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The affective motion of humans conveys messages that other humans perceive and
understand without conventional linguistic processing. This ability to classify human
movement into meaningful gestures or segments plays also a critical role in creating
social interaction between humans and robots. In the research presented here, grasping
and social gesture recognition by humans and four machine learning techniques
(k-Nearest Neighbor, Locality-Sensitive Hashing Forest, Random Forest and Support
Vector Machine) is assessed by using human classification data as a reference for
evaluating the classification performance of machine learning techniques for thirty
hand/arm gestures. The gestures are rated according to the extent of grasping motion
on one task and the extent to which the same gestures are perceived as social according
to another task. The results indicate that humans clearly rate differently according to the
two different tasks. The machine learning techniques provide a similar classification of the
actions according to grasping kinematics and social quality. Furthermore, there is a strong
association between gesture kinematics and judgments of grasping and the social quality
of the hand/arm gestures. Our results support previous research on intention-from-
movement understanding that demonstrates the reliance on kinematic information for
perceiving the social aspects and intentions in different grasping actions as well as
communicative point-light actions.

Keywords: gesture recognition, social gestures, machine learning, biological motion, kinematics, social signal
processing, affective motion

1 INTRODUCTION

In many contexts, social competence relies on successful human-human interaction where people
have the ability to recognize and understand human social gestures (hand/arm actions) and transitive
gestures that convey intentions when interacting with objects (e.g., McNeill, 1992).Within the area of
human-robot interaction (HRI), there is a continuing development of robots to demonstrate relevant
social behavior understanding (Breazeal, 2004; Carter et al., 2014; Yang, et al., 2007; Dautenhahn,
2007; Dautenhahn and Saunders, 2011; Kanda and Ishiguro, 2013). This appears to be the case even
in industrial settings (Gleeson et al., 2013; Liu andWang, 2018) as well as in the assisting services and
healthcare areas (Cao et al., 2019). The extent to which robots will need to demonstrate this social
competence likely depends on the context in which they are used (Fong et al., 2003). From this
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perspective, the social content of gestures (e.g., McNeill, 1992;
Buxbaum et al., 2007), can be based on previous experience of
human-human interaction in different contexts. Previous results
from (Hemeren and Thill, 2011) demonstrated also an
association between the contextual activation of an action
representation due to previous experience and the kinematics
of the specific grasping action.

In the context of social robotics, gestures are one potentially
critical aspect of non-linguistic social interaction (Tversky, 2019)
where both the robot and human monitor and influence one
another (Lohse, 2011). Movement kinematics have also been
shown to be an important source of information (e.g., Ansuini
et al., 2014; Becchio et al., 2014; Sciutti et al., 2015). To further
investigate this context, human performance and four machine
learning (ML) techniques will rate the same kinematically
presented gestures according to the level of grasping behavior
and according to the level of social behavior. The rating task data
from humans are then used as the reference point for determining
the quality of ML techniques for classifying gestures into grasping
and non-grasping actions as well as social and non-social actions.

In relation to the investigation of grasping and social gestures in
this research, Pollick et al. (2001) demonstrated the importance of
kinematic variables for affect classification in arm movements by
using point-light recordings. Human categorization judgments
were performed according to ten possible affects. The results
showed that there was considerable variation in the ability of
people to identify the affects in the different point-light
movements. However, according to two main dimensions in the
circumplex model, degree of activation and pleasantness, the
correlations between kinematic variables (velocity, acceleration
and jerk) and the psychological space resulting from affect
classification were very strong. This shows a clear motivation
for the use of point-light displays for isolating kinematic
variables. In addition, the movement kinematics had a very
strong effect on the organization of the psychological space for
the perception of affect in the different actions.

Previous results from computational modelling also point
towards the connection between kinematic variables and
different kinds of gestures and actions. Yu and Lee (2015)
investigated the performance of a deep neural network model
on intention recognition where eight different kinds of
motions were used. They used skeletal nodes of one person
to obtain the movement parameters that seemed to
characterize the different motions. The recognition rate was
nearly perfect for seven out of the eight motions, but there were
no social gestures or a systematic investigation of gestures.
Bernardin et al. (2005) used a sensor fusion approach for
recognizing continuous human grasping sequences. They used
a 3D model based on the input from a data glove. They then
used Hidden Markov Models to successfully classify 14
different kinds of grasping that could be used to interact
with different objects. However, they did not investigate
social gestures or the identification of specific gestures. See
also Sun et al. (2020) for the use of surface electromyography
(sEMG) to recognize dynamic gestures.

In contrast to previous studies, the contribution of the
experiments in this article uses both grasping and social gestures,

while using vision-based ML techniques, which are described in
Section 3.1. A further purpose is to make a direct comparison
between human classification and theML techniques based solely on
the kinematic features of human gestures.We use a non-image based
glove-technique (Zaini et al., 2013) to record hand actions and then
use the data to create visual (image-based) stimuli for human
participants. The ML techniques use the 3D coordinates recorded
from the glove to learn classifications, which is a skeleton model
since the coordinates represent the joints of the hand and arm. One
critical aspect in the present research concerns an investigation that,
under controlled circumstances, will be able to show whether or not,
given the controlled limitations of the study, any performance
similarity between human judgments and ML technique
judgments can be demonstrated for grasping and social gestures
using kinematic (point-light) stimuli.

For the experiments in this research, we created a gesture
library with different gesture categories based on previous
research. One important contribution of the first experiment
was to validate the gesture category exemplars in the library by
letting humans judge the degree to which the exemplars belong to
the broad categories of grasping, non-grasping, social and non-
social gestures.

In order to create kinematic displays of gestures using the
hand and arm, we first collected a library of the 3D coordinates of
different points on the hand in 105 different gestures. These
coordinates were then used to create point-light displays of the
different gestures. The kinematics (and spatial position) of the
fingers should clearly distinguish grasping from non-grasping,
which should also be a sufficient basis forML techniques to match
human judgments (Manera, et al., 2011). For the distinction
between social and non-social gestures, the kinematic differences
are not as clearly identifiable. The visual distinction between
social and non-social gestures might be more dependent upon the
previous motor experience of performing the actions in
association with a social context (Amoruso and Urgesi, 2016).
In this case, classification is a result of shared motor knowledge
that integrates perception and action (Sadeghipour and Kopp,
2011). The consequence of this potential dependency is that some
ML techniques (e.g., k-Nearest Neighbor) lack a motor repertoire
and therefore are perhaps less likely to classify certain kinematic
patterns as having a high social content. Thus, ML techniques can
be expected to be more successful at learning differences between
different grasping actions for object manipulation because of the
availability of the kinematic information (opponent motion of the
fingers) but less successful at distinguishing social from non-
social hand/arm gestures based on kinematic data alone.

This hypothesis was tested by selecting a subset of 30 gestures
from the library and then instructing human subjects to rate the
extent to which a gesture contained a grasping motion and also to
rate the extent to which a gesture is perceived as social. We used
human classification data and the kinematics from the 30 actions as
input to fourML techniques that learned the association between the
kinematic Principal Component Analysis (PCA) profiles. A
reasonable assumption is that humans judge actions based on
kinematic data although the exact underlying mechanisms are not
yet known. Given the mapping between the human data and the
kinematics, and to the extent that this occurs for social gestures, ML
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techniques should help us determine in what way the kinematic
profiles might be associated with classification behavior. With a few
exceptions, the results suggest thatML techniques can demonstrate a
strong association between point-lightmovement kinematics and the
human ratings that led to the classification of grasping and social
actions.

The main research questions:

Experiment 1:

• Accuracy—To what extent do judgments of human
participants match the ground truth original
classification used for the gestures in the library
category structure?

• The second issue concerns the extent to which humans
view the perceptual differences between grasping and
non-grasping gestures on the one hand and social vs.
non-social gestures on the other. It is possible that
accuracy is high in relation to the ground truth but the
ratings show that the perceptual differences between the
categories is small and/or possibly different for grasping
and social gestures.

Experiment 2:

• Do the selected ML techniques produce similar accuracy
and rating judgment levels for the grasping and social
gesture categories as for humans in Exp. 1?

• To what extent do the ML-technique results determine
the role of the kinematic profiles for classification
behavior such that kinematic information can function
as a sufficient basis on which to make social judgments of
hand/arm gestures?

2 EXPERIMENT 1—HUMAN RATINGS OF
GRASPING AND SOCIAL GESTURES

The purpose of this experiment was to validate the gesture
categories (ground truth) by using a rating task in order to
then use the data to compare the human performance with
the different ML techniques.

2.1 Gesture Library Construction
The gesture library1 was created to provide kinematic-based stimulus
material to studies on biological motion perception of gestures,
which can include areas of action simulation (Liepelt et al., 2010),
investigating the neural correlates of the observation of hand actions
(Enticott et al., 2010; Streltsova et al., 2010), action segmentation
(Hemeren and Thill, 2011) and the design of cognitive systems that
interact with humans (Liu and Wang, 2018).

The theoretical and empirical basis for the categorical
structure of the gesture library was based on the findings of
(Klatzky et al., 1989). Hand gestures that interact with different

objects have different kinematic features that also contribute to
the creation of motor representations in human cognition.
Klatzky et al. (1989) suggest that the cognitive/motoric
representation of the hand can be used to model the kind of
action (kinematic pattern) that can be used on different kinds of
objects. The gestures chosen for the library therefore represent
different categorical kinematic patterns, and if the previous
results from Klatzky et al. (1989) hold, then results from
human ratings in the current experimental conditions should
be consistent with those results, which showed that participants
made consistent distinctions between grasping and non-grasping
(See also Klatzky et al., 1993.). As a further confirmation of the
decisive role of the kinematic patterns in gesture recognition, the
ML techniques should lead to results similar to the human results.

The gestures are sorted into prehensile and non-prehensile
actions according to the different handshape categories proposed
by Klatzky et al. (1989) (Table 1). Prehensile actions are further
divided into two groups according to the type of grasp used, with
precision grip for the pinch category and power grip for the
clench category. Similarly, non-prehensile actions can belong to
either the palm or the poke subgroup (Klatzky et al., 1989). The
category of social gestures in Table 1 consists of hand gestures
with communicative content. The list of the gestures in Klatzky
et al. (1989) was used as a basis to create some of the social
gestures in the library. We then created an additional number of
social gestures, which were to be validated by the human rating
experiment described below.

The recorded 105 gestures are high-resolution sequences of
hand and armmovements where the details of the fingers and the
hand are not occluded by any rotation or interaction with objects.
The movement kinematics are clearly visible. Figure 1 shows a
skeleton version and a point-light version. All gestures were
presented as point-light displays in the current study.

The library contains original .c3d files with raw three-
dimensional coordinates of 34 markers recorded at 60 Hz. The
actions were recorded by a Measurand ShapeHandPlus™ and
ShapeTape™ motion capture device, with fiber optic sensors
capturing trunk position, arm kinematics and the precise
movements of the right hand. This recording technique
produced a complete three-dimensional representation of the
movement of the right shoulder, right arm, hand and fingers for
the gestures.

Film recordings (AVI format) of the gestures were then
created using the 3D coordinates of 22 of the 34 markers.
These markers were depicted as dots to render point-light
displays from the same three angles for each action (−45° for a
left-frontal view, −135° for a right-frontal view and −180° for a
perpendicular right side view). All viewpoints were set to a 10°

angle of pitch, presenting a natural sight from slightly above. The
film library consists of all actions from all mentioned viewpoints
as point-light displays and in a version with the 22 markers
connected, forming the skeleton model of the hand and arm. The
22 markers are drawn as white on a black background, with the
frame of the display adjusted to the scale of motion in each action.
However, with the use of the script in the library, enclosed videos
can be easily created from the .c3d files, applying any arbitrary
angle and different settings regarding the characteristics of the

1https://www.his.se/en/research/informatics/interaction-lab/description-of-
action-library/
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TABLE 1 | Library of gestures grouped by hand action category. Gestures rated in the experiment are in bold and social gestures have aa.

Prehensile (grasping) Non-prehensile (non-grasping)

Clench Pinch Palm Poke

- bounce small ball - cut with scissors - clap - attentiona

- close a jar - bow with hata - clap own shouldera - clean a jar with finger
- close water tap - deal cards - clean an apple - draw with finger
- cut with knife - drink from mug - clean table - feeling fingertips
- cut with saw - finea - clean window - go over therea

- drink from glass - open drawers - come closera - I’m watching youa

- eat apple - open suitcase - come ina - measure distance with
- flex musclea - peel a banana - count 1–5a fingers
- hammer - pick up a pen - enougha - no-noa

- juggle - plug - flick with handa - poke a shouldera

- knock on doora - pull light-cord - give mea - pssta

- lift a dumbbell - put on a cap - greetinga - quotea

- lift suitcase - screw pen - high fivea - rock-paper-scissors: scissorsa

- make paper ball and throw - tear tape - I cannot hear youa - scratch heada

- open a door - tear off page - impatient fingersa - scratch leg
- open a jar - throw darts - pat a shouldera - type
- open can with opener - unscrew a bottle top and close back - play bongos - use calculator
- open soda can - push with palm - thumb upa

- open water tap - unscrew a bottle top - reach under and lift
- pour from saltshaker drink and close back - rock-paper-scissors: papera

- push stapler - unscrew a bottle top - roll a carpet
- rock-paper-scissors: rocka - use door key - rub stomacha

- sandpaper - write on board - salutea

- shake bottle - zip - shake off water
- shake handa - slapa

- snap fingersa - smooth bedspread
- squeeze cloth - so-soa

- table tennis - stand-up
- throw and catch a ball - stopa

- stroke a dog
- that’s nothinga

- thinkativea

- wavinga

- what?a

- whispera

- voilaa

aThe marked actions also belong to the social category.

FIGURE 1 | Point-light and skeleton versions of the gesture stimuli.
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frame and the model. It is also possible to play the actions directly
from the .c3d data.

A right-handed male, one person, performed all of the actions
(with the exception of the play bongos and juggle actions) with
the right hand, starting and ending them at the same resting
position with the arm and hand relaxed at the side. Most of the
prehensile actions (i.e. in which the object is held by the hand)
also include the movement of lifting up the object before and
placing it back to the same place after the action. This method is
consistent with Zaini et al. (2013) who also created a library of
communicative and non-communicative point-light actions. In
another previous study, Yu and Lee (2015) used one person to
record motions that were recognized by using a deep dynamic
neural model. Results from previous studies suggest that visual
discrimination between different action categories is maintained
across the kinematic variation that can occur with different
people performing the different actions. This result has also
been experimentally demonstrated in Alaerts et al. (2011). A
central positive consequence of the current study is to
demonstrate empirically validated results where human and
ML techniques produce similar classifications of gestures.

2.2 Materials and Methods
2.2.1 Participants
Forty-eight undergraduate students (24 males and 24 females;
24.6 ± 6.7 years; 4 left- and 44 right-handed) took part in the
experiment. Procedures conformed to the Declaration of Helsinki
and were previously in a similar experiment approved by the
Regional Ethical Review Board of Sweden. Written informed
consent was obtained from each participant. Forty-seven
participants had a normal or corrected-to-normal vision; one
participant indicated uncorrected vision, but was nevertheless
able to perceive the figures well. The participants were recruited
from two different courses when the lectures were finished, and
interested students were asked to simply stay for an additional
40 min in order to participate in the experiment.

2.2.2 Stimuli and Apparatus
The stimuli consisted of thirty gestures quasi-randomly selected
from the library in order to achieve a balanced validation of the
105 gestures. Due to the fact that it would take far too long, about
2 hours, for each participant to judge all of the 105 gestures, a
representative subset was selected in order to create an acceptable
participation time for the participants. The representative subset
of gestures was selected according to the extent to which they
displayed grasping and the extent to which they could be judged
as social (Table 1). Twelve prehensile gestures (6 clenches and 6
pinches), twelve non-prehensile (6 palms and 6 pokes), and 6
additional social gestures were selected in order to reach a total of
thirty gestures. This distribution did not, however, create a
complete balance between the different categories because the
focus on social gestures in this experiment is on the kinematics
not on object interaction, which consequently led to more non-
grasping than grasping gestures. For the grasping categories,
there were 13 grasping and 17 non-grasping gestures, and for
the social categories, there were 10 social and 20 non-social
gestures.

Video animations were created in MATLAB (Mathworks,
Natick, MA) using the 3D coordinates of 22 reference points
(representing the shoulder, the elbow, the wrist, each
metacarpophalangeal and interphalangeal joint, and the
fingertips) from three viewing angles (left-frontal, right-frontal,
and perpendicular right side views) for each gesture. The duration
of the video animations are presented inTable 2. The 22 reference
points are visible in Figure 1. Each gesture was presented from all
three viewing angles in order to avoid the situation where only
one viewpoint might be more visually advantageous for one
gesture compared to another gesture. The order of viewing
angles for each action in each trial was left-frontal, right-
frontal and then a perpendicular right side view.

Participants were given three different tasks during the
presentation of the 30 gestures: 1) provide a short description
of the action in the point-light display, 2) rate the extent to which
the action represented an instance of grasping and 3) rate the
extent to which each action could be perceived as a social action.
Ratings were made according to a 7-point Likert scale. Participants
were also given the alternative of responding that they were unable
to provide an answer. These instances were treated as missing data.
See Figure 2 for an example of the three tasks that were given to
participants on a paper questionnaire. A further description of the
questionnaires is presented in the next section.

A rating task was used instead of a binary classification task to
be able to capture data that shows that the different gestures may
be perceived as belonging more or less to the different categories.
This task is potentially much more realistic than making binary
classification judgments. Studies that use binary classification
data face greater difficulty in using that data to show graded
differences between different gesture examples that belong to the
same category.

2.2.3 Design and Procedure
Six different questionnaires (eight participants each) were used.
Each questionnaire was used for the 30 gestures. The only
difference between the questionnaires was the order of the
tasks. This is seen in Table 3. Three of the questionnaires
were tested on one occasion in a classroom with 24
participants, while the other three on a different occasion with
another 24 participants. All procedures and stimuli were
otherwise identical between the two occasions.

To avoid influencing one another when participating under
the same experimental conditions, participants sitting next to one
another were given different questionnaires of the three types
mentioned above. This resulted in a design where eight
participants, while viewing the same gestures, were
individually doing Task 1 while eight participants were
individually doing Task 2 and eight participants were
individually doing Task 3. Participants were informed that
they would be performing different tasks and therefore could
not assist one another while viewing the same gesture. Given this
design, each participant viewed the same gestures in the same
order but was performing different tasks. The counter-balanced
order of the three tasks is presented in Table 3.

Due to this counter-balanced task ordering, the order of
presented gestures had to remain the same for all
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TABLE 2 |Gestures in the experiment. Means and standard deviations (in brackets) of observer ratings for each point-light gesture. N � no and Y � yes, grouped according
the labels Prehensile? and Social?

Name of action Prehensile? Social? Duration (s)

Ground truth Observer rating Ground truth Observer rating

Clap N 1.56 (1.21) N 5.75 (1.13) 8.6
Count 1–5 N 1 (0) Y 3.6 (2.06) 9.3
Cut with saw Y 6.25 (0.68) N 1.38 (0.87) 19.0
Cut with scissors Y 6.19 (0.91) N 1.73 (0.96) 19.9
Drink from glass Y 6.81 (0.75) N 2.13 (1.67) 13.4
Drink from mug Y 6.81 (0.54) N 2.19 (1.64) 12.9
Feeling the fingertips N 4.75 (1.98) N 1.69 (1.01) 9.7
Give me N 2.19 (2.07) Y 5.47 (1.64) 5.8
Go over there N 1.69 (1.89) Y 6.19 (1.05) 7.2
High five N 1 (0) Y 5.31 (1.92) 14.6
Juggle Y 2.88 (2.09) N 2.85 (1.77) 13.2
Lift suitcase Y 6.63 (0.89) N 1.6 (1.55) 17.5
Measure distance with fingers N 2.81 (1.68) N 2.46 (2.22) 12.2
Open a jar Y 4.63 (2.45) N 1.64 (0.81) 13.6
Open can with opener Y 6.21 (1.12) N 1.87 (1.77) 20.9
Peel a banana Y 4.94 (1.57) N 2.2 (1.55) 26.1
Play bongos N 1.06 (0.25) N 3.93 (1.67) 11.7
Poke a shoulder N 1.31 (0.70) Y 5.88 (1.78) 5.1
Pull light cord Y 5.21 (1.63) N 2.31 (2.36) 8.3
Push with palm N 2.69 (1.70) N 3.36 (1.50) 6.1
RPS-Paper N 1.38 (0.62) Y 6.4 (1.24) 7.2
Scratch head N 2.44 (1.86) Y 2.07 (1.83) 7.8
Shake hand Y 6.56 (1.50) Y 6.25 (2.05) 5.9
Shake off water N 1.13 (0.34) N 1.44 (0.81) 7.7
Smooth bedspread N 1.44 (1.03) N 1.86 (1.17) 9.0
Tear glue tape Y 5 (1.71) N 1.71 (1.27) 10.7
Unscrew bottle top and close back Y 5.53 (1.41) N 1.47 (0.92) 14.1
Use calculator N 2.13 (2.07) N 3.6 (2.16) 9.8
Waving N 1 (0) Y 7 (0) 6.7
What N 1.25 (0.77) Y 6.1 (1.07) 5.1

FIGURE 2 | Examples of the three different questionnaire tasks.
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questionnaires. The questionnaires are presented as
supplementary material as well as the original film sequence of
the complete gesture sequence that was used for all participants.

Stimuli were projected on a classroom screen, and responses
were recorded via individual questionnaires that were passed
out. The experimental session started with an introduction and
three training gestures, demonstrating each of the three tasks.
Each trial (for both training and experimental gestures)
consisted of a set of three consecutive videos, presenting the
same gesture from the three viewing angles as described above,
always in a fixed order. Participants were informed that they

were viewing the same action three times from different viewing
angles, and they responded to them in the 20 s provided after the
stimulus presentation. Trial numbers were shown at the
beginning of each trial to assure that participants wrote their
responses to the correct item. The stimulus film with the
training and testing gestures was 30 min long. This design
ensured that each action was only presented once and thus
no carry-over effects could take place from one task to another.
Since there were three different tasks and a total of 48
participants, 16 independent responses were obtained for
each gesture and task.

FIGURE 3 | Clustering of gestures as a function of participant ratings of the degree of grasping and the extent to which the gestures were social.

TABLE 3 | Each group of participants viewed the same 30 gestures in the same order, but completed different questionnaires. The questionnaires contained three types of
tasks (social, grasping, and description). The tasks were thus presented in a counterbalanced order for each group according to 10 gestures each.

Stimuli gestures Task questionnaires (Q1-Q6)

Q 1 Q 2 Q 3 Q 4 Q 5 Q 6

Gestures 1–10 Social? Social? Grasping? Grasping? Description Description
Gestures 11–20 Grasping? Description Description Social? Social? Grasping?
Gestures 21–30 Description Grasping? Social? Description Grasping? Social?
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2.2.4 Analysis
Descriptive statistics were used to assess the human raters’
perceptual accuracy of each action. Identification accuracy was
also measured as an indicator of the ability of the movement
kinematics to reliably portray the specific gestures. The grouping
of actions based on human ratings was analyzed in a hierarchical
cluster analysis both for the grasping and social dimensions. As a
measure of inter-rater reliability, the intraclass correlation
coefficient (ICC) was used. In our experiment, three different
subsets of randomly selected raters assessed three different
subsets of actions for each task. While a one-way random
model would apply to situations where each item or each
subset of items was rated by a different subset of raters, a two-
way random model uses the same set of raters. Since the three
groups of participants completed different questionnaires and
solved the tasks on different subsets of actions and in different
orders, we applied a one-way random model rather than a two-
way random model (Koo and Li, 2016). Single-rater type ICC
estimates and 95% confidence intervals (CI) were calculated,
together with all other analyses, in SPSS version 24 (SPSS Inc.,
Chicago, IL). Statistical t-tests were also used to determine the
significance of the differences between the different rating
conditions.

Data analyses address two issues. The first concerns the
accuracy of the human judgment data in relation to the
ground truth presented in Table 2. This analysis addresses
the validation of the original classification of the gestures
when the gesture library was made. Does the human judgment
data confirm the categorical assignments of grasping vs. non-
grasping and social vs. non-social actions? The second issue
concerns the extent to which humans view the perceptual
differences between grasping and non-grasping gestures on the
one hand and social vs. non-social gestures on the other. It is
possible that accuracy is high in relation to the ground truth but
the ratings show that the perceptual differences between the
categories are small.

The rating dataset was then used to create dendrograms to
visualize the categories according to grasping vs. non-grasping
and social vs. non-social. An agglomerative hierarchical cluster
analysis in SPSS version 24 (using squared Euclidean distance and
within-groups linkage) was used on the raw rating data for each
gesture and participant rating to produce the dendrogram (Yim
and Ramdeen, 2015). The dendrogram could then illustrate the
rating differences between grasping and non-grasping on the one
hand and social and non-social ratings on the other.

2.3 Results
The raw data showed some missing values. Some participants
responded that they were not able to judge the extent of grasping
or social content of the gestures, which was counted as missing
data. The missing data was 4.7% of all responses; 8.3% in the
social task and 1% in the grasp task. The remaining data was used
to determine the mean rating for each gesture and is presented in
Table 2. For the grasping ratings, any value above 4 indicates that
participants perceived the gesture as grasping, and any value
below 4 indicates that the gesture was perceived as non-grasping.
For social gestures, ratings above 4 indicate a social gesture

judgment, and values below 4 indicate that the gesture was
seen as non-social.

Regarding the issue of accuracy, confusion matrices in Table 4
show a few errors but also that human judgments quite clearly
agree with the ground truth initial classifications for both
grasping and social gestures. The errors for the grasping
gesture ratings were for “feeling the finger tips” where ratings
indicated grasping rather than non-grasping and for “juggle”
where the ratings indicated non-grasping rather than grasping.
For the social vs. non-social ratings, participants viewed “clap” as
social rather than non-social, which indicates that the original
classification might have been erroneous. The other two errors
indicate that participants rated initially determined social
gestures as non-social. Both gestures “count 1–5” and “scratch
head” were rated as non-social in relation to the ground truth
value of being social gestures.

The dendrograms are presented in Figure 3. The major
clusters show that the participants perceived the same gestures
differently depending on the categories (grasping vs. non-
grasping and social vs. non-social) used to rate the gestures.
The clear distances between the major clusters also indicate the
extent to which people visually discriminate between the gestures
according to the studied categories. In order to further
quantitatively test the extent to which people view these
perceptual differences, the difference between the means for
the two different cluster pairs was significant. The mean rating
for the thirteen gestures in the grasping cluster was 5.81
(sd � 0.82), and for the non-grasping cluster (n � 17) the
mean was 1.70 (sd � 0.67), t(28) � 15.01, p < 0.001, 95%
difference CI (3.55, 4.67). The mean rating for the 9 gestures
in the social cluster was 5.53 (sd � 1.56), and for the non-social
cluster (n � 21) it was 2.46 (sd � 1.15), t(28) � 6.03, p < 0.001, 95%
difference CI (2.02, 4.11])

Regarding the potential difference between the mean
judgment ratings for non-grasping and non-social gestures
(1.70 vs. 2.46), there was no significant difference, t(16) �
1.56, p � 0.138. There was also no significant difference
between the mean judgment ratings for grasping and social
gestures (5.81 vs. 5.53), t(9) � 0.34, p � 0.746.

Single-measure ICCs for the grasping [0.729, 95% CI (0.625,
0.840)] and the social ratings [0.700, 95% CI (0.506, 0.889)]
dimensions indicate a moderate to excellent agreement
(Cicchetti, 1994) between test participants in both tasks. These
values were calculated after a listwise exclusion of participants
with missing values (4 and 20 participants, respectively; see also
section 3.2.3) and showed a high level of significance, F(25,39) �
44.07, p < 0.001; and F(9,150) � 38.30, p < 0.001, respectively.

2.4 Discussion
These results show that humans seem to make clear judgments
between grasping and non-grasping gestures on the one hand and
social and non-social gestures on the other. This occurs when
they are given the different judgment tasks for the same stimuli.
An explanation for the different ratings for the grasping
judgments is that people are using the kinematic information
in the high-resolution point-light displays to track the motion of
the fingers in relation to hand and arm movement. As the hand
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and arm move, the fingers may also be moving to prepare for an
interaction with an object. Indeed, the different motion and position
patterns of the fingers and hand are factors that seem to produce
different visual patterns that define different kinds of grasping.
However, when it comes to the social judgments, it may be the
case that additional contextual knowledge of human social
interaction is needed, i.e., social experience that frames the
kinematic information (Amoruso and Urgesi, 2016). For example,
understanding the kinematics of a “high five” gesture may require
contextual knowledge about how to motorically respond in a social
situation as an expression of agreement. It could also be the case that
the available kinematic information is sufficient for the ability to
distinguish between these two gesture categories.

In order to test this, we submitted the 3D marker data (22
markers) in the original gesture files to PCA to reduce the amount
of noise (dimension reduction) in the data and to maximize the
amount of variance associated with the most informative
component in the original data. The PCA profiles for the
different gestures were used as input into four different ML
techniques to see if any of them would yield a result similar to
the human data. This should not be confused with the task of
predicting the human data. The comparison here is to assess
whether selected ML techniques will produce similar accuracy
and difference results.

3 EXPERIMENT 2: MACHINE RATINGS OF
GRASPING AND SOCIAL GESTURES

3.1ML Techniques—Materials andMethods
Two fairly recent extensive surveys on gesture recognition have
been conducted (Rautaray and Agrawal, 2015; Liu and Wang,
2018) and discuss the current trends in sensor technology andML
techniques. The contexts of the surveys have been in the area of
human computer interaction (Rautaray and Agrawal, 2015) and
human-robot collaboration (Liu and Wang, 2018). The purpose
of the studies presented in this article can contribute to both
areas, especially human-robot collaboration by investigating the
performance of the four ML techniques with regard to ratings of
grasping and social gestures. If ML techniques show similar
results to human ratings, especially for social gestures, artificial
systems can use the kinematics to detect, recognize and react to
human gestures that require social interaction in service settings
and in the context of human-robot collaboration in industrial
manufacturing.

The classifications here will be based on the similarities of
time-series kinematics and verify the corresponding score
consistency based on human ratings. PCA will be used to find
the principle component (containing the largest variance and
most information) in the original 3D data from the glove
recordings. This component (position variance), which retains
the core descriptive kinematic profiles of each gesture, will be
used as the input to the different ML techniques.

We assume that if the classification algorithms can produce
ratings that are statistically comparable to human ratings based
on the input to the algorithms, then kinematics can be used to
recognize social/non-social or grasping/non-grasping actions.
We used four classification algorithms k-Nearest Neighbor
(kNN; Cover and Hart, 1995), Locality-Sensitive Hashing
Forest (LSH-F; Bawa et al., 2005), Random Forest (RF;
Breiman, 2001), and Support Vector Machine (SVM; Hearst,
1998; Vapnik, 2013) to achieve our experimental aims. The
results indicate that kinematic information can function as a
sufficient basis on which to make social judgments of hand/arm
gestures. It is important to point out that the ground truth in the
current experiment is the original classification of gestures
according to Table 2, i.e., not the human performance and
rating data to which the algorithms are then compared.

The tools used in our work to implement these ML algorithms
are based on Python and the scikit-learn library. The same 30
actions used in the human experiment are used for testing, and 4-
fold cross validation (to avoid overfitting because of the limited
size of our dataset) is applied to the remaining 75 actions to find
the best parameters for the model.

kNN is at the core of many key classification applications. A
naïve approach to kNN uses a direct calculation of distance to
find the k closest neighbors to determine the class of a target
(Marasović and Papić, 2012). The kNN algorithm relies heavily
on the training data. For example, if the training data contain too
many datasets, on-line distance calculation and neighbor
searching might be slowed down drastically. A condensation/
reduction preprocessing is thus normally needed to remove
outliers or redundant datasets (Bhatia, 2010). In our work, as
our datasets are limited, we can skip this step and directly cross-
validate to find the optimal k value, which is 9.

Another approach to searching similarities from an immense
number of data points is called LSH (Shakhnarovich et al., 2006).
Instead of solving the classification problem exactly like kNN,
LSH tries to find a set of data points that are approximately the
closest to the target. The approximation is due to the fact that

TABLE 4 | Confusion matrices for human judgments of gestures as a function of judgment task (grasping and social).
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perfect hash functions may not exist or are extremely hard to find.
LSH-F (Bawa et al., 2005) is an extension of LSH. It orders hash
functions in tree structures to randomly classify data into leaves
through feature dimensions. The theory behind this is that when
data gets pushed to leaves of different trees, similar datasets
always generate similar patterns amongst tree leaves. Then a
cosine distance can be calculated to search similarities within a
large database (Van Durme and Lall, 2010; Leskovec et al., 2014).
This approach avoids the possible computational cost of kNN
algorithms related to a large amount of data.

The RF algorithm is based on ensemble learning, which joins
different or the same types of algorithms multiple times to form a
more powerful prediction model. It combines multiple decision
trees to form a forest of trees. Data samples are randomly selected
to create decision trees. Each tree in the forest outputs a
prediction and the best solution is selected by means of
voting. The optimal number of trees for our purposes was
found to be 9, using the grid search cross-validation. The grid
search method tries all possible k-values, for example the integer
values from 1 to 50.

An SVM is a discriminative classifier whose objective is to find
a hyperplane in an N-dimensional space that separates data
points with the largest amount of margin. A hyperplane is a
decision boundary that helps to classify a set of objects with
different class labels. Each side of the hyperplane belongs to data
points of different classes. The kernel of the SVM used in our
experiment is polynomial with degree � 3. In order to take into
account the imbalanced data, the weight class for grasping
gestures was 0.55, for non-grasping 0.45, for social gestures
0.59 and for non-social gestures 0.41.

We use kNN, LSH-F, RF and SVM to classify our profile data
because they are state-of-the-art classification methods. The
comparisons of classification results with human ratings in the
next section show which method is better for classifying human
kinematic movement.

3.1.2 Data
The human participants in the experiments rated the extent to
which a particular action is either perceived as a social or grasping
instance using a 7-point Likert scale. Since the purpose of this
research is to compare (not predict) the human ratings with ML-
techniques, an additional mapping function is applied to the
outputs of ML techniques based on their probabilities (Murphy,
2012) so that they are transformed to the same 7-point Likert
scale as human ratings. The probability calculation was the result
of a function call from the open source Python library (Scikit-
learn). The mapping function can be described as:
RML � P(class|input) × 6 + 1, where P(class|input) is the
probability of an input data point belonging to either a
grasping or a social action, e.g., if the probability of an action
being grasping is 1, the transformed ML rating for this action is
RML � 7. The mapping function assumes a linear relationship
between the 7-point-likert scale and the probability P. For
example, value 7 in the scale to has the probability 1 to be in
class x, value 1 in the scale for the opposite, and value 4 has equal
probability to be in either class. Therefore, a comparison can be
made between the human ratings and ML outputs.

For kNN and LSH-F, this probability is calculated as:
P(class|input), where Ntotal is the total number of n nearest
neighbors and Nclass is the number of neighbors predicted to
be this class. For random forest, the probability is computed as the
mean predicted class probabilities of the trees in the forest2.

Platt scaling (Platt, 2000) trains the parameters of an
additional sigmoid function on top of SVM to map the SVM
outputs into probabilities so that the classifier outputs a calibrated
posterior probability. It is used to obtain the probability of a given
data point belonging to a particular class instead of the distance of
that data point to the boundary. Platt scaling optimizes the
probability of an input data point belonging to a class by
calculating P(class|input) ≈ 1

1+exp(Apf(input)+B), where f(input)
is the signed distance of the input data point from the
boundary plane. Platt scaling trains a probability model on top
of SVM.

To illustrate the comparison between results based on
kinematics classification and experiments on human subjects
from previous research, our experiments use the following steps:

Step 1. Classification: PCA was applied to the normalized 3D
position data of the 22 markers that were used in the human
experiment. The data used for representing each gesture is
constructed as a matrix with size of a by b, where a is the
number of samples (different for each action) and b is the
number of kinematic points (b � 102). Firstly, in order to
compare similarities between gestures represented by a 2D
Matrix, we chose to reduce the dimensions of the data from 2D
to 1D by finding the kinematic points with salient variance
during sampling time. PCA (principal component analysis)
might be a suitable technique for handling unsupervised
dimension reduction. After being processed with PCA, the
dataset for each gesture was multiplied with the salient weights
and transformed to a 1D dataset with size 1 by a. Secondly,
since a is different for each action, each gesture dataset was
reconstructed into datasets with an equal sampling time length
by shifting the final values of each compressed dataset
repeatedly to the maximum length of sampling time. Each
gesture was extended to 1,800 samples, resulting in a feature
dimension of 1,800 × 1.
Different ML techniques were then applied to the profile data
of PCA output, which is the position variance of the different
markers of the hand model according to the different gestures.
Step 2. Projection: Map the classification results to a 7-point
Likert scale, which is the same as used in human ratings.
Step 3. Statistical analysis: Compare the ratings from the kNN,
LSH-F, Random Forest and SVM with the ratings found in the
human data.
Step 4. Visualization: Qualitatively display similarities for
different techniques and verify rating consistency
comparing different ML rating methods with human
ratings for each gesture type.

2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.predict_
proba
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3.2 Results
3.2.1 Classification Performance with Respect to
Ground Truth
Grasping and Non-grasping Gestures
Table 5 shows the confusion matrices of the classification
results from kNN, LSH-F, RF, and SVM. Since we have
an uneven class distribution and both false positive and
false negative cases are taken into account, the support
weighted mean F1 scores are calculated. A high value of an
F1 score indicates relatively high values of both precision and
recall.

The rating means for the different ML techniques and for the
human ratings for grasping and non-grasping are illustrated in
Figure 4.

A two-way mixed (2 × 5) ANOVA was performed to test the
effect of the repeated-measure grasping-gesture category (non-
grasping and grasping) in relation to the five different methods
(between-groups factor). There was a significant main effect of the
grasping-gesture category, F(1, 60) � 98.35, p < 0.0001, η2 � 0.62.
There was no significant main effect of the method factor, F(4, 60) <
1. The interaction effect was significant, F(4, 60) � 6.57, p < 0.001,
η2 � 0.31.

Figure 4 shows the interaction pattern. Human ratings
showed a clear and large difference between the two grasping
gesture categories as described in section 2.3 for the human data.
This difference is, however, smaller for the ML techniques. The
simple main effect of the non-grasping ratings as a function of the
different methods was not significant, F(4, 80) � 1.82, p � 0.134.
The simple main effect of grasping ratings as a function of the
different methods, however, was significant, F(4, 60) � 2.80,
p � 0.034, η2 � 0.157.

A further detailed statistical analyses of the paired sample
confidence intervals for the different methods as a function of
grasping-gesture categories show that the differences between
mean ratings for grasping and non-grasping are significant for
kNN (95% CI [0.70, 3.30]), significant for LSH-F (95% CI [0.76,
2.94]), significant for Random forest (95% CI [0.13, 2.68]), and not
significant for SVM (95% CI [-0.43, 1.71]). The non-significant
results for SVM therefore contribute to the significant interaction
effect.

Although the differences are not as large as for the human
ratings, the ML techniques (with SVM as an exception) appear to
reliably create the two categories of grasping and non-grasping
actions that can be distinguished on the basis of the kinematic
information in the PCA profiles.

TABLE 5 | Confusion matrices for classification results for grasping from kNN, LSH-F, RF and SVM.

FIGURE 4 | Rating means for grasping and non-grasping gestures for
humans and ML techniques (Error bars represent 95% CI.).
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Social and Non-social Gestures
Table 6 shows the confusion matrices of the classification results
from kNN, LSH-F, RF, and SVM. Since there is an uneven class
distribution and both false positive and false negative cases are
taken into account, the support weighted mean F1 scores are
calculated. A high value of an F1 score indicates relatively high
values of both precision and recall.

The rating means for the different ML techniques and for the
human ratings for social and non-social categories are illustrated
in Figure 5. Here it is clearly the case that the ratings based onML

techniques are very similar to the human ratings, the only
difference being for SVM.

Similar to the previous analysis, a two-way mixed (2 × 5)
ANOVA was performed to test the effect of the repeated-measure
social-gesture category (social and non-social) in relation to the
five different methods (between-groups factor). There was a
significant main effect of the social-gesture category, F(1, 45)
� 155.51, p < 0.0001, η2 � 0.78. There was no significant main
effect of the methods factor, F(4, 45) � 1.69, p � 0.17, η2 � 0.13
The interaction effect was significant, F(4, 45) � 3.56, p � 0.013,
η2 � 0.24.

The simple main effect of the social gesture rankings, was
significant, F(4, 45) � 5.24, p � 0.001, η2 � 0.32. SVM is
significantly lower in its rating of the social gestures compared
to the other ML-techniques, SVM vs. kNN, 95% CI [−3.09,
−0.41], SVM vs. LSH-F, 95% CI [−3.17, −0.49], and SVM vs.
RF, 95% CI [−2.74, −0.053]. The difference between SVM and the
human result was, however, not significant, 95% CI [−2.58, 0.10].
There were no significant differences between the human rating
mean for the social gestures and the ML techniques, all ps > 0.05.
For the simple main effect of the non-social gesture ratings, there
were no significant differences, F(4, 95) � 1.40, p � 0.24,
η2 � 0.056.

According to Figure 5, the ML techniques appear to reliably
create the two categories of social and non-social actions that can
be distinguished on the basis of the kinematic information in the
PCA profiles, with the exception of SVM.

3.2.2 Comparison to Human Ratings
The purpose of this section is to show some key similarities and
differences between human andML techniques for specific gestures.

In order to qualitatively compare the rating values between
human and ML methods and verify the consistency of gesture

TABLE 6 | The confusion matrices for the classification results for social gestures from kNN, LSH-F, RF, and SVM.

FIGURE 5 | Rating means for non-social and social gestures for humans
and ML techniques (Error bars represent 95% CI.).
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judgments, the ratings of each gesture from different methods are
plotted Figure 6.

Sixteen gestures were selected out of the 30 gestures from
the testing dataset. The selected gestures show all cases where
the human ratings agreed with ML techniques and the cases
where human ratings differed from ML techniques. The
complete plots of all 30 gestures can be found in the
complementary materials.

The non-grasping group of plots show that human ratings are
not always correct: it classified “feeling the fingertips” as a
grasping action, while all four ML methods classified it as
non-grasping. The kNN, LSH-F and Random forest are quite
consistent with human ratings in non-grasping gestures, which is
also verified by our pairwise comparisons.

In the grasping group, the human rating is wrong about the
gesture “juggle” while LSH-F and SVM are correct. However, all

FIGURE 6 | The dotted line in each subplot separates non-grasping (lower part) from grasping (upper part), or non-social (lower part) from social (upper part). The
values on the y-axis are ratings from the 7-point Likert scale. The values on the x-axis are differentmethods:Hu� human ratings; K� kNN; L� LSH-F; R� random forest; S� SVM.
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or most of the ML techniques are wrong about “drink frommug”,
“pull light cord”, “shake hand” and “tear tape”. In general, the
LSH-F is better in consistency than the other three and the SVM
performs the worst.

The non-social group plots show that all four ML techniques
disagree with human ratings in “clap”, “pull light cord”, “push
with palm” and “shake off water”, among which “clap” is judged
by humans as a social gesture. kNN, LSH-F and random forest are
more consistent with human ratings than SVM in this group
according to the means in Figure 5.

All four ML techniques are different from human ratings only
in the action “scratch head” in the social group, which is also the
only case when humans make a mistake, and all ML methods are
correct. Apart from this, the kNN, LSH-F and random forest are
quite close to the human ratings. It is previously confirmed by the
statistical analyses.

4 DISCUSSION AND CONCLUSIONS

The accuracy results from Experiment 1 demonstrated a clear
matching with the ground truth original classification used for the
gestures. The rating results also showed that accuracy was an
effect of the clear perceptual differences between grasping and
non-grasping gestures on the one hand and social vs. non-social
gestures on the other. The difference in these rating results
suggest a more binary perceptual categorization even for social
and non-social gestures, which is similar to categorical perception
results for familiar objects (Newell and Bülthoff, 2002).

The results from Experiment 2 showed a somewhat lower
accuracy tendency in relation to human performance, but the
rating results clearly indicate similar levels of rating differences
compared to human performance. The ML techniques, with the
exception of SVM, not only demonstrated a clear difference
between grasping and non-grasping gestures but also a very
clear difference between social and non-social gestures. This
result was expected based on results from previous research
showing that humans and ML techniques use kinematic
information to classify grasping gestures (Zaini et al., 2013;
Rautaray and Agrawal, 2015; Cavallo et al., 2016; Liu and
Wang, 2018). Grasping is about moving the arm and fingers
to interact with an object. The necessary information is in the
display.

The ratings of the extent to which a gesture is social have not
been previously studied, particularly in relation to a similar task
for ML techniques. The major contribution here is a
demonstration that there appears to be sufficient kinematic
information in the PCA input to allow three of the four ML-
techniques to make similar judgments for social gestures as
humans.

One important issue in our results concerns the more specific
information that contributes to the classification distinction
between social and non-social gestures given by the kinematic
patterns of hand and arm movement. The input to the ML
techniques was the recorded position data of the fingers, hand
and arm for the different actions. This data was reduced in the
PCA profiles that contained position and time sampling data for

the actions. The position variance over time seems to be the
primary factor for the observed classification behavior of the ML
techniques. It is an open question as to what specific information
humans are using in their classification behavior.

4.1 Limitations
The dataset used in the training sessions was not completely
balanced. For the social/non-social actions, there were 31
social actions and 44 non-social actions. For the grasping/
non-grasping actions, there were 34 vs. 41 respectively. One
reason for the performance of SVM may be due to this
imbalanced dataset. This difference is not large but does
deviate from the standard 50/50 proportion for two-class
classification. The size of the training datasets might affect
the SVM results more than the other ML techniques. We
cannot draw clear conclusions about the difference between
SVM and the other ML techniques based solely on the original
distinctions between grasping/non-grasping and social/non-
social.

The methods using nearest neighbors try to classify a gesture
based on the training data, which is labeled by the ground truth.
The hypothesis of the classification method is that the two classes
(grasping vs. non-grasping or social vs. non-social) have distinct
kinematic features, and the classification results support this.
However, the human ratings did not always align with the ground
truth. Thus in some cases the ML algorithms were able to
correctly classify the gestures while the humans could not.
This suggests that humans use additional information such as
prior knowledge other than the position of the light points used
by ML techniques to make decisions which is consistent with
previous results from (Amoruso and Urgesi, 2016) where they
showed that there can be a contextual modulation during action
observation and that this modulation is related to motor
resonance.

4.2 Conclusions
It seems reasonable on the basis of the obtained results that the
kinematic information in the profiles is driving the largely
successful classification behavior of kNN and LSH-F. We will
likely need more gesture instances to improve classification. The
current results support previous findings that demonstrate a
kinematic basis for perceiving intentions in humans (Ansuini
et al., 2014; Sciutti et al., 2015; Cavallo et al., 2016; Becchio et al.,
2018).

Movement kinematics (e.g., acceleration, velocity, hand and
finger position, change in direction) provide a clear basis for
ratings of grasping gestures and social gestures for both humans
and ML techniques.

One important issue in the results concerns the more specific
information that contributes to the classification distinction between
social and non-social gestures given by the kinematic patterns of
hand and arm movement. The input to the ML techniques was the
recorded position variance of the fingers, hand and arm for the
different actions. The position variance over time seems to be the
primary factor for the observed classification behavior of the ML
techniques. It is an open question as to what specific information
humans are using in their classification behavior.
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The difference between highly informative movements and
less informative movements could play a role in the differences
between the ratings of different gestures (Koul et al., 2019). The
lack of contextual information (in point-light displays) will create
greater dependency on the available kinematic information. The
key aspect here then concerns the extent to which the kinematic
information is sufficiently informative to drive gesture and
intention recognition. In the case of grasping, we originally
speculated that the kinematic information was highly
informative, and therefore the distinction between grasping
and non-grasping for the ML techniques would be more
similar to the human ratings than for the social gestures,
which did not turn out to be the case. The results from the
ML techniques suggest that social gestures are highly informative
even when they completely lack any social contextual information
because the only visible information is the initial movement of 22
markers. The markers become highly informative when they start
to move (Cavallo et al., 2016) and trigger expectations concerning
the biological motion associated with different hand gestures.

Our results show a similarity between humans and ML
techniques regarding the rating judgments for grasping and
social gestures, with the possible exception of SVMs given the
current data. One important step in developing this finding in
future studies is to begin to analyze the actual predictive value of
different phases of social gestures in relation to non-social gestures
for both humans and ML techniques. Results from such future
studies would provide a better understanding of how humans
process the gradual unfolding of movement kinematics and how
social robots might be developed to reliably interact with humans.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by This study was approved by local ethical
committee (Central Ethical Review Board), and was carried out
in accordance with the principles of the revised Helsinki
Declaration. Written informed consent was obtained from each
participant. Ethical approval Concerning the ethical approval of
experiments with human subjects in the context of the current
research, Swedish law states that (3 §) formal ethical approval is
required if sensitive information is gathered or obtained from the
research participants or (4 §) if the research method will influence
the research participant physically or psychologically and which
might cause physical or psychological injury. In this case, the
research proposal is required to be submitted to the Swedish

Regional Ethical Review Board. The current research project
used the same stimuli and a very similar task (segmentation
task) in another experiment was submitted to the Regional
Ethical Review Board (of which I am currently a member) and
received the judgment that the research did not fall under the
Swedish law of ethical approval. The current research project did
not contain any sensitive information about individual
participants, and there was no significant risk of psychological
injury concerning classifying common gestures presented as point-
light displays. It is important to emphasize that the current research
was conducted adhering to the requirements of Swedish law
concerning information to research participants and the consent
requirement as well as adhering to The Declaration of Helsinki.
Swedish Law text Lag (2003:460) om etikprövning av forskning
som avsermänniskor 3 § Denna lag ska tillämpas på forskning som
innefattar behandling av 1. personuppgifter som avses i artikel 9.1 i
EU:s dataskyddsförordning (känsliga personuppgifter), 4 § Utöver
vad som följer av 3 § ska lagen tillämpas på forskning som 1.
innebär ett fysiskt ingrepp på en forskningsperson, 2. utförs enligt
enmetod som syftar till att påverka forskningspersonen fysiskt eller
psykiskt eller som innebär en uppenbar risk att skada
forskningspersonen fysiskt eller psykiskt, English Translation:
Law (2003: 460) on ethical testing of research relating to people
§ 3 This law shall apply to research involving treatment of 2022 1.
personal data referred to in Article 9 (1) of the EU data protection
regulation (sensitive personal data); § 4 In addition to what follows
from section 3, the law shall apply to research as 1. involves a
physical intervention on a research person, 2. performed according
to amethod that aims to influence the research person physically or
psychologically or which entails an obvious risk of damaging the
research person physically or mentally. The patients/participants
provided their written informed consent to participate in
this study.

AUTHOR CONTRIBUTIONS

The Author Contributions are as follows. PH: study idea and
design, statistical analyses and writing; PV: human data
gathering, statistical analyses and writing; ST: contributed
to study idea and created the film sequences; LC: initial
model training and testing with ML; JS: model training and
testing with machine learning, statistical analyses, figure
construction and writing.

FUNDING

This work has been financially supported by the Knowledge
Foundation, Stockholm, under SIDUS grant agreement no.
20140220 (AIR, “Action and intention recognition in human
interaction with autonomous systems”).

Frontiers in Robotics and AI | www.frontiersin.org October 2021 | Volume 8 | Article 69950515

Hemeren et al. Kinematic Classification of Social Gestures

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


REFERENCES

Alaerts, K., Nackaerts, E., Meyns, P., Swinnen, S. P., and Wenderoth, N. (2011).
Action and Emotion Recognition from point Light Displays: an Investigation of
Gender Differences. PLoS One 6 (6), e20989. doi:10.1371/journal.pone.0020989

Amoruso, L., and Urgesi, C. (2016). Contextual Modulation of Motor Resonance
during the Observation of Everyday Actions. NeuroImage 134, 74–84.
doi:10.1016/j.neuroimage.2016.03.060

Ansuini, C., Cavallo, A., Bertone, C., and Becchio, C. (2014). The Visible Face of
Intention: Why Kinematics Matters. Front. Psychol. 5, 815. doi:10.3389/
fpsyg.2014.00815

Bawa, M., Condie, T., and Ganesan, P. (2005). “LSH forest,” in Proceedings of the
14th international conference on World Wide Web (WWW ’05), New York,
NY, USA (ACM), 651–660. doi:10.1145/1060745.1060840

Becchio, C., Koul, A., Ansuini, C., Bertone, C., and Cavallo, A. (2018). Seeing
Mental States: An Experimental Strategy for Measuring the Observability of
Other Minds. Phys. Life Rev. 24, 67–80. doi:10.1016/j.plrev.2017.10.002

Becchio, C., Zanatto, D., Straulino, E., Cavallo, A., Sartori, G., and Castiello, U.
(2014). The Kinematic Signature of Voluntary Actions. Neuropsychologia 64,
169–175. doi:10.1016/j.neuropsychologia.2014.09.033

Bernardin, K., Ogawara, K., Ikeuchi, K., and Dillmann, R. (2005). A Sensor Fusion
Approach for Recognizing Continuous Human Grasping Sequences Using
Hidden Markov Models. IEEE Trans. Robot. 21 (1), 47–57. doi:10.1109/
tro.2004.833816

Bhatia, N. (2010). Survey of Nearest Neighbor Techniques. arXiv preprint arXiv:
1007.0085.

Breazeal, C. L. (2004). Designing Sociable Robots. Cambridge: MIT press.
Breiman, L. (2001). Random Forests. Machine Learn. 45 (I), 5–32. doi:10.1023/a:

1010933404324
Buxbaum, L. J., Kyle, K., Grossman, M., and Coslett, B. (2007). Left Inferior Parietal

Representations for Skilled Hand-Object Interactions: Evidence from Stroke
and Corticobasal Degeneration. Cortex 43 (3), 411–423. doi:10.1016/s0010-
9452(08)70466-0

Cao, H. L., Esteban, P., Bartlett, M., Baxter, P. E., Belpaeme, T., Billing, E., and De
Beir, A. (2019). Robot-enhanced Therapy: Development and Validation of a
Supervised Autonomous Robotic System for Autism Spectrum Disorders
Therapy. IEEE Robotics Automation Mag. 26, 49. doi:10.1109/
MRA.2019.2904121

Carter, E. J., Mistry, M. N., Carr, G. P. K., Kelly, B. A., and Hodgins, J. K. (2014).
“Playing Catch with Robots: Incorporating Social Gestures into Physical
Interactions,” in The 23rd IEEE International Symposium on Robot and
Human Interactive Communication, Edinburgh, UK, 25-29 Aug. 2014
(IEEE), 231–236. doi:10.1109/roman.2014.6926258

Cavallo, A., Koul, A., Ansuini, C., Capozzi, F., and Becchio, C. (2016). Decoding
Intentions from Movement Kinematics. Sci. Rep. 6, 37036. doi:10.1038/
srep37036

Cicchetti, D. V. (1994). Guidelines, Criteria, and Rules of Thumb for Evaluating
Normed and Standardized Assessment Instruments in Psychology. Psychol.
Assess. 6 (4), 284–290. doi:10.1037/1040-3590.6.4.284

Cover, T. M., and Hart, P. E. (1995). Nearest Neighbor Pattern Classification.
Knowledge Base Syst. 8 (6), 373–389.

Dautenhahn, K. (2007). Socially Intelligent Robots: Dimensions of Human-Robot
Interaction. Phil. Trans. R. Soc. B 362 (1480), 679–704. doi:10.1098/
rstb.2006.2004

Enticott, P. G., Kennedy, H. A., Bradshaw, J. L., Rinehart, N. J., and Fitzgerald, P. B.
(2010). Understanding Mirror Neurons: Evidence for Enhanced Corticospinal
Excitability during the Observation of Transitive but Not Intransitive Hand
Gestures. Neuropsychologia 48, 2675–2680. doi:10.1016/
j.neuropsychologia.2010.05.014

Fong, T., Nourbakhsh, I., and Dautenhahn, K. (2003). A Survey of Socially
Interactive Robots. Robotics Autonomous Syst. 42, 143–166. doi:10.1016/
s0921-8890(02)00372-x

Gleeson, B., MacLean, K., Haddadi, A., Croft, E., and Alcazar, J. (2013). “Gestures
for Industry: Intuitive Human-Robot Communication from Human
Observation,” in Proceedings of the 8th ACM/IEEE international conference
on Human-robot interaction, Tokyo, Japan, 3-6 March 2013 (IEEE Press),
349–356. doi:10.1109/hri.2013.6483609

Hearst,M.A.,Dumais, S. T., Osuna, E., Platt, J., and Scholkopf, B. (1998). SupportVector
Machines. IEEE Intell. Syst. Their Appl. 13 (4), 18–28. doi:10.1109/5254.708428

Hemeren, P. E., and Thill, S. (2011). Deriving Motor Primitives through Action
Segmentation. Front. Psychol. 1, 243. doi:10.3389/fpsyg.2010.00243

Kanda, T., and Ishiguro, H. (2013). Human-Robot Interaction in Social Robotics.
Boca Raton: CRC Press. doi:10.1201/b13004

K. Dautenhahn and J. Saunders (Editors) (2011). New Frontiers in Human Robot
Interaction (Amsterdam, Netherlands: John Benjamins Publishing), Vol. 2.

Klatzky, R. L., Pellegrino, J., McCloskey, B. P., and Lederman, S. J. (1993). Cognitive
Representations of Functional Interactions with Objects. Mem. Cogn. 21 (3),
294–303. doi:10.3758/bf03208262

Klatzky, R. L., Pellegrino, J. W., McCloskey, B. P., and Doherty, S. (1989). Can You
Squeeze a Tomato? the Role of Motor Representations in Semantic Sensibility
Judgments. J. Mem. Lang. 28 (1), 56–77. doi:10.1016/0749-596x(89)90028-4

Koo, T. K., and Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass
Correlation Coefficients for Reliability Research. J. Chiropractic Med. 15 (2),
155–163. doi:10.1016/j.jcm.2016.02.012

Koul, A., Soriano, M., Tversky, B., Becchio, C., and Cavallo, A. (2019). The
Kinematics that You Do Not Expect: Integrating Prior Information and
Kinematics to Understand Intentions. Cognition 182, 213–219. doi:10.1016/
j.cognition.2018.10.006

Leskovec, J., Rajaraman, A., and Ullman, J. D. (2014). Mining of Massive Datasets.
Cambridge: Cambridge University Press.

Liepelt, R., Prinz, W., and Brass, M. (2010). When Do We Simulate Non-human
Agents? Dissociating Communicative and Non-communicative Actions.
Cognition 115, 426–434. doi:10.1016/j.cognition.2010.03.003

Liu, H., and Wang, L. (2018). Gesture Recognition for Human-Robot Collaboration:
A Review. Int. J. Ind. Ergon. 68, 355–367. doi:10.1016/j.ergon.2017.02.004

Lohse, M. (2011). “The Role of Expectations and Situations in Human-Robot
Interaction,” in New Frontiers in Human-Robot Interaction. Advances in
Interaction Studies 2. Editors K. Dautenhahn and J. Saunders (Germany:
Bielefeld University), 35–56. doi:10.1075/ais.2.04loh

Manera, V., Becchio, C., Cavallo, A., Sartori, L., and Castiello, U. (2011).
Cooperation or Competition? Discriminating between Social Intentions by
Observing Prehensile Movements. Exp. Brain Res. 211 (3-4), 547–556.
doi:10.1007/s00221-011-2649-4

Marasović, T., and Papić, V. (2012). “September)Feature Weighted Nearest
Neighbour Classification for Accelerometer-Based Gesture Recognition,” in
Software, Telecommunications and Computer Networks (SoftCOM), 2012 20th
International Conference, Split, Croatia, 11-13 Sept. 2012 (IEEE), 1–5.

McNeill, D. (1992). Hand and Mind: What Gestures Reveal about Thought.
Chicago: University of Chicago press.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Cambridge:
MIT press.

Newell, F. N., and Bülthoff, H. H. (2002). Categorical Perception of Familiar
Objects. Cognition 85 (2), 113–143. doi:10.1016/s0010-0277(02)00104-x

Platt, J. (2000). “Probabilistic Outputs for Support Vector Machines and
Comparison to Regularized Likelihood Methods,” in Advances in Large
Margin Classifiers. Editors A. Smola, P. Bartlett, B. Schölkopf, and
D. Schuurmans (Cambridge: MIT Press).

Pollick, F. E., Paterson, H. M., Bruderlin, A., and Sanford, A. J. (2001). Perceiving Affect
fromArmMovement.Cognition 82 (2), B51–B61. doi:10.1016/s0010-0277(01)00147-0

Rautaray, S. S., and Agrawal, A. (2015). Vision Based Hand Gesture Recognition
for Human Computer Interaction: a Survey. Artif. Intell. Rev. 43 (1), 1–54.
doi:10.1007/s10462-012-9356-9

Sadeghipour, A., and Kopp, S. (2011). Embodied Gesture Processing: Motor-Based
Integration of Perception and Action in Social Artificial Agents. Cogn. Comput.
3 (3), 419–435. doi:10.1007/s12559-010-9082-z

Sciutti, A., Ansuini, C., Becchio, C., and Sandini, G. (2015). Investigating the
Ability to Read Others’ Intentions Using Humanoid Robots. Front. Psychol. 6,
1362. doi:10.3389/fpsyg.2015.01362

Shakhnarovich, G., Darrell, T., and Indyk, P. (2006). Nearest-Neighbor Methods in
Learning and Vision: Theory and Practice (Neural Information Processing).
Cambridge: The MIT Press.

Streltsova, A., Berchio, C., Gallese, V., and Umilta’, M. A. (2010). Time Course and
Specificity of Sensory-Motor Alpha Modulation during the Observation of
HandMotor Acts and Gestures: a High Density EEG Study. Exp. Brain Res. 205,
363–373. doi:10.1007/s00221-010-2371-7

Frontiers in Robotics and AI | www.frontiersin.org October 2021 | Volume 8 | Article 69950516

Hemeren et al. Kinematic Classification of Social Gestures

https://doi.org/10.1371/journal.pone.0020989
https://doi.org/10.1016/j.neuroimage.2016.03.060
https://doi.org/10.3389/fpsyg.2014.00815
https://doi.org/10.3389/fpsyg.2014.00815
https://doi.org/10.1145/1060745.1060840
https://doi.org/10.1016/j.plrev.2017.10.002
https://doi.org/10.1016/j.neuropsychologia.2014.09.033
https://doi.org/10.1109/tro.2004.833816
https://doi.org/10.1109/tro.2004.833816
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1016/s0010-9452(08)70466-0
https://doi.org/10.1016/s0010-9452(08)70466-0
https://doi.org/10.1109/MRA.2019.2904121
https://doi.org/10.1109/MRA.2019.2904121
https://doi.org/10.1109/roman.2014.6926258
https://doi.org/10.1038/srep37036
https://doi.org/10.1038/srep37036
https://doi.org/10.1037/1040-3590.6.4.284
https://doi.org/10.1098/rstb.2006.2004
https://doi.org/10.1098/rstb.2006.2004
https://doi.org/10.1016/j.neuropsychologia.2010.05.014
https://doi.org/10.1016/j.neuropsychologia.2010.05.014
https://doi.org/10.1016/s0921-8890(02)00372-x
https://doi.org/10.1016/s0921-8890(02)00372-x
https://doi.org/10.1109/hri.2013.6483609
https://doi.org/10.1109/5254.708428
https://doi.org/10.3389/fpsyg.2010.00243
https://doi.org/10.1201/b13004
https://doi.org/10.3758/bf03208262
https://doi.org/10.1016/0749-596x(89)90028-4
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1016/j.cognition.2018.10.006
https://doi.org/10.1016/j.cognition.2018.10.006
https://doi.org/10.1016/j.cognition.2010.03.003
https://doi.org/10.1016/j.ergon.2017.02.004
https://doi.org/10.1075/ais.2.04loh
https://doi.org/10.1007/s00221-011-2649-4
https://doi.org/10.1016/s0010-0277(02)00104-x
https://doi.org/10.1016/s0010-0277(01)00147-0
https://doi.org/10.1007/s10462-012-9356-9
https://doi.org/10.1007/s12559-010-9082-z
https://doi.org/10.3389/fpsyg.2015.01362
https://doi.org/10.1007/s00221-010-2371-7
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Sun, Y., Xu, C., Li, G., Xu, W., Kong, J., Jiang, D., et al. (2020). Intelligent Human
Computer Interaction Based on Non Redundant EMG Signal. Alexandria Eng.
J. 59 (3), 1149–1157. doi:10.1016/j.aej.2020.01.015

Tversky, B. (2019). Mind in Motion: How Action Shapes Thought. Paris, France:
Hachette UK.

Van Durme, B., and Lall, A. (2010). “Online Generation of Locality Sensitive Hash
Signatures,” in Proceedings of the ACL 2010 Conference Short Papers, Uppsala,
Sweden, 11-16 July 2010 (Uppsala: Association for Computational Linguistics),
231–235.

Vapnik, V. (2013). The Nature of Statistical Learning Theory. Berlin, Germany:
Springer science & business media.

Yang, H.-D., Park, A.-Y., and Lee, S.-W. (2007). Gesture Spotting and Recognition
for Human-Robot Interaction. IEEE Trans. Robot. 23 (2), 256–270. doi:10.1109/
tro.2006.889491

Yim, O., and Ramdeen, K. T. (2015). Hierarchical Cluster Analysis:
Comparison of Three Linkage Measures and Application to
Psychological Data. Quantitative Methods Psychol. 11 (1), 8–21.
doi:10.20982/tqmp.11.1.p008

Yu, Z., and Lee, M. (2015). Human Motion Based Intent Recognition Using a Deep
Dynamic Neural Model. Robotics Autonomous Syst. 71, 134–149. doi:10.1016/
j.robot.2015.01.001

Zaini, H., Fawcett, J. M., White, N. C., and Newman, A. J. (2013). Communicative
and Noncommunicative point-light Actions Featuring High-Resolution

Representation of the Hands and Fingers. Behav. Res. 45, 319–328.
doi:10.3758/s13428-012-0273-2

Conflict of Interest:Author LC was employed by the company Pin An Technology
Co. Ltd. Author JS was employed by Volvo Cars.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Hemeren, Veto, Thill, Li and Sun. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Robotics and AI | www.frontiersin.org October 2021 | Volume 8 | Article 69950517

Hemeren et al. Kinematic Classification of Social Gestures

https://doi.org/10.1016/j.aej.2020.01.015
https://doi.org/10.1109/tro.2006.889491
https://doi.org/10.1109/tro.2006.889491
https://doi.org/10.20982/tqmp.11.1.p008
https://doi.org/10.1016/j.robot.2015.01.001
https://doi.org/10.1016/j.robot.2015.01.001
https://doi.org/10.3758/s13428-012-0273-2
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Kinematic-Based Classification of Social Gestures and Grasping by Humans and Machine Learning Techniques
	1 Introduction
	2 Experiment 1—Human Ratings of Grasping and Social Gestures
	2.1 Gesture Library Construction
	2.2 Materials and Methods
	2.2.1 Participants
	2.2.2 Stimuli and Apparatus
	2.2.3 Design and Procedure
	2.2.4 Analysis

	2.3 Results
	2.4 Discussion

	3 Experiment 2: Machine Ratings of Grasping and Social Gestures
	3.1 ML Techniques—Materials and Methods
	3.1.2 Data

	3.2 Results
	3.2.1 Classification Performance with Respect to Ground Truth
	Grasping and Non-grasping Gestures
	Social and Non-social Gestures
	3.2.2 Comparison to Human Ratings


	4 Discussion and Conclusions
	4.1 Limitations
	4.2 Conclusions

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


