certain number of machines 
∑ 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗 ≤ 𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  , ∀𝑗𝑗𝑗𝑗 = 1,2, … , 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀
𝑘𝑘𝑘𝑘=1                                          (9) 

 
Machine usage: The assigned machines to workstations 

cannot exceed the total number of available machines. 
Moreover, to ensure the production, at least a certain number 
of machines should be assigned to workstations. 
𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ ∑ ∑ 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗

𝐽𝐽𝐽𝐽
𝑗𝑗𝑗𝑗=1 ≤ 𝑀𝑀𝑀𝑀  𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1                                                    (10) 
 

Buffer capacity: The in-between workstations buffer should 
not become less than a certain safety buffer and should not 
exceed the maximum buffer capacity.  
𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗−1 ≤ 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚     𝑗𝑗𝑗𝑗 = 2, … , 𝑆𝑆𝑆𝑆                                        (11) 
 
The applicability of the proposed SMO approach is shown 

using a test case. A description of the test case used is provided 
in the next section. 
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manufacturing systems, especially when different system 
configurations or processes need to be validated [12]. Despite 
both simulation and optimization techniques' attractiveness and 
power, research studies showed their shortcomings when 
applied separately. Most of the optimization studies simplified 
the problem by ignoring the system's uncertainty and 
variability that resulted in inaccurate solutions. On the other 
hand, simulation techniques become computationally 
impractical or unattainable when the complexity of the model 
and the number of input variables increases [13]. To overcome 
these drawbacks, Simulation-Based Optimization (SBO) 
emerged as a powerful method enabling the use of advantages 
of both simulation and optimization. The SBO has successfully 
proven to be a decisive supporting approach for achieving 
improvements in manufacturing systems. In studies like [14–
16], SBO methods have been applied to RMS challenges such 
as configuration and process planning problems. When 
considering multi-objective optimization perspective and the 
RMS challenges, genetic algorithms (GA) have shown a better 
performance in efficiency when finding optimal or near 
optimal solutions [7]. In addition, NSGA-II [17] is one of the 
most employed optimization GAs due to its outstanding 
performance in facing multi-objectives problems [18,19]. 

Although SBO has already been employed to optimize 
RMS, there are less than a handful of attempts to cope with 
multiple objectives and simultaneously deal with several 
design challenges such as task assignment and resource 
assignment to workstations, and system configuration. 

This study contributes to the RMS research domain by 
proposing a simulation-based multi-objective optimization 
(SMO) approach for optimal systems configuration while 
considering the dynamic behaviour of RMS, addressing the 
task assignment and resource assignment, and optimizing three 
objectives simultaneously, namely throughput, buffers' 
capacity, and the number of machines. 

The remaining of the paper is structured as follows. Section 
2 provides a brief overview of the RMSs design challenges and 
some of the previous related works. The proposed SMO 
approach is described in Section 3. Section 4 presents the test 
case used to validate the approach. Finally, results are 
presented in Section 5. 

2. Literature Review 

According to [20], the design of an RMS has to address three 
main areas, namely, the system configuration, the system's 
components, and the process planning. 

The system configuration refers to how machines and 
components are arranged in the system [20]. The way the 
machines of the system are arranged, impacts the functionality, 
productivity, and scalability of the system [21]. Research 
usually focuses on optimizing the assignment of machines to 
the workstations. 

The system's components refer to the type and number of 
machines and components of the system. This considers the 
total number of machines needed to achieve the desired 
production capacity [20]. This is a crucial consideration for 
capacity planning and, therefore, for the scalability of the 

system. Research usually focuses on optimizing the total 
number of machines in the system. 

Process planning refers to how work tasks are allocated to 
the machines and balanced throughout the manufacturing 
system. This activity will directly impact the reconfiguration 
effort and the system's efficiency to change its capacity [22,23]. 
Research usually focuses on finding the optimal allocation of 
work tasks to workstations. 

The three mentioned areas have been tackled by researchers 
using different approaches and methods.  A review of the most 
relevant studies is provided below. 

Youssef and ElMaraghy [24] addressed the system 
configuration area. The authors used a GA and tabu search 
(TB) for the optimization of a multi-part RMS, finding out the 
optimal RMS configuration and the effect of the availability of 
the machines in this process. Goyal et al. [25] also tackled the 
system configuration and presented a GA-based approach for 
obtaining the optimal configuration based on convertibility, 
utilization of machines, and cost. Dou et al. [26] tackled both 
the system configuration and the process planning areas by 
developing a GA-based optimization algorithm to identify the 
optimal configuration, in terms of the tasks assigned to the 
workstations and the type of machines for a multi-part system. 
Koren's et al. [4] study dealt with the system's components and 
process planning areas by proposing a method for designing 
scalable manufacturing systems. This was achieved by 
rebalancing how tasks are allocated in the workstations while 
trying to either minimize the number of machines used to reach 
a certain capacity or maximize the system's capacity for a 
certain number of machines. Some other studies, such as [27–
30] have focused on the process planning area. They have used 
a GA to find the best load balancing by optimizing a single 
objective, e.g., maximize system productivity, minimize setup 
times, minimize reconfiguration cost, etc. 

In summary, the prior efforts predominantly adopted 
optimization methods, but the use of multi-objective 
optimization is scarce. When considering the use of 
optimization for solving RMS challenges, most of the studies 
adopted the GA. Additionally, the three RMS introduced areas 
are widely studied but rarely addressed simultaneously. 
Furthermore, the use of simulation for addressing RMS 
challenges is sporadic and does not involve multi-objective 
optimization. 

To cope with the dynamic and stochastic behavior of RMS 
(e.g., machines failure) and considering multiple objectives 
simultaneously, this study proposes an SMO approach. To the 
best of the authors' knowledge, this is the first attempt to apply 
the SMO approach for dealing with all three main design areas, 
i.e., finding the optimal system configuration, the optimal 
number of machines, and the optimal work task allocation. The 
optimization objectives considered are to maximize the 
throughput, to minimize the buffers capacity and number of 
machines. 

3. The Proposed SMO Approach  

In this study, an SMO is proposed to simultaneously 
maximize throughput per hour (THP), minimize the buffer, and 
the total number of machines, while providing the optimal 
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work tasks allocation for every configuration for the minimum 
and maximum allowed number of machines in an RMS. In 
other words, the SMO approach provides a way to obtain the 
highest possible THP with the minimal number of resources in 
terms of the number of machines and buffers' capacity, 
including the optimal task allocation. This could support the 
system scalability aspect because it can provide the optimal 
way to add resources (machines in this case) to an existing 
RMS. 

The proposed approach needs to consider multiple factors 
simultaneously, which increase the complexity of the problem 
exponentially. The main elements of the SMO are the 
simulation model and the optimization engine. The process 
begins by generating a simulation model of a feasible (existing) 
solution. The simulation enables testing different combinations 
of input parameters according to the optimization objectives 
and the system constraints to find the best output solutions. The 
optimization engine iteratively evaluates the feedback from the 
outputs of the simulation to instruct a new combination of input 
parameters to define the Pareto front. Fig. 1 shows a graphical 
representation of the proposed SMO, including the 
optimization parameters and how the optimization engine uses 
them. This study benefits NSG-II for the optimization part due 
to its outstanding performance in dealing with multi-objective 
optimization problems. 

 

Fig. 1. Graphical representation of the proposed SMO 

The optimization objectives and constraints of the RMS 
considered in this study are presented in equation 1 to 3 and 4 
to 11 respectively. 

 
List of notations 
𝑗𝑗𝑗𝑗 workstation index 
𝑖𝑖𝑖𝑖, 𝑟𝑟𝑟𝑟 task index 
𝑘𝑘𝑘𝑘 machine index 
𝑆𝑆𝑆𝑆 number of workstations 
𝑁𝑁𝑁𝑁 number of tasks 
𝑀𝑀𝑀𝑀  number of machines 
𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  maximum number of machines in each workstation 
𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  minimum number of machines that must be assigned for 
production 

 
 
*  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = #products

simulation horizon−warmup
 

𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗  buffer capacity for workstation j  
𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 minimum safety buffer  
𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  maximum buffer capacity 
𝑇𝑇𝑇𝑇 Set of precedence relationships (𝑟𝑟𝑟𝑟, 𝑖𝑖𝑖𝑖 ∈  𝑇𝑇𝑇𝑇 if and only if task 𝑟𝑟𝑟𝑟 
is an immediate predecessor of task 𝑖𝑖𝑖𝑖) 
𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗  1 if task i is assigned to workstation j; 0 otherwise 
𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗  1 if machine k is assigned to workstation j; 0 otherwise 

Three conflicting optimization objectives are defined as 
follows. 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓1 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇* :Throughput per hour                        (1) 
𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓2 = ∑ 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗−1𝑆𝑆𝑆𝑆

𝑗𝑗𝑗𝑗=2  :Total Buffer Capacity                    (2) 
𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓3 = ∑ ∑ 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗

𝐽𝐽𝐽𝐽
𝑗𝑗𝑗𝑗=1

𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 :Total number of Machines(3) 

 
The following constraints should be satisfied when 

optimizing the RMS. 
Task assignment: each task must only be assigned to one 
workstation.  
∑ 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗 = 1, ∀𝑖𝑖𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆
𝑗𝑗𝑗𝑗=1                                                (4) 

 
Precedence relationships: a task can only be assigned to a 

station only if all its predecessors are assigned to the same 
workstation or earlier workstations. 
∑ 𝑗𝑗𝑗𝑗�𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟𝑗𝑗𝑗𝑗 − 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗� ≤ 0, ∀(𝑟𝑟𝑟𝑟, 𝑖𝑖𝑖𝑖) ∈ 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆
𝑗𝑗𝑗𝑗=1                                                 (5) 

 
Machine assignment: each machine must only be assigned 

to one workstation 
∑ 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗 = 1, ∀𝑘𝑘𝑘𝑘 = 1,2, … ,𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆
𝑗𝑗𝑗𝑗=1                                                       (6) 

 
Technological requirement: a task can only be assigned to a 

workstation if it has the required machinery to perform the task. 
𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 × 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗 ≤ 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗 

  ∀𝑘𝑘𝑘𝑘 = 1,2, … ,𝑀𝑀𝑀𝑀; 𝑖𝑖𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁; 𝑗𝑗𝑗𝑗 = 1,2, . . . , 𝑆𝑆𝑆𝑆                     (7) 
 

Workstation usage: at least one machine should be assigned 
to each workstation  
∑ 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗 ≥ 1, ∀𝑗𝑗𝑗𝑗 = 1,2, … , 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀
𝑘𝑘𝑘𝑘=1                                                  (8) 

 
Space limitation: Workstations cannot have more than a 

certain number of machines 
∑ 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗 ≤ 𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  , ∀𝑗𝑗𝑗𝑗 = 1,2, … , 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀
𝑘𝑘𝑘𝑘=1                                          (9) 

 
Machine usage: The assigned machines to workstations 

cannot exceed the total number of available machines. 
Moreover, to ensure the production, at least a certain number 
of machines should be assigned to workstations. 
𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ ∑ ∑ 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗

𝐽𝐽𝐽𝐽
𝑗𝑗𝑗𝑗=1 ≤ 𝑀𝑀𝑀𝑀  𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1                                                    (10) 
 

Buffer capacity: The in-between workstations buffer should 
not become less than a certain safety buffer and should not 
exceed the maximum buffer capacity.  
𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗−1 ≤ 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚     𝑗𝑗𝑗𝑗 = 2, … , 𝑆𝑆𝑆𝑆                                        (11) 
 
The applicability of the proposed SMO approach is shown 

using a test case. A description of the test case used is provided 
in the next section. 
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4. Test Case Description 

This case consists of a machining process that takes 960 
seconds divided into 36 tasks. Furthermore, due to space 
limitations and the machining processes' technological 
constraints, some tasks (i.e., 3, 17, and 33) need to be 
performed in three different types of machines. The process is 
subject to disturbances, and machine availability is considered 
90% with a 5 minute mean time to repair. The RMS consists of 
three workstations with two buffers in between. Machines in 
the same workstation perform the same tasks sequence. There 
is space for up to 6 machines in each workstation, and it is 
assumed that the material handling system can deliver parts to 
them. A minimum of 12 machines can be used in the system. It 
is also assumed that installed machines cannot be removed and 
need to be used in future configurations when scaling up the 
system. Fig. 2, shows a system with four machines in each 
workstation and extra space for up to two extra machines in 
each workstation. Therefore, the RMS taken into account can 
vary from 12 to 18 machines distributed in three workstations. 

 

Fig. 2. RMS layout example 

The well-known multi-objective optimization algorithm, 
NSGA-II, has been used to solve this problem with 100000 
iterations. 

A baseline simulation model has been developed using a 
DES software called FACTS Analyzer [31]. In this research, 
FACTS Analyzer acts as a DES engine used for the animation 
and the optimization. The FACTS model serves as the basis for 
the iterative execution of the combinations of input parameters 
according to the optimization objectives and constraints. 

5. Results and Discussion 

This section presents the results of the optimization. The 
results presented in Table 1 refer to the non-dominated 
solutions. Table 1 shows the solution ranges for the THP with 
the different numbers of machines in the system and for the 
buffer capacities needed for achieving that THP. "B1" and "B2" 
refer to the capacity range of buffer 1 and 2, respectively, and 
TBC refers to the total buffer capacity range (TBC = B1 + B2). 
In addition, another interesting result that can be extracted from 
Table 1 is the average THP that can be gained from every 
machine added to the system. If we consider the highest THP 
reached for every number of machines, the average gained 
throughput is approximately 2.97. 

 

Table 1. Throughput and buffers capacity 

  THP B1 B2 TBC  
12 M 40.226-41.261 5-30 5-30 10-60 
13 M 43.423-44.045 5-20 5-25 10-45 
14 M 46.781-47.708 5-25 5-25 10-45 
15 M 50.17-50.56 5-10 5-25 10-30 
16 M 52.77-53.916 5-35 5-45 10-80 
17 M 56.136-56.996 5-50 5-50 10-85 
18 M 58.288-59.135 5-30 5-25 10-55 

 
Table 2 presents how the results for system configuration 

and task allocation presented in Table 1 can be achieved. WS 
1, WS 2, and WS 3 represent the number of parallel machines 
in workstations 1, 2, and 3, respectively. The fifth column 
shows the number of tasks performed in each workstation (no. 
of tasks workstation 1/no. of tasks workstation 2/no. of tasks 
workstation 3). 

Table 2: Configuration and work tasks allocation. 

  WS 1 WS 2 WS 3 Tasks per WS 

12 Machines 2 4 6 5/14/17 
13 Machines 2 6 5 4/19/13 
14 Machines 2 6 6 4/17/15 
15 Machines 3 6 6 6/16/14 
16 Machines 6 5 5 16/10/10 
17 Machines 6 5 6 15/9/12 
18 Machines 6 6 6 13/12/11 
 
Notice that the number and location of the machines 

presented in Table 2 have not considered the reconfiguration 
steps when scaling up the system.  Considering a rigid system 
where installed machines are not movable, the reconfiguration 
steps need to consider the existing system architecture. 
Therefore, every new configuration needs to reuse the previous 
layout to achieve the next configuration. Considering this 
constraint, Fig. 3 presents the reconfiguration steps if the 
system would be scaled up from 12 to 18 machines. The THP 
and TBC ranges presented only consider the non-dominated 
solutions. In addition, this figure also shows the number of 
tasks performed in each workstations and the total task time in 
seconds per workstation for the different configurations 
obtained from the optimization in order to obtain the THP range 
presented. 

Another observed result from Fig. 3 is how the scalability 
consideration changed the configuration presented in Table 2 
for the system with 12, 13, 14, and 15 machines. The results 
presented in Table 2 were isolated, so no future 
reconfigurations were considered. Therefore, instead of 2-4-6 
for 12 machines, 2-6-5 for 13 machines, 2-6-6 for 14 machines, 
and 3-6-6 for 15 machines, they have been changed to 4-4-4, 5-
4-4, 5-4-5, 6-4-5, respectively. Consequently, this 
consideration has a small compromise in the THP for those 
configurations, as seen when comparing Fig. 3 with Table 1. 

Essentially, Fig. 3, provides a helpful understanding and 
view of the system, including the optimal location of futures 
machines in case of future capacity increases are needed. 
Knowing where to add future machines in advance can be 
convenient and cost-effective when designing the system, 
especially when investing in the material handling system. 
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Fig. 3. Reconfiguration steps, Throughput, total buffer capacity, and task 
allocation 

Another important aspect of the design of manufacturing 
systems is the buffer capacity consideration. Fig. 3 also shows 
the optimized allocation of the buffer capacities for the given 
configurations. 

Moreover, Fig. 4 shows a comparison of the THP 
progression as the TBC increases between 0 and 35 for the 
systems presented in Fig. 3. Fig. 4 also shows that the curve 
between THP and TBC starts to saturate early. On the other 
hand, different machine availability and MTTR values could 
impact significantly in this relationship. Nonetheless, the red 
parallel dashed lines revealed that M number of machines, for 
some TBC values, can provide the same THP than M+1 
machines. Hence, the parallel coordinate plot (PCP) can 
support decision-makers with the visualization and 

understanding of this trade-off situation in which the capacity 
of the system can be increased either by adding machines or  

 

Fig. 4. Throughput over total buffer capacity 

more buffers capacity. However, there are many more factors 
that can affect decision-making tasks in manufacturing 
companies. The use of tools like the PCP (see Fig. 5) can 
support the knowledge extraction and display which choices 
are available according to different constraints. Fig. 5 shows 
the PCP over the objectives of the optimization. The columns 
from left to right represent THP, the total number of machines, 
the number of machines in every workstation, and the buffers' 
capacity. Nonetheless, more variables could be included. In the 
plot, solutions including 15, 16, and 17 machines have been 
coloured in blue, red, and green, respectively, to show the 
considerable overlapping production rate and buffer capacity 
among the different numbers of machines. Accordingly, the 
PCP can help decision-makers visualize the trade-off situation 
between THP, the number of machines, and buffer capacity. 

6. Conclusions 

This paper introduces a SMO approach that can be used for 
the design of RMS. The SMO approach used has proven to be 
successful when designing new manufacturing systems. The 
presented approach provides the optimal way to fulfill 
determined productivity. This approach demonstrates the 
importance of considering reconfigurability during the design 

Fig. 5. Parallel coordinates 
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4. Test Case Description 

This case consists of a machining process that takes 960 
seconds divided into 36 tasks. Furthermore, due to space 
limitations and the machining processes' technological 
constraints, some tasks (i.e., 3, 17, and 33) need to be 
performed in three different types of machines. The process is 
subject to disturbances, and machine availability is considered 
90% with a 5 minute mean time to repair. The RMS consists of 
three workstations with two buffers in between. Machines in 
the same workstation perform the same tasks sequence. There 
is space for up to 6 machines in each workstation, and it is 
assumed that the material handling system can deliver parts to 
them. A minimum of 12 machines can be used in the system. It 
is also assumed that installed machines cannot be removed and 
need to be used in future configurations when scaling up the 
system. Fig. 2, shows a system with four machines in each 
workstation and extra space for up to two extra machines in 
each workstation. Therefore, the RMS taken into account can 
vary from 12 to 18 machines distributed in three workstations. 

 

Fig. 2. RMS layout example 

The well-known multi-objective optimization algorithm, 
NSGA-II, has been used to solve this problem with 100000 
iterations. 

A baseline simulation model has been developed using a 
DES software called FACTS Analyzer [31]. In this research, 
FACTS Analyzer acts as a DES engine used for the animation 
and the optimization. The FACTS model serves as the basis for 
the iterative execution of the combinations of input parameters 
according to the optimization objectives and constraints. 

5. Results and Discussion 

This section presents the results of the optimization. The 
results presented in Table 1 refer to the non-dominated 
solutions. Table 1 shows the solution ranges for the THP with 
the different numbers of machines in the system and for the 
buffer capacities needed for achieving that THP. "B1" and "B2" 
refer to the capacity range of buffer 1 and 2, respectively, and 
TBC refers to the total buffer capacity range (TBC = B1 + B2). 
In addition, another interesting result that can be extracted from 
Table 1 is the average THP that can be gained from every 
machine added to the system. If we consider the highest THP 
reached for every number of machines, the average gained 
throughput is approximately 2.97. 

 

Table 1. Throughput and buffers capacity 

  THP B1 B2 TBC  
12 M 40.226-41.261 5-30 5-30 10-60 
13 M 43.423-44.045 5-20 5-25 10-45 
14 M 46.781-47.708 5-25 5-25 10-45 
15 M 50.17-50.56 5-10 5-25 10-30 
16 M 52.77-53.916 5-35 5-45 10-80 
17 M 56.136-56.996 5-50 5-50 10-85 
18 M 58.288-59.135 5-30 5-25 10-55 

 
Table 2 presents how the results for system configuration 

and task allocation presented in Table 1 can be achieved. WS 
1, WS 2, and WS 3 represent the number of parallel machines 
in workstations 1, 2, and 3, respectively. The fifth column 
shows the number of tasks performed in each workstation (no. 
of tasks workstation 1/no. of tasks workstation 2/no. of tasks 
workstation 3). 

Table 2: Configuration and work tasks allocation. 

  WS 1 WS 2 WS 3 Tasks per WS 

12 Machines 2 4 6 5/14/17 
13 Machines 2 6 5 4/19/13 
14 Machines 2 6 6 4/17/15 
15 Machines 3 6 6 6/16/14 
16 Machines 6 5 5 16/10/10 
17 Machines 6 5 6 15/9/12 
18 Machines 6 6 6 13/12/11 
 
Notice that the number and location of the machines 

presented in Table 2 have not considered the reconfiguration 
steps when scaling up the system.  Considering a rigid system 
where installed machines are not movable, the reconfiguration 
steps need to consider the existing system architecture. 
Therefore, every new configuration needs to reuse the previous 
layout to achieve the next configuration. Considering this 
constraint, Fig. 3 presents the reconfiguration steps if the 
system would be scaled up from 12 to 18 machines. The THP 
and TBC ranges presented only consider the non-dominated 
solutions. In addition, this figure also shows the number of 
tasks performed in each workstations and the total task time in 
seconds per workstation for the different configurations 
obtained from the optimization in order to obtain the THP range 
presented. 

Another observed result from Fig. 3 is how the scalability 
consideration changed the configuration presented in Table 2 
for the system with 12, 13, 14, and 15 machines. The results 
presented in Table 2 were isolated, so no future 
reconfigurations were considered. Therefore, instead of 2-4-6 
for 12 machines, 2-6-5 for 13 machines, 2-6-6 for 14 machines, 
and 3-6-6 for 15 machines, they have been changed to 4-4-4, 5-
4-4, 5-4-5, 6-4-5, respectively. Consequently, this 
consideration has a small compromise in the THP for those 
configurations, as seen when comparing Fig. 3 with Table 1. 

Essentially, Fig. 3, provides a helpful understanding and 
view of the system, including the optimal location of futures 
machines in case of future capacity increases are needed. 
Knowing where to add future machines in advance can be 
convenient and cost-effective when designing the system, 
especially when investing in the material handling system. 
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Fig. 3. Reconfiguration steps, Throughput, total buffer capacity, and task 
allocation 

Another important aspect of the design of manufacturing 
systems is the buffer capacity consideration. Fig. 3 also shows 
the optimized allocation of the buffer capacities for the given 
configurations. 

Moreover, Fig. 4 shows a comparison of the THP 
progression as the TBC increases between 0 and 35 for the 
systems presented in Fig. 3. Fig. 4 also shows that the curve 
between THP and TBC starts to saturate early. On the other 
hand, different machine availability and MTTR values could 
impact significantly in this relationship. Nonetheless, the red 
parallel dashed lines revealed that M number of machines, for 
some TBC values, can provide the same THP than M+1 
machines. Hence, the parallel coordinate plot (PCP) can 
support decision-makers with the visualization and 

understanding of this trade-off situation in which the capacity 
of the system can be increased either by adding machines or  

 

Fig. 4. Throughput over total buffer capacity 

more buffers capacity. However, there are many more factors 
that can affect decision-making tasks in manufacturing 
companies. The use of tools like the PCP (see Fig. 5) can 
support the knowledge extraction and display which choices 
are available according to different constraints. Fig. 5 shows 
the PCP over the objectives of the optimization. The columns 
from left to right represent THP, the total number of machines, 
the number of machines in every workstation, and the buffers' 
capacity. Nonetheless, more variables could be included. In the 
plot, solutions including 15, 16, and 17 machines have been 
coloured in blue, red, and green, respectively, to show the 
considerable overlapping production rate and buffer capacity 
among the different numbers of machines. Accordingly, the 
PCP can help decision-makers visualize the trade-off situation 
between THP, the number of machines, and buffer capacity. 

6. Conclusions 

This paper introduces a SMO approach that can be used for 
the design of RMS. The SMO approach used has proven to be 
successful when designing new manufacturing systems. The 
presented approach provides the optimal way to fulfill 
determined productivity. This approach demonstrates the 
importance of considering reconfigurability during the design 

Fig. 5. Parallel coordinates 



1842 Carlos Alberto Barrera Diaz  et al. / Procedia CIRP 104 (2021) 1837–1842
6 Carlos Alberto Barrera Diaz, et al. / Procedia CIRP 00 (2021) 000–000 

phase. Future needed information can be supported in the form 
of graphs/plots and tables covering most of the design aspects 
needed for decision makers to reconfigure the system rapidly. 

Despite the slight reduction in productivity for 12, 13, and 
14 machines, it is important to remark that the overall THP over 
the manufacturing system’s lifetime when going from 12 to 18 
machines is practically insignificant. Nonetheless, it is an 
essential aspect to be aware of when designing new scalable 
manufacturing systems. 

Lastly the TBC as the summation of the individual buffers 
has significantly impacted the total THP. However, when 
considering the non-dominated solutions, in some 
configurations, one of the buffers can have a larger capacity 
range that the other. Therefore, their individual impact on the 
THP also depends on the selected configuration. 

The RMS design factors treated in this paper are essential. 
However, many other factors, like system lifecycle, 
reconfiguration frequency, product family and generation, and 
investment cost, etc., need to be considered in future studies. 
The use of the proposed SMO approach is not limited to just 
RMSs and could be applied to other types of manufacturing 
systems. This would requires adjusting the approach to the new 
design requirements and constraints. This will be investigated 
in future publications. 
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