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A B S T R A C T

Dynamic data-driven vulnerability assessments face massive heterogeneous data contained in, and produced
by SOCs (Security Operations Centres). Manual vulnerability assessment practices result in inaccurate data
and induce complex analytical reasoning. Contemporary security repositories’ diversity, incompleteness and
redundancy contribute to such security concerns. These issues are typical characteristics of public and
manufacturer vulnerability reports, which exacerbate direct analysis to root out security deficiencies. Recent
advances in machine learning techniques promise novel approaches to overcome these notorious diversity
and incompleteness issues across massively increasing vulnerability reports corpora. Yet, these techniques
themselves exhibit varying degrees of performance as a result of their diverse methods. We propose a
cognitive cybersecurity approach that empowers human cognitive capital along two dimensions. We first
resolve conflicting vulnerability reports and preprocess embedded security indicators into reliable data sets.
Then, we use these data sets as a base for our proposed ensemble meta-classifier methods that fuse machine
learning techniques to improve the predictive accuracy over individual machine learning algorithms. The
application and implication of this methodology in the context of vulnerability analysis of computer systems are
yet to unfold the full extent of its potential. The proposed cognitive security methodology in this paper is shown
to improve performances when addressing the above-mentioned incompleteness and diversity issues across
cybersecurity alert repositories. The experimental analysis conducted on actual cybersecurity data sources
reveals interesting tradeoffs of our proposed selective ensemble methodology, to infer patterns of computer
system vulnerabilities.
1. Introduction

Current vulnerability assessment practices of critical infrastructures
(CIs) rely on the central role of security operations centres (SOCs)
staff (Feng et al., 2017). Yet, conventional manual and subjective audits
do not meet the dynamic CIs characteristics and the expected attack
surface assessment. For example, some standard vulnerability-severity
scoring mechanisms like CVSS1 calculator require manual input, which
is based on qualitative judgements of vulnerability properties such as
exploitability, scope and impacts (Joh and Malaiya, 2011). However, on
average, SOC can quickly generate several gigabytes of security events
per day, creating significant stress on human responders (Russo et al.,
2019; Bhatt et al., 2014). Meanwhile, most existing vulnerability assess-
ment techniques are based on scheduled analysis lifecycle, which can be
weekly, or monthly. Such vulnerability scans can turn obsolete, leaving
gaps between vulnerability exploit occurrences and the deployment of
available patches (Shahzad et al., 2012).
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1 https://www.first.org/cvss/
2 https://cve.mitre.org/index.html
3 https://nvd.nist.gov/

Security practices involve checking the latest vulnerability reports
from online public cybersecurity data sources like the Common Vulner-
abilities and Exposures (CVE)2 and the National Vulnerability Database
(NVD).3 However, the data quality of these online cybersecurity
databases is affected by diversity, incompleteness and inconsistency
issues (Dong et al., 2019), which hampers accurate vulnerability as-
sessment practices (Jo et al., 2020). CVE is used as the primary source
of vulnerability instances. However, making vulnerability-remediation
decisions based solely on CVE records can be biased by missing or
incomplete data (Christey and Martin, 2013; Anwar et al., 2020). The
information regarding the same vulnerability instance is integrated
into a common cross-linked structure to support vulnerability analysis.
Mavroeidis and Bromander (2017). However, relevant cybersecurity
items are stored as standalone traces in several separated enumeration
lists, which increases the challenge to correlate heterogeneous vulner-
ability data (Dong et al., 2019). It has already been reported that some
CVE reports are not scored, nor classified, which limit their mapping to
vailable online 4 September 2021
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threat models and reduce their mitigation effectiveness (Ladd, 2017).
Recently reported instances are notably lacking such scoring valuation,
yet these valuations are crucial to compute severity scores that would
otherwise result in poor patching decisions (Householder et al., 2017).
Dong et al. conducted quantitative analysis studies on vulnerable
software version inconsistencies between CVE and NVD. Their exper-
imental data include vulnerabilities reported from January 1999 to
March 2018, which indicates that only 59.82% of the CVE summaries
strictly match with the standardised NVD entries (Dong et al., 2019).
Therefore, vulnerability disclosure in these repositories can be mislead-
ing in cybersecurity decisions about patching prioritisation (Ruohonen,
2019).

1.1. Problem statement

There is an increasing consensus among cybersecurity experts that
machine learning (ML) techniques can support a continuous assess-
ment of vulnerability data sources and hence alleviate some of the
afore-mentioned cybersecurity challenges unfolding from the cyber
threats’ changing landscape (Almukaynizi et al., 2017). Advances in
ML-induced security solutions are expected to shift the burden of
managing large volumes of vulnerability information away from se-
curity experts and onto some digital alternatives. Recently published
findings (Edkrantz and Said, 2015; Spanos et al., 2017; Bullough et al.,
2017; Fang et al., 2020) report moderate successes in applying ML
techniques to improve efficiency and productivity in security activities
like cybersecurity alert management and related incident analysis. Nev-
ertheless, ML techniques remain under-utilised to streamline various
cybersecurity operations like vulnerability categorisation and related
severity evaluation. For example, the multi-label and multi-class classi-
fication may require different ML techniques to improve prediction per-
formances, and use different validation metrics (Aly, 2005; Tsoumakas
and Katakis, 2007). Since there are no single-size-that-fits-all ML-based
solutions to automate cybersecurity operations (Heelan, 2011), the
selection of a suitable option becomes an overwhelming decision due to
potential cybersecurity risks that may result from adopting the wrong
ML model. The dilemma of choosing the most appropriate ML model
that automatically alleviates the increasingly sophisticated threats is
the problem addressed in this paper. The goal is to enhance situation
awareness of cybersecurity specialists with up-to-date, diverse, and
precise security indicators.

We adopt a data-centric methodology that blends security knowl-
edge from several security data sources, in order to enable computers to
learn from data in a similar way to humans. Hence our proposed cyber-
security framework integrates research thrusts from natural language
processing, data mining, and machine learning, to streamline cyberse-
curity analysis while keeping security specialists in the analysis loop.
To realise our framework, we embrace IBM’s4 cognitive cybersecurity
inspirational definition to approach the cognitive perspective of cyber-
security. Thus, cognitive security augments human intelligence with
artificial intelligence, to take advantage of the increasingly massive
corpus of vulnerability information and reveal their hidden correla-
tions (Andrade et al., 2019; Osifeko et al., 2020). Furthermore, our
approach connects ML advances to cognitive sciences by considering
a human agent in the cybersecurity analysis loop, to improve the
performance of automation methods with human knowledge (Holzinger
et al., 2019). For example, cybersecurity experts are solicited in the
process of feature selection and validation-metric selection so that the
generated ML models are tailored to problems in specific cybersecurity
domains. Our approach empowers cybersecurity operators with ML
techniques. This approach scouts constantly and optimises the utilisa-
tion of online cybersecurity data repositories. In doing so, we monitor
the ICT (referring to Information and Communications Technology)

4 https://www.ibm.com/se-en/security/artificial-intelligence
2

f

assets of a given infrastructure to elicit their vulnerabilities’ severity
before damage occurs. The problem addressed in this paper can be
formally specified as follows:

 = 𝐴𝑟𝑔𝑀𝑎𝑥
0<𝑖≤𝑁

(𝑀𝐿𝐷
𝑖 , 𝑆𝑝) (1)

Given a set of vulnerability instances 𝐷 and a set of 𝑁 available
ML baseline models 𝑀𝐿𝑖 (0 < 𝑖 ≤ 𝑁) (e.g. a support-vector-machine,
or SVM model), our goal is to find an optimised model or ensemble of
several baseline models  = 𝐴𝑟𝑔𝑀𝑎𝑥(𝑀𝐿𝑖, 1 → 𝑁,𝐷,𝑆𝑝), from an
input of given classifiers 𝑀𝐿𝑖 trained using 𝐷 labels, for analysing mul-
tiple targeted cybersecurity-analysis purposes 𝑆𝑝, such as categorising
ulnerability severity or threat profile.

.2. Research contributions

Fig. 1 illustrates the overall architecture and purpose of our pro-
osed cognitive vulnerability analysis framework. The process starts
rom a web crawler module that continuously gathers data from het-
rogeneous online public vulnerability-alert repositories, and fuses re-
rieved data into a local cross-linked database. Subsequently, a pipeline
f selective ML ensemble models produces classifiers according to the
ntered cybersecurity-issue metric sets such as vulnerability-severity
etrics (e.g. confidentiality impact), or threat profile metric (e.g. de-
ial of service), and so forth. This ML pipeline includes modules for
ata pre-processing and cleaning, feature engineering, and ML model
election. Our classifiers are trained using historical data to correlate
ew vulnerability instances into distinctive patterns. This approach
ddresses the aforementioned diversity issues and infers missing secu-
ity information. Furthermore, our method embodies a ML ensemble
onstruction built on top of trained classifiers to optimise the clas-
ification of security indicators. Instead of using a single ML model,
ur ensemble model combines multiple algorithms within a common
nowledge structure that subsumes vulnerability patterns, as well as
heir correlations. Security operators are involved in the validation
rocess to select and prioritise classification-performance metrics like
ccuracy and precision. End-to-end optimisation throughout the entire
ipeline is challenging, yet we address the whole process realises the
orkflows of our approach to cognitive cybersecurity illustrated in
ig. 1. The process breakdown into modules features an optimisation
pportunity to find out the best model for different tasks.

Subsequently, the main contributions of this paper include a novel
ognitive cybersecurity framework based on (i) A localised database
hat synchronously integrates multiple online and heterogeneous cyber-
ecurity repositories, (ii) A ML pipeline that correlates data together
o optimise predictive analytics, and (iii) An application of ensemble
ethods to select the best classification model, as depicted further in

ig. 1, and elaborated further later in Fig. 2. The outcomes of our
roposed cognitive security approach enable automated processes that
rovide a timely vulnerability detection and analysis.

More precisely, we suggest an optimisation algorithm that selects
he best ML base algorithm(s) to construct effective ensemble models
or diverse cybersecurity mission targets. We evaluate this approach
hrough a comparative experimental study that contrasts our approach
gainst multiple commonly used text-mining techniques in the context
f two cognitive cybersecurity scenarios, namely vulnerability analysis
nd threat modelling, through a set of standard performance metrics.
he evaluation benchmark of our proposed cognitive cybersecurity
nalysis approach involves an extensive database that comprises over
30 000 samples stemming from 8 actual online cybersecurity repos-
tories and other corresponding manufacturer websites, as well. Our
esults show improved prediction performance compared to individual
ext-mining techniques, commonly employed in security management
hen analysing vulnerability reports. For example, we may choose
STM-ANN (Long Short-Term Memory based Artificial Neural Net-
ork) (Zhou et al., 2016) and MLP (Multi-layer Perception Classi-
ier) (Zanaty, 2012) as base learners for threat classification ensemble,

https://www.ibm.com/se-en/security/artificial-intelligence
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Fig. 1. Cognitive cybersecurity.
Fig. 2. Machine-learning pipeline based cybersecurity knowledge generation.
while we may choose LSTM-ANN, NBSVM (Naïve Bayes, Wang and
Manning, 2012, based Support Vector Machines) (Joachims, 2001) and
MLP as base learners for vulnerability-severity score computation en-
semble. The optimisation algorithm explores all combination schemes
for selecting best-performing ML-based instances.

The remainder of this paper is organised as follows. Section 2
provides some relevant background and outlines some related works
in data-driven methods, information-fusion techniques and ML models
applied to cyber-security problems. We also discuss and contrast in this
section similar ensemble techniques with our proposed approach used
in this paper. The proposed ML pipeline architecture and the related
ensemble optimisation algorithm are revealed in Section 3. Section 4
rolls out the experiments settings and associated parameters to explain
the design and methodology of our experiments. We also show in this
section the performance tradeoffs induced by our selective ensemble
technique to validate our proposed cognitive cybersecurity approach.
Finally, Section 5 concludes the paper with some final remarks sum-
marising this study and some future work suggestions to extend it
further.

2. Background and related works

Assessing cybersecurity vulnerabilities supports analytics-based
decision-making processes to protect computing infrastructures. The
goal is to focus attention and investment on specific acute risks arising
from threat-exploitability with varying degrees of impact-severity.
3

2.1. Cybersecurity data

Data collection and correlation provides a basis for further vul-
nerability analytics empowered by the application of ML techniques.
Databases like CVE repository accumulate vulnerability reports for
around 20 years that could provide a basis for vulnerability-trends
analysis (Na et al., 2016; Russo et al., 2019). Tools like cve-search5

(referring to a web interface and API, or application programming
interface to CVE) and Open Vulnerability and Assessment Language
(OVAL)6 are some of the common techniques used to identify and man-
age organisation vulnerabilities in a vendor-independent environment.
These tools led to streamlined approaches to retrieve vulnerabilities
from public repositories in support of testbed systems (Siboni et al.,
2019). Furthermore, correlation studies between multiple vulnerability
data sources have been undertaken to combine different perspectives
from security stakeholders (Sauerwein et al., 2019; Jiang et al., 2019),
to connect related analysis into broader statistical associations. For
instance, one study by Allodi and Massacci (2014) correlates NVD
to data sources like ExploitDB,7 and Symantec (SYM) AttackSignature
and ThreatExplorer. Another study by Geer and Roytman (2013) also
correlates the NVD database to ExploitDB and Metasploit to support
penetration testers. They highlight that statistical interpretations of
CVE datasets need to be combined with other live security-related data

5 https://www.circl.lu/services/cve-search/
6 https://oval.mitre.org/
7 https://www.exploit-db.com/

https://www.circl.lu/services/cve-search/
https://oval.mitre.org/
https://www.exploit-db.com/
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sources, including product vendors across deployed infrastructures, to
raise indicators’ reliability and precision. However, further research
that incorporates heterogeneous data from different databases while
providing structured and simplified indicators is limited (Dong et al.,
2019).

One of the aims of this paper is to enable context-aware data
analysis that aids situation awareness. We address the aforementioned
problem by categorising multiple online cybersecurity resources into
semantically integrated cybersecurity instances and enumerations, us-
ing CVE-IDs as unique references. Data obtained from crawling these
cybersecurity-alert repositories, as well as manufacturer websites, are
condensed into relevant views. These mined indices support security
operators’ decision-making processes. Thus, we empower the cognitive
assets of security operators involved at various SOC levels with a
localised and synchronised database empowered by our proposed ML
pipeline. We also reconcile inconsistent vulnerability-severity scores
from different sources before adopting them as ground truths for the
proposed ML pipeline to enhance the accuracy of further vulnerability
analytics.

2.2. Artificial intelligence for cybersecurity

The retrieved textual information from cybersecurity data sources
provides grounds for trend analysis and supports further pattern recog-
nition, whereby Artificial Intelligence (AI) techniques harness a large
amount of available open-source vulnerability data. Pattern-based meth-
ods are commonly used for vulnerability categorisation and assess-
ment (Andrade et al., 2019; Torres et al., 2019). In these studies,
feature-engineering approaches are used to extract textual descriptors
that distinguish vulnerabilities. These methods are also employed to
detect anomalies and to generate a vectorial- or a graphical represen-
tation of vulnerability attributes used in pattern recognition processes.
Among them, Term Frequency-Inverse Document Frequency (TF-IDF) is
widely used to identify important terms in vulnerability reports. In our
approach, we combine these natural language processing (NLP) (Zhu
and Dumitraş, 2016) techniques together with some features defined
by cybersecurity experts. In doing so, we extract vulnerability features
and transform unstructured text into normalised and structured data.

Text-mining techniques have been widely used to collect cyber
threat intelligence from cybersecurity repositories and technical
blogs (Liao et al., 2016), to retrieve attack patterns (Husari et al.,
2017), as well as to assess vulnerability severity (Khazaei et al., 2016;
Spanos et al., 2017). For instance, Neuhaus and Zimmermann apply
a topic model based on LDA (referring to latent dirichlet allocation)
to analyse vulnerability trends using reports from CVE (Neuhaus and
Zimmermann, 2010). These models use different classification algo-
rithms or clustering approaches, such as Bayesian network (Holm et al.,
2015), Support Vector Machines (SVM) (Patil, 2017), etc,. For example,
Scandariato et al. adopt bag-of-words for feature extraction and employ
Naïve Bayes and Random Forest classifiers for software-vulnerability
classification and prediction (Scandariato et al., 2014). Bozorgi et al.
mine vulnerability disclosure reports from OSVDB (referring to Open
Source Vulnerability Database) and CVE to rank these vulnerabilities
in terms of exploitability. They train a SVM classifier using the exploit-
classification status reported in OSVDB as ground truth (Bozorgi et al.,
2010). Bullough et al. evaluate performances of several prior ML mod-
els, including the SVM model from Bozorgi et al. (2010), to quantify
the influence of class imbalance, as well as how training and testing
datasets are divided. They extract training data from NVD and use
proof-of-concept (PoC) exploit in ExpoitDB as ground truths (Bullough
et al., 2017).

However, existing AI-based methods are usually driven by specific
cybersecurity problems like detecting exploits. Yet, a thorough vul-
nerability assessment needs to consider various cybersecurity aspects,
such as vulnerability categorisation, severity evaluation, and exploit
4

prediction, which requires different learning models. Different models
perform diversely for various tasks. For example, LR (Logistic Regres-
sion) (Almukaynizi et al., 2017; Zhang et al., 2011) algorithm does
not require heavy computing sources, but its prediction accuracy may
lag behind compared to more CPU-intensive Neural Networks (Zhou
et al., 2016) training. Moreover, there are no one-size-fits-all in com-
putational intelligence methods whereby classification or clustering
tasks could be handled uniformly (Torres et al., 2019; Oprea et al.,
2018). This is especially true in vulnerability analysis, considering the
difficulty of related properties’ evaluation and subsequent classification
imbalance or bias (Sommer and Paxson, 2010).

Ensemble methodology achieves better performance at classifying
malicious and benign connections compared to linear ML models, and
provides a potential solution to address the challenges in individual ML
approaches (Lower and Zhan, 2020; Tong et al., 2018). Besides, ensem-
ble approaches have built-in techniques that can handle class imbalance
as well. Naturally, the ensemble ML domain has a long-standing tra-
dition, and many interesting references are worth mentioning when
considering the application and evaluation of ensemble ML models (Re-
sende and Drummond, 2018). Vanerio and Casas suggest a supervised
learning method named Super Learner to find the optimal ensemble
model for anomaly detection (Vanerio and Casas, 2017). Li et al. devel-
oped a hybrid intrusion detection technique using binary classification
and k-nearest neighbour (KNN) classifiers (Li et al., 2017). Rajagopal
et al. provide an ensemble paradigm based on meta classification and
stacking generalisation, while targeting an enhanced predictive accu-
racy of network intrusions (Rajagopal et al., 2020). Fang et al. employ
LightGBM algorithm as the ensemble technique to predict exploits of
vulnerabilities (Fang et al., 2020). These studies have demonstrated the
application of ensemble approaches to improve model performances
like prediction accuracy. However, there are limited efforts in utilising
ensemble methods to fulfil multiple cybersecurity-analysis purposes.

Identifying base ML algorithms that can perform the classifica-
tion task is crucial to construct effective ensemble models (Dietterich,
2000). It is also critical to piecing together an appropriate combination
scheme for selected base ML algorithms (Onan et al., 2016). The most
common methods for ensemble construction are voting (Kittler et al.,
1998), bagging (Breiman, 1996), boosting (Freund and Schapire, 1995)
and stacking (Wolpert, 1992) methods. Normally, both bagging and
boosting techniques require the initial dataset to be large enough
to capture most of the complexity of the underlying distribution, so
that sampling from the dataset is a good approximation of the real
distribution. Larcher et al. apply adaptive ensemble methods to en-
hance the trade-off between cybersecurity requirements and system
efficiency (Larcher et al., 2019). These adaptive methods usually use
weighted voting techniques which diversify attribute weights across
classifiers depending on selected metrics. This process can be further
improved by taking into considerations outperforming metrics for more
adaptive predictions (Quintal et al., 2020).

Our ensemble approach combines independent classifiers that use
information from different sources. This approach yields better per-
formances for cybersecurity classification tasks, while improving flex-
ibility in handling diverse cybersecurity analysis missions. A variant
of cross-validation is adopted to minimise possible over-fitting across
classification tasks (Van der Laan et al., 2007). Our cybersecurity
framework combines different sets of evaluation metrics to select en-
semble ML that optimises vulnerability severity-score computation.
The classification validity for these selected ensemble ML classifiers is
asserted in the subsequent performance evaluation section.

2.3. Cognitive cybersecurity

In recent years, cognitive modelling has been employed in cy-
bersecurity analysis, experiments, and simulations to address human
participation in effective decision-making when keeping computational

infrastructures secure (Veksler et al., 2020; Andrade and Yoo, 2019).
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The application of cognitive science in cybersecurity investigates re-
lationships between human security experts’ experience with related
procedures and practices, that involve the analysis of security data
sources like alert reports and related blogs.

In this paper, cognitive methods are used to set up a framework
involving and empowering security actors. Some relevant related works
have been contributed by Andrade and Yoo (2019), who developed
a three-layer (knowledge, information and cognitive) framework con-
sidering four basic cognitive-security components, that are process,
technology, knowledge and cognitive skills (Andrade and Yoo, 2019).
Their goal was to integrate multiple cognitive theories and models to
support cybersecurity situation awareness. In our works, however, we
elaborate a cognitive framework to enhance the process of perception
and comprehension of AI-based vulnerability-analysis models. In doing
so, we utilise security experts’ feedbacks in our proposed ML pipeline
loop to improve predictive vulnerability categorisation outcomes.

3. Cognitive cybersecurity framework

Next, we discuss our approach that employs ML techniques to
streamline cybersecurity knowledge transfer. In this section, we de-
scribe the design of our framework and the related methods in a
step-by-step manner.

3.1. Overview

Our approach is composed of three steps that connect unstruc-
tured data collections to meaningful information leading to cognitively
meaningful indicators and know-how at the knowledge layer level, as
illustrated in Fig. 2. First, we periodically collect heterogeneous data
from online cybersecurity repositories. As part of the process, we label
related enumerations based on standard cybersecurity-related categori-
sations and fuse them into a common localised database. Secondly, we
employ a ML pipeline to utilise human-interpretable text-classification
models (Liao et al., 2020) to produce relevant threat, vulnerability
and attack (TVA) patterns as well as risk severity ranking, based on
data retrieved from the constructed localised database. Finally, we
empower security experts at the next knowledge layer level to evaluate
the machine-generated indexes and consider their feedback back into
the offline training process. We focus on the first two steps in this paper.

3.2. Data acquisition and integration

Security-related data can usually be obtained in two ways: (1) direct
access using software like vulnerability scanner, and (2) indirect access
using existing online public datasets. Direct data collection approaches
are suitable for short-term analytics or a comparatively small amount
of collected data. In contrast, indirect data collection works better
for a long-term endeavour or a comparatively large amount of data
saved by acquisition time and storage costs (Xin et al., 2018). There
exist other indirect offline accesses to security datasets. However, these
operations usually require stakeholders’ authorisation or may have
ethical concerns. Therefore in this paper, we employ online public
datasets. However, these information items are separated, stored and
published in different data formats. Furthermore, they obey different
standards, each of which has its own syntax and semantics. Therefore,
the different data sources employed in our work can be categorised into
two semantic categories considering their co-occurrence:

– Vulnerability Repositories: CVE, NVD, and CERT databases have
been recognised as standard resources for security analysis that
publish vulnerability reports regularly. Vulnerability documents
could be found typically with a formal identifier, namely CVE
ID. Additional available sources of security-related data could
be gathered in online forums such as ExploitDB, SecurityFocus,
SecurityTracker, manufacture websites, as well as third party
5

cybersecurity analysers like ICS CERT.
– Standard Enumerations: These standards include respectively a
taxonomy from Common Weakness Enumeration (CWE), threat
categorisation from the website cvedetails.com and attack pat-
terns from Common Attack Pattern Enumeration and Classifi-
cation (CAPEC), as well as Adversary Tactics, Techniques and
Common Knowledge (ATT&CK)). Besides, security analysts need
to match a current system configuration with retrieved vulnerabil-
ity reports from enumerations like vulnerable product dictionary
from Common Platform Enumeration (CPE) and recommended
secure system configurations from Common Configuration Enu-
meration (CCE). Additional system-configuration information like
component version and package build-number can be gathered by
crawling manufacturer websites.

To tackle the heterogeneity of such data, we employ data-fusion
techniques to capture data from multiple cybersecurity repositories
and enumerations. Then we fuse condensed information into one lo-
calised NoSQL database based on MongoDB8 documents structure, as
llustrated in the Data Layer of Fig. 2. We directly downloaded data
eeds from CVE and NVD repositories. Then we crawled vulnerability
eports from other cybersecurity data sources like SecurityFocus. In
ddition, we also define higher-level object classes by extracting key-
ords with the highest occurrence in CVE reports using open-source
DA-based topic-modelling techniques (Merrouni et al., 2019). In doing
o, we match retrieved vulnerability instances to the selected object
lasses with attributes, specialisations and instantiations using an ontol-
gy (Angelini et al., 2018). For example, we extract top keywords from
ll the vulnerability reports recorded for a desired period, e.g. 2002–
019, by sorting keywords in descending order of occurrence. For
nstance, we pick the ones with highest occurrence, such as allow,
emote, execute, script, etc., among around 2000 automatically gener-
ted keywords. Then we further categorise them into object-classes to
epresent these keywords and their correlations using ML techniques
escribed next, in order to recognise security patterns between different
irections such as vulnerability, threat, attack, remediation, and system.

.3. Information alignment pipeline

From the end of the previous step, we could identify data poised
o trigger correlation instances. Then we employ a ML pipeline that
lassifies the retrieved instances considering threat-, vulnerability-,
nd attack-labels. As the word ‘‘pipeline’’ suggests, it is a series of
teps chained together by integrating ML cycles, where each cycle
nvolves obtaining the data, pre-processing it, training/testing it on

ML algorithm and finally obtaining some output (in the form of a
rediction). Our proposed machine pipeline apply text-mining (Kowsari
t al., 2019) and NLP techniques (Zhu and Dumitraş, 2016) to fill up
issing information that is prevalent in vulnerability reports, as well

s predicts cybersecurity trends.
To classify new vulnerability instances, we first conduct some data

re-processing like tokenisation and feature extractions on the descrip-
ions of extracted vulnerability instances, as illustrated in Fig. 3.

ata preprocessing
The process starts by preprocessing and normalisation of retrieved

aw textual reports from the abovementioned repositories to clean
hem. This includes traditional text processing steps such as tokenisa-
ion, removing unnecessary punctuations and stop-words,
ord-stemming and word-lemmatisation (or grouping together differ-
nt forms of a word into a common item using some dictionary).

8 https://www.mongodb.com/

https://www.mongodb.com/
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Fig. 3. Information alignment pipeline example.
Table 1
Data features, sources, types and modelling.

Feature Feature source Feature Type Feature modelling

Vulnerability description CVE, SecurityFocus, etc. Text Word and N-gram character embedding
Vulnerable component name CVE, CPE Text Word embedding into vectors
Vulnerable component version CVE, CPE Number Numeric feature embedding
Vulnerable component type CPE Category One-hot encoding
Vulnerable component vendor CVE, CPE Text Word embedding into vectors
Weakness category ID CWE Number One-hot encoding
Weakness category name CWE Text Word and N-gram character embedding
Weakness category description CWE Text Word and N-gram character embedding
Attack category ID CAPEC Number One-hot encoding
Attack category name CAPEC Text Word and N-gram character embedding
Attack category description CAPEC Text Word and N-gram character embedding
Threat category CVE Details Category One-hot encoding
Access vector (Exploitability) CVSS V2 Category One-hot encoding
Access complexity (Exploitability) CVSS V2 Category One-hot encoding
Authentication (Exploitability) CVSS V2 Category One-hot encoding
Confidentiality impact CVSS V2 Category One-hot encoding
Integrity impact CVSS V2 Category One-hot encoding
Availability impact CVSS V2 Category One-hot encoding
CVSS V2 base score CVSS V2 Number Scaled to (0,10)
Extra reports Manufacture websites; Security blogs; etc. Text Word and N-gram character embedding
Feature extraction
From cleaned textual reports, we further extract indirect features

and direct features. Indirect features include numerical counts of words
and unique words. From these extracted features, we create a vocabu-
lary and a term-document matrix. Each column in the matrix represents
a word in the vocabulary, while each row represents a document in
our dataset. The values, in this case, are the word counts (i.e. indirect
feature). Direct features are the ones inherently derived from words
or sentences, such as word frequency and vector distance mapping
of words (e.g. Word2Vec). Three ways are adopted to extract direct
features, namely Count-based, Binary-based, and TF-IDF based feature
weighting approaches (Trstenjak et al., 2014). Count-based feature
extraction assigns weights based on the term-frequency of words in a
document. Binary-based weighting assigns ‘1’ or ‘0’ to a word depend-
ing on whether the word is present in a document or not. TF-IDF based
weighting approach assigns more weight to the words that are unique
to a particular document than the words that are commonly used across
documents (Debole and Sebastiani, 2004). TF-IDF is usually employed
to extract important keywords from a document to understand what
characterises that document. We also summarise the data features,
feature sources, feature types as well as feature modelling in Table 1.
Taking the vulnerability description as an example, we capture textual
features and translate them into vectors and embeddings that represent
the similarity between words and n-gram characters. Another exam-
ple is the numeric feature extracted from CPE to indicate vulnerable
6

component type, namely hardware-, software-, and operating-system
categories. We model such numeric feature through a one-hot encoded
vector, used to distinguish each word in the document from every other
word.

Feature selection
Our goal here is to select the most relevant features of our problem.

Instead of evaluating all the available candidate features extracted
from the previous step, we compare the candidate features through
preprocessing the original feature space and rank these features based
on metrics such as processing time. Furthermore, features are assigned
with different weights according to the intended cybersecurity analysis.
For example, script, web, uri, html, xss are given higher feature weights
than plc, simatic when we target threat-pattern analysis, as shown in
Fig. 3.

Machine learning model training
Previously, we proposed to utilise some NLP methods to convert

cybersecurity reports’ content into a numerical format (Zhu and Du-
mitraş, 2016). Simultaneously, we select and train ML algorithms with
extracted features. The goal is to apply ML techniques to classify
new incoming reports based on historical observations, in order to
extract relevant TVA patterns and to derive confident predictions of
vulnerability score severity. The main challenge is the appropriate
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Table 2
Adopted Classification Performance Metrics.

Metric Binary-class evaluation Multi-class single-label evaluation Multi-label evaluation

(TP is true positive; TN is true negative; FP is false positive;
FN is false negative; 𝑝𝑜 is the observed agreement; 𝑝𝑒 is the
expected agreement; C is the number of classes)

(k is the number of labels; n is the number of instances;
𝑌𝑖 is the ground truth vector of labels for instance 𝑥𝑖;
𝑍𝑖 is the predicted label vector for instance 𝑥𝑖;
ℎ is the multi-label classifier; 𝐼 is the indicator function)

Accuracy 𝐴𝐶𝐶 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

𝑚𝑎𝐴𝐶𝐶 =
∑𝐶

𝑖=1
𝑇𝑃𝑐 +𝑇𝑁𝑐

𝑇𝑃𝑐 +𝑇𝑁𝑐 +𝐹𝑃𝑐 +𝐹𝑁𝑐

𝐶

𝑏𝑎𝐴𝐶𝐶 = 1
𝐶

∑𝐶
𝑐=1

𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑁𝑐

𝑚𝑙𝐴𝐶𝐶 = 1
𝑛

∑𝑛
𝑖=1

|𝑌𝑖∩𝑍𝑖 |

|𝑌𝑖∪𝑍𝑖 |

Precision 𝑃𝑅𝐸 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

𝑚𝑎𝑃𝑅𝐸 =
∑𝐶

𝑐=1
𝑇𝑃𝑐

𝑇𝑃𝑐 +𝐹𝑃𝑐

𝐶

𝑚𝑖𝑃𝑅𝐸 =
∑𝐶

𝑐=1 𝑇𝑃𝑐
∑𝐶

𝑐=1 (𝑇𝑃𝑐+𝐹𝑃𝑐 )

𝑚𝑙𝑃𝑅𝐸 = 1
𝑛

∑𝑛
𝑖=1

|𝑌𝑖∩𝑍𝑖 |

|𝑍𝑖 |

Recall 𝑅𝐸𝐶 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

𝑚𝑎𝑅𝐸𝐶 =
∑𝐶

𝑐=1
𝑇𝑃𝑐

𝑇𝑃𝑐 +𝐹𝑁𝑐

𝐶

𝑚𝑖𝑅𝐸𝐶 =
∑𝐶

𝑐=1 𝑇𝑃𝑐
∑𝐶

𝑐=1 (𝑇𝑃𝑐+𝐹𝑁𝑐 )

𝑚𝑙𝑅𝐸𝐶 = 1
𝑛

∑𝑛
𝑖=1

|𝑌𝑖∩𝑍𝑖 |

|𝑌𝑖 |

F1 𝐹1 = 2∗𝑃𝑅𝐸∗𝑅𝐸𝐶
𝑃𝑅𝐸+𝑅𝐸𝐶

𝑚𝑎𝐹𝑆 = 2∗𝑚𝑎𝑃𝑅𝐸∗𝑚𝑎𝑅𝐸𝐶
𝑚𝑎𝑃𝑅𝐸+𝑚𝑎𝑅𝐸𝐶

𝑚𝑖𝐹𝑆 = 2∗𝑚𝑖𝑃𝑅𝐸∗𝑚𝑖𝑅𝐸𝐶
𝑚𝑖𝑃𝑅𝐸+𝑚𝑖𝑅𝐸𝐶

𝑚𝑙𝐹𝑆 = 1
𝑛

∑𝑛
𝑖=1

2|𝑌𝑖∩𝑍𝑖 |

|𝑌𝑖 |+|𝑍𝑖 |

HammingLoss HLS = 1-ACC (Same as Hamming Distance) 𝑚𝑙𝐻𝐿𝑆 = 1
𝑘𝑛

∑𝑛
𝑖=1

∑𝑘
𝑙=1[𝐼(𝑙 ∈ 𝑍𝑖 ∧ 𝑙 ∉ 𝑌𝑖) + 𝐼(𝑙 ∉ 𝑍𝑖 ∧ 𝑙 ∈ 𝑌𝑖)]

Cohen’s Kappa 𝑝𝑜−𝑝𝑒
1−𝑝𝑒
1
1
1
1

1

1

ML selection dilemma, as stated earlier. Thus, to solve this problem,
we train a set of ML models, test and validate these ML models,
and select well-performing models as component models for further
ensemble construction. To do so, we apply a simple model of data
distribution parallelism to balance statistical efficiency and hardware
efficiency, following the framework suggested in Jiang et al. (2018).
The training data (referring to historical vulnerability instances and
reports) is partitioned. Each partition (or certain fields of the partition)
is used for a ML model training. Meanwhile, model replicas are used
to update and store parameters. This way, multiple ML models are
trained and tested offline. Once the training and testing processes
are complete, metadata and learnt models’ configuration parameters
(e.g. the embedding dimensions, word-occurrence threshold, etc.) are
saved in the candidate model database.

3.4. Candidate model evaluation

We distinguish different validation metrics for various classification
tasks, namely binary classification tasks, multi-class classification tasks,
multi-label classification tasks, as well as CVSS score evaluation met-
rics. In binary classification, one instance can be classified into one of
two categories. While in multi-class classification, one instance can be
classified into one of multiple (more than two) categories. In multi-
label classification, one instance can be classified with more than one
label, referring to multiple categories (Tsoumakas and Katakis, 2007).
The evaluation measures for single-label are usually different than for
multi-label. In multi-label classification, a misclassification is no longer
a hard wrong or right (Sorower, 2010). A prediction containing a subset
of the actual classes should be considered better than a prediction that
contains none of them, i.e., predicting two of the three labels correctly
is better than predicting no labels at all. Therefore, prediction of multi-
label instances can be fully correct, partially correct with different
levels of correctness, or fully incorrect.

Here we choose the multi-label accuracy (mlACC) evaluation as
an example to illustrate the validation process of the candidate ML
models. The prediction performance 𝑃𝑚𝑙𝐴𝐶𝐶 of the candidate ML model
s generated through Algorithm 1. Let 𝐷 be a k-label dataset with 𝑛
nstances (𝑥𝑖, 𝑌𝑖) where 𝑌𝑖 ∈ 𝑌 = {0, 1}𝑘 is the ground truth vector

of labels for 𝑖th sample with a label-set |𝐿| = 𝑘. ℎ is a multi-label
classifier with 𝑍𝑖 = ℎ(𝑥𝑖) = {0, 1}𝑘 be the set of predicted label
memberships for instance 𝑥 . Given a set of 𝑀 related evaluation
7

𝑖

metrics 𝑚𝑗 (0 < 𝑗 ≤ 𝑀), we can further generate a performance vector
𝑃=[𝑃𝑚1 ,… , 𝑃𝑚𝑗 ,… , 𝑃𝑚𝑀 ] for the candidate ML model.

Algorithm 1 Performance Evaluation for Multi-Label Accuracy
1: procedure EvaluatePerformance(ML, m)

⊳ 𝑀𝐿 is a candidate machine learning model
⊳ 𝑚 is a given machine-learning metric, which is illustrated below:
⊳ 𝑚 ← Multi-Label Accuracy metric (i.e. mlACC)
⊳ Considering a K-label ground truth dataset  with total instances
𝐷, where:

2: 𝐷 = |{(𝑌𝑖, 𝑌𝑗 ) ∈ , 𝑌𝑗 ∈ {0, 1}𝐾}|
⊳ 𝑍 is the resulting 𝑀𝐿 labelled data set:

3: 𝑍 = {(𝑍𝑖, 𝑍𝑗 ) ∈ 𝑀𝐿,𝑍𝑗 ∈ {0, 1}𝐾}

4: For 𝑗 = 1,… , 𝐷 do
5: For 𝑘 = 1,… , 𝐾 do
6: if 𝑍(𝑗,𝑘) == 𝑌(𝑗,𝑘) ς 𝑌(𝑗,𝑘) == 1 then
7: 𝑆𝐴𝐶𝐶

𝑗 + = 1, 𝑆𝑇 𝑜𝑡𝑎𝑙
𝑗 + = 1

8: else
9: if 𝑍(𝑗,𝑘)! = 𝑌(𝑗,𝑘) then
0: 𝑆𝑇 𝑜𝑡𝑎𝑙

𝑗 + = 1
1: End if
2: End if
3: End For
4: 𝑆𝑚𝑙𝐴𝐶𝐶

𝑗 =
𝑆𝐴𝐶𝐶
𝑗

𝑆𝑇 𝑜𝑡𝑎𝑙
𝑗

15: End For
16: 𝑃𝑚𝑙𝐴𝐶𝐶 = 1

𝐷
∑𝐷

𝑖=1 𝑃
𝑚𝑙𝐴𝐶𝐶
𝑗

7: End procedure

Next we discuss different evaluation metrics. The details of the
metric computing are listed in Table 2.

Binary-class evaluation metrics
We employ a confusion matrix to validate the correctness of a clas-

sification. This is performed by computing: (i) the number of correctly
classified class instances (true positives, or TP), (ii) the number of cor-
rectly classified instances that do not belong to the class (true negatives,
or TN), and (iii) instances that are incorrectly assigned to the class
(false positives, or FP), and (iv) instances that are not recognised as

class instances (false negatives, or FN). Based on the above definitions,
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we further compute measurements like accuracy, precision, recall (or
sensitivity) and F-score (or F1).

Accuracy represents the overall effectiveness of a classifier. Pre-
cision, on the other hand, describes the percentage of TP in all the
predicted positives. Recall shows the effectiveness of a classifier to
identify positive labels. Finally, F-score maintains a balance between
precision and recall, respectively. The higher the value of accuracy,
precision, recall and F-score, the better the performance of the learning
algorithm.

Multi-class single-label evaluation metrics
Here we apply both macro-average and micro-average validation.

Macro-average evaluation of an C-class (𝐶 > 2) classification problem
is given by the average of per class evaluation, to compute macro-
accuracy (maACC), macro-precision (maPRE), macro-recall (maREC),
and macro F-score (maFS). Alternatively, micro-average classification
is evaluated by summing up the amounts of TP, FN, TN, and FP
to aggregate the contributions of all classes to compute the average
metric. When using micro-average metrics, the value of micro-precision
(miPRE), micro-recall (miREC) and micro F-score (miFS) are the same.
We also employ Cohen’s Kappa to indicate how the adopted classifier
is performing over the performance of a classifier that makes random
classification assumptions (Sokolova and Lapalme, 2009; Aly, 2005)

Multi-label evaluation metrics
For multi-label classification, we use different metric formulations

for accuracy, precision, recall, and F-score (Sorower, 2010). For each
instance, multi-label accuracy (mlACC) is defined as the proportion of
the predicted correct labels to the total number (both predicted and the
ground-truth) of labels for that instance. Multi-label precision (mlPRE)
is the proportion of predicted correct labels to the number of predicted
labels. Multi-label recall (mlREC) is the proportion of predicted correct
labels to the number of ground-truth labels. Multi-label F-score (mlFS)
is the harmonic mean of mlPRE and mlREC. The exact-match-ratio
(EMR) calculates the percentage of samples that have all the labels
correctly predicted.

Another metric used in our evaluation of security data classification
is the hamming-loss (mlHLS) metric. This metric is the fraction of
incorrectly predicted labels, including both the prediction error (an
incorrect label is predicted) and the missing error (a relevant label is
not predicted). We define 𝐼 as the indicator function, and assuming 𝑌𝑖
s the ground truth and 𝑍𝑖 is the prediction. The lower the value of the
amming loss, the better the performance of the classifier.

VSS score evaluation metrics
The standard mechanism CVSS is widely used to support quantita-

ive vulnerability-severity assessment in both academic research (Khaz-
ei et al., 2016; Johnson et al., 2016; Spanos et al., 2017) and security-
ritical industrial domains (Stine et al., 2017). As part of our validation,
e compare predicted severity labels to their original severity label

ounterparts, and apply the evaluation metrics of accuracy to evalu-
te the ML model performance. To contrast further our comparative
tudy, we used an alternative scores’ distance metric to evaluate the
erformance of CVSS-characteristic classification across ML models.
irst, we compute CVSS scores by applying CVSS mechanism onto
redicted counterparts (Scarfone and Mell, 2009). Then we represent
n existing score (true score, or TS) and a predicted score (or PS) as
two-dimensional vector space into one Cartesian coordinate system.
he distance of the two vectors is used to measure the performance of
ur vulnerability score prediction system using Eq. (2), where 𝛿 is a
hreshold value. In our experiment that we present later, we use two
8

alues for 𝛿 (0.5 or 0.05) to evaluate the accuracy of our severity-score
computing.

𝑆𝑐𝑜𝑟𝑒𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑚𝑎𝑐𝑟𝑜 =

∑𝑛
𝑖=1{𝑖|

𝑇𝑆𝑖−𝑃𝑆𝑖
𝑇𝑆𝑖

< 𝛿}

𝑛
(2)

3.5. Model selection and ensemble

The selected baseline component models construct an ensemble
model to aggregate the predictions of each component model, and
derive a final prediction of the risk level corresponding to a single
reported vulnerability. Next, we reveal further details of the proposed
Ensemble construction technique.

Given dataset 𝐷, 𝑁 ML models 𝑀𝐿𝑖 (0 < 𝑖 ≤ 𝑁), and a set of
related evaluation metrics 𝑚𝑗 (0 < 𝑗 ≤ 𝑀), the following algorith-

ic steps construct the base ensemble of classifiers. For 𝑁 individual
odels, we conduct 𝑁 rounds of training tasks, and construct [

(𝑁
1

)

,
𝑁
2

)

,
(𝑁
3

)

,. . . ,
( 𝑁
𝑁−1

)

, 1] amount of ensemble models in each round.
or example, in the first round, we construct 𝑁 ML ensemble models,
nd each ensemble has only one base classifier. In the second round,
e construct

(𝑁
2

)

ensemble models, and each ensemble has two base
lassifiers.

– Step 1: In the first round, we train every given individual ML
model 𝑀𝐿(1)

𝑖 (0 < 𝑖 ≤ 𝑁) with the dataset 𝐷. Then, we measure
the performance metric values for each resulting classifier using
every input metric 𝑚𝑗 (0 < 𝑗 ≤ 𝑀). At this stage, we have a
vector of 𝑁 prediction performances [𝑃 (1)

1 ,… , 𝑃 (1)
𝑖 ,… , 𝑃 (1)

𝑁 ] cor-
responding to the first round of the framework algorithm, where
the prediction performance 𝑃 (1)

𝑖 =[𝑃 (1)
𝑖,1 ,… , 𝑃 (1)

𝑖,𝑗 ,… , 𝑃 (1)
𝑖,𝑀 ]. There-

fore, the overall first round produces the following prediction
performance 𝑚𝑎𝑡𝑟𝑖𝑥(1):

⎡

⎢

⎢

⎢

⎢

⎣

𝑃 (1)
1,1 𝑃 (1)

1,2 ... 𝑃 (1)
1,𝑀

𝑃 (1)
2,1 𝑃 (1)

2,2 ... 𝑃 (1)
2,𝑀

… … … …
𝑃 (1)
𝑁,1 𝑃 (1)

𝑁,2 ... 𝑃 (1)
𝑁,𝑀

⎤

⎥

⎥

⎥

⎥

⎦

– Step 2: Compute rating scores 𝑆(1)
𝑖 (0 < 𝑖 ≤ 𝑁) for each model

𝑀𝐿(1)
𝑖 . This is done by rewarding best performing ML models

𝑀𝐿(1)
𝑘 = arg max

𝑀𝐿(1)
𝑖 (0<𝑖≤𝑁)

𝑃 (1)
𝑖,𝑗 under varying metrics 𝑚𝑗 where 𝑗 =

1…𝑀 , with score increments.
– Step 3: Determine the best rated ML model with the highest score

𝑀𝐿(1) = arg max
𝑀𝐿(1)

𝑖 (0<𝑖≤𝑁)
𝑆(1)
𝑖 in the first algorithm round, and as-

sert the corresponding classifier’s performance vector
𝑃 (1)
𝑘 =[𝑃 (1)

𝑘,1 ,… , 𝑃 (1)
𝑘,𝑗 ,… , 𝑃 (1)

𝑘,𝑀 ].
– Step 4: Repeat Step 1 to Step 3 for the remaining (𝑁 − 1) rounds

which results in 𝑁 best performing ensemble models from each
round 𝑀𝐿(1), 𝑀𝐿(2),… ,𝑀𝐿(𝑁), with respectively performance
vectors 𝑃 (1), 𝑃 (2),… , 𝑃 (𝑁). By the end of this iterative selec-
tion process, the following performance matrix 𝑚𝑎𝑡𝑟𝑖𝑥(𝑓𝑖𝑛𝑎𝑙) is
obtained:

⎡

⎢

⎢

⎢

⎢

⎣

𝑃 (1)
1 𝑃 (1)

2 ... 𝑃 (1)
𝑀

𝑃 (2)
1 𝑃 (2)

2 ... 𝑃 (2)
𝑀

… … … …
𝑃 (𝑁)
1 𝑃 (𝑁)

2 ... 𝑃 (𝑁)
𝑀

⎤

⎥

⎥

⎥

⎥

⎦

– Step 5: Repeat Step 2 to Step 3 to determine scores 𝑆(𝑖) (0 <
𝑖 ≤ 𝑁) for each model 𝑀𝐿(𝑖), and determine the best performing
model with the highest score 𝑀𝐿 = arg max

𝑀𝐿(𝑖)(0<𝑖≤𝑁)
𝑆(𝑖), and

assert the corresponding classifier’s performance vector 𝑃𝑘 =

[𝑃𝑘,1,… , 𝑃𝑘,𝑗 ,… , 𝑃𝑘,𝑀 ]
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The formal algorithm outlined through the previous steps to opti-
mise Ensemble classifiers selection for cybersecurity analysis is depicted
in Algorithm 2, where the performance evaluation for each model is
depicted in Algorithm 1 explained earlier.

Algorithm 2 Selective Ensemble
1: procedure SelectEnsemble(, 𝑚)

⊳  is a set of individual machine learning models 𝑀𝐿𝑖 (0 < 𝑖 ≤
𝑁), and 𝑚 is a set of related evaluation metrics 𝑚𝑗 (0 < 𝑗 ≤ 𝑀)

2: 𝑁 = ||,𝑀 = |𝑚|
3: For Round 𝑟 = 1,… , 𝑁 do
4: For

(𝑖=1,…,𝑁
𝑟

)

do
5: 𝑀𝐿(𝑟)

𝑖 = 𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒(, 𝑟)
6: 𝑆(𝑟)

𝑖 = 0 ⊳ Initialize rating scores for each model at each
round

7: End For
8: For 𝑗 = 1,… ,𝑀 do
9: For

(𝑖=1,…,𝑁
𝑟

)

do
10: 𝑃 (𝑟)

𝑖,𝑗 = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑃 𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑀𝐿(𝑟)
𝑖,𝑗 , 𝑚𝑗 )

11: End For
12: Set 𝑀𝐿(𝑟)

𝑘 = arg max
𝑀𝐿(𝑟)

𝑖

𝑃 (𝑟)
𝑖,𝑗 , (0 < 𝑘 ≤

(𝑁
𝑟

)

)

13: 𝑆(𝑟)
𝑘 + = 1 for 𝑀𝐿(𝑟)

𝑘 (0 < 𝑘 ≤
(𝑁
𝑟

)

) ⊳ Reward best
performing models

14: End For
15: Set 𝑀𝐿(𝑟) = arg max

𝑀𝐿(𝑟)
𝑖

𝑆(𝑟)
𝑖 ⊳ Assert the best ensemble model

of Round 𝑟
16: 𝑆(𝑟) = 0
17: End For
18: For 𝑗 = 1,… ,𝑀 do
19: Set 𝑀𝐿(𝑘) = arg max

𝑀𝐿(𝑟)
𝑃 (𝑟)
𝑗 , (0 < 𝑘 ≤ 𝑁)

20: 𝑆(𝑘)+ = 1 for 𝑀𝐿(𝑘) (0 < 𝑘 ≤ 𝑁)
21: End For
22: Set 𝑀𝐿 = arg max

𝑀𝐿(𝑟)
𝑆(𝑟) as the best ensemble model

23: End procedure

It is also critical to identify an appropriate combination scheme for
selected set of individual classifiers and a given dataset (Onan et al.,
016). A hard-voting scheme (or majority voting) is used only when
he predicted labels are available. If continuous outputs like posterior
robabilities are accessible, then a soft-voting scheme (or average
oting) or other linear combinations may be adopted (Kittler et al.,
998). Stacking methods (Wolpert, 1992) are also used to train the
utput classifier, while taking the feedback from the input classifiers
s new features. In bagging (Breiman, 1996) and boosting methods,
omogeneous classifiers are usually trained using different samples of
he dataset, to produce an ensemble model that is more robust than the
ndividual classifiers. Here we present soft voting ensemble and hard
oting ensemble as examples to cluster ML models for a multi-label
lassification task, as depicted further in Algorithms 3 and 4. These
wo ensemble techniques only require ML model training for the first
ound, based on which performance predictions for the other rounds
re calculated accordingly. Nonetheless, our ensemble paradigm is ex-
ended to involve other techniques like stacking methods that demand
odel training for multiple rounds. For such applications, we train

hese models offline and in parallel to better harness computational
9

esources.
Algorithm 3 Soft Voting Ensemble Scheme
1: procedure SoftVoting(,,,)

⊳  is a set of individual machine learning models 𝑀𝐿𝑖 (0 < 𝑖 ≤
𝑁)
⊳ K-label dataset has 𝐷 instances (𝐷𝑗 , 𝑌𝑗 ) (0 < 𝑗 ≤ 𝐷) with ground
truth 𝑌𝑗 ∈ 𝑌 = {0, 1}𝑘

2: 𝑁 = ||, 𝐷 = |(𝐷𝑗 , 𝑌𝑗 )|
3: For 𝑖 = 1,… , 𝑁 do
4: Train(𝑀𝐿𝑖)
5: 𝑃𝑟𝑜𝑏(𝑖) = ∅
6: End For
7: For 𝑗 = 1,… , 𝐷 do
8: For 𝑖 = 1,… , 𝑁 do
9: 𝑃𝑟𝑜𝑏(𝑖)𝑗 = 𝑀𝐿𝑖(𝐷𝑗)

10: End For
11: 𝑃𝑟𝑜𝑏𝑗 = 1

𝑁
∑𝑁

𝑖=1 𝑃𝑟𝑜𝑏(𝑖)𝑗
12: End For
13: End procedure

Algorithm 4 Hard (Majority) Voting Ensemble Scheme
1: procedure HardVoting(,,,)

⊳  is a set of individual machine learning models 𝑀𝐿𝑖 (0 < 𝑖 ≤
𝑁)
⊳ K-label dataset has 𝐷 instances (𝐷𝑗 , 𝑌𝑗 ) (0 < 𝑗 ≤ 𝐷) with ground
truth 𝑌𝑗 ∈ 𝑌 = {0, 1}𝑘

2: 𝑁 = ||, 𝐷 = |𝑑|
3: For 𝑖 = 1,… , 𝑁 do
4: Train(𝑀𝐿𝑖)
5: End For
6: For 𝑑 = 1,… , 𝐷 do
7: For 𝑖 = 1,… , 𝑁 do
8: 𝑍(𝑖)

𝑗 = 𝑀𝐿𝑖(𝐷𝑗)
9: End For

10: 𝑍𝑗 = argmax
𝑘

[𝑐𝑎𝑟𝑑(𝐿‖𝑍(𝑖)
𝑗 )]

11: End For
12: End procedure

4. Experimental analysis

In this section, we present the implementation details of our experi-
mental methodology and reveal related analysis results. Data sources
are used to train the candidate ML models and then validate the
performance of the constructed ensemble models. The goal of our
experiments is two-fold: (i) illustrate the pivotal role of a localised
database that periodically syncs with online and heterogeneous cyber-
security repositories to support security operations; (ii) automatically
infer a severity-score of a new vulnerability instance, as well as a threat
type that the vulnerability is mostly exposed to.

4.1. Experiment design

The experiments are divided into two main steps. The first step
is to set up a database that correlates multiple online vulnerability
repositories. The resulting dataset contains groups of vulnerability re-
ports that are classified into different exploiting threat types, as well as
CVSS categories such as access-vector types, access-complexity levels,
etc. The goal is to focus on attention and investment on specific acute
risks arising from threat-exploitability with varying degrees of impact-
severity. Each class type refers to one label, i.e. one cluster of the whole
data set. The second step is to build a pipeline of specific ML techniques
applied to different groupings of data classes. Conventional approaches
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to quantitative similarity measures involve feature extraction and anal-
ysis. These are low-level text features that may consist of words or
their compound morphology using the CHARM algorithm (Zaki and
Hsiao, 2002). In our experiments, we use both word and CHARM com-
pound features for threat classification. Only word features are used
for CVSS-metric categorisation. CVSS version 2 (V2) is considered in
the experiments. These two sub-steps are conducted in tandem to train
ensembles for threat classification respectively, and to train ensembles
for CVSS-categories.

Cross-linked DB implementation
We set up a vulnerability database that is kept inherently synchro-

nised with multiple online vulnerability-reports repositories, to feed
our proposed ML pipeline. Our database is built on top of cve-search
Python API,9 which brings several online cybersecurity repositories into
a local MongoDB,10 system that can handle extensive unstructured data,
as illustrated in Fig. 4. We adopt CVE data to include vulnerability
instances that are disclosed but not yet published in NVD. We also
adopt NVD to get the CVSS scores added to the reports. We correlated
manufacturer websites for standardised component names, vulnera-
bility scoring and patching updates. To do so, we located references
mapped to the associated CVE Entries,11 crawled vulnerability-related
ata in the cross-linked websites, and stored crawled data into files
ndexed with CVE-IDs. When the local MongoDB engine starts running,
t is kept synchronised on an hourly basis with feeds from public
ata repositories. Hourly intervals are considered for vulnerability-
isclosure schedule when scanning online vulnerability repositories and
onsolidating collected data into a common localised database.

Subsequently, we built a filter with query keywords to extract vul-
erability instances, which are further mapped to the CPE dictionary as
ell as product names listed in www.cvedetails.com, to generate com-
onent configuration patterns. These vulnerability instances are also
apped to CAPEC dictionary and CWE dictionary, to generate com-
onent attack patterns and vulnerability patterns separately. We cross-
hecked vulnerability instances against threat categorisations provided
n www.cvedetails.com to retrieve the threat types that a vulnerability
nstance may be exposed to. This localised database approach supports
ulnerability analysis using queries, to retrieve structured information
uch as the values of component-level vulnerability attributes.

ata sets
We retrieved 140 818 vulnerability records with index year values

anging from 2000 to 2019 using our localised database (updated till
ov 30th, 2020), and removed the reports that are marked as REJECT,

hat would otherwise distort the experiment results. With the remaining
32 371 vulnerability reports, we set up a corpus for vulnerability
nalysis.

During data pre-processing, we generated a stop-word list in the
ontext of cybersecurity reports to remove them from further consid-
ration. We used PorterStemmer12 from the Natural Language Toolkit
NLTK) for word stemming implementation. We also adopt the bi-
ram functionality in Gensim.models to group together common bigram
hrases, as well as some Python lemmatisation tools to convert a word
o its root form. Following the dataset process, we created a TF-IDF
parse matrix using n-gram or sequence of words features. More specif-
cally, we employ CountVectorizer and TdidfTransforer utilities from
cikit-learn library for vectorisation and TF-IDF value computation.
imultaneously, we sort root words in descending order of TF-IDF
alues to extract the top-k features.

9 https://github.com/cve-search/cve-search
10 https://www.mongodb.com/
11 https://cve.mitre.org/data/refs/index.html
12
10

https://www.nltk.org/howto/stem.html
We checked 132 371 data records for threat labels and found out
that we have 39 060 or 29.5% un-labelled data, meaning that those
vulnerability reports are not categorised to any existing threat category.
Meanwhile, a vulnerability might be exposed to more than one type
of threats, meaning that a vulnerability instance can be labelled with
multiple threat classes. We used the remaining 93 311 records as
ground truth for threat classification training and validation. We also
checked the CVSS v2 score labels and found out that 20 reports are
not scored under CVSS v2 mechanism. Similarly, we utilised the 132
351 scored reports as ground truth for CVSS v2 metrics classification
training and validation.

4.2. Experiment methodology

We built a ML pipeline by using the existing package pipeline from
Scikit-learn library, to automate the ML workflow. We applied different
techniques in the ML stack (data processing, feature extraction, etc.),
according to the classification tasks and data subsets. In our compar-
ative analysis, we consider five supervised ML models, namely LR,
NBSVM, LSTM-ANN, MLP, as well as KNN. Next, we briefly introduce
these candidate ML models. While these five models are used indi-
vidually in cybersecurity and text-mining applications, our ensemble
paradigm extends their potential capabilities together with other ML
techniques in a range of cybersecurity analysis.

– (a) LR: works as a discriminative supervised-learning classifier
that learns to assign a high weight to document features, and
then assigns a class 𝑐 to a document 𝑑 by directly computing
the likelihood 𝑃 (𝑐|𝑑) (Almukaynizi et al., 2017; Zhang et al.,
2011). In more details, we utilise the LR text-mining method
training using stochastic gradient descent and the cross-entropy
loss, which returns a predicted class for a given document in
the test set. We adopt the package LogisticRegression from the
Scikit-learn library to implement this algorithm.

– (b) NBSVM: combines both NB and SVM models. SVM creates
optimal hyperplanes, or decision boundaries, to distinctly sep-
arate observations into different classes, meaning data points
falling on either side of a hyperplane can be attributed to differ-
ent classes (Joachims, 2001). Methods using SVM calculate the
maximum margin between the data points of different classes.
Maximising the margin distance provides some reinforcement
to improve the model performance, which is usually done by
acquiring support vectors where data points are closer to the
hyperplanes. NB is based on Bayes theorem and classifies text
categorisations of an observation by computing the conditional
probability values 𝑃 (𝑑|𝑐) for each class 𝑐, given an observation 𝑑.
Our model is based on a NBSVM algorithm proposed by Wang and
Manning that uses the NB log-count ratios as feature values (Wang
and Manning, 2012).

– (c) LSTM-ANN): LSTM or ANN works by recursively feeding
the output of a previous network into the input of the current
network, and take the final output after X number of recur-
sions (Zhou et al., 2016). We built a simple two-layer bidirec-
tional LSTM with return-sequences set to True, a dropout-layer
with probability = 0.5, and its first layer has a density of 50
classes. Its second layer has a dense of 13 classes for threat cate-
gorisation, while a density of 3 classes for CVSS categorisation.

– (d) MLP: is one type of ANN where all the units of the previous
layer are connected with the units of the next layer (Zanaty,
2012). Between the input layer and the output layer, the hidden
layer would adjust network weights through supervised learn-
ing. We adopt Python package MLPClassifier from the Scikit-learn
library to implement this algorithm.

– (e) KNN: works by comparing distances between unknown sam-
ples with distances between the closest known k-samples (Trsten-
jak et al., 2014). We adopt the package KNeighborsClassifier from
the Scikit-learn library to implement this algorithm.

http://www.cvedetails.com
http://www.cvedetails.com
https://github.com/cve-search/cve-search
https://www.mongodb.com/
https://cve.mitre.org/data/refs/index.html
https://www.nltk.org/howto/stem.html
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Fig. 4. Implementation of cross-linked database.
Threat categorisation
Threat categorisation modelling is a multi-label classification prob-

lem. We applied a one-to-rest strategy to solve the multi-label problem
by decomposing it into multiple independent binary classification prob-
lems (one per category). We randomly divided the retrieved 93 311
data records into a 75% (or 69 983 records) training dataset and a 25%
(or 23 328 records) validation dataset. Then, we trained the five previ-
ously mentioned ML models individually to learn threat categorisation.
We applied 3-fold stratified cross-validation using cross-val-score from
the sklearn package on the training dataset for training and testing
threat classification.

We evaluated the learning algorithms’ performances on an unseen
validation dataset and chose the model with the best performance.
Using 5 individual trained models, we generate 5 files with predicted
probabilities of different labels for each instance in the first training
round. Instead of training multi-round ML models, we utilised the
soft-voting technique to combine the predicted probabilities of base
individual ML models, in order to compute predictions for ensemble
models.

CVSS categorisation
Similarly, we modelled the optimised vulnerability scoring system

based on the CVSS V2 mechanism, to automatically evaluate the sever-
ity and exploit likelihood of a vulnerability instance. We correlated
existing CVSS scores of vulnerability instances in NVD to other data
sources, such as vendor websites and technical reports from third
party reviewers, to adjust scores and better describe the actual sever-
ity of vulnerability instances. We employ these resolved scores and
corresponding counterparts as a training ground for our ML models.
Classification tasks of CVSS V2 characteristics are multi-class tasks. For
example, a vulnerability instance is classified into one and only one of
three non-overlapping Integrity-impact measurements, i.e. high-, low-
or none- integrity impact.

We randomly divided the retrieved 132 351 data records into a
75% (or 99 263 records) training dataset and a 25% (or 33 088
records) validation dataset. Then, we also trained 5 afore-mentioned
ML models to learn CVSS v2 categorisation. Here we applied 5-fold
stratified cross-validation on the training dataset for training and test-
ing CVSS categorisation. Using trained models, we generated five files
with predicted labels of different CVSS v2 characteristics for each
model instance. When we applied the ensemble models, we took the
majority voting of the predicted labels.

4.3. Experiment results

Evaluation of the classification algorithms is a measurement of how
far the classification systems’ predictions are from the actual class
labels, tested on some unseen data.
11
Data fusion analysis
In total, we have 93 311 records labelled under threat categori-

sation, among which 70.75% vulnerability instances have a single
threat-class label. 22.14% vulnerability instances have two threat-class
labels. 4.35% vulnerability instances have three threat-class labels.
2.75% vulnerability instances have four threat-class labels, and even
fewer vulnerability instances have five threat-class labels. We get the
threat types that a reported vulnerability instance is exposed to for
the labelled vulnerability reports. Code Execution, Denial of Service, and
Overflow are the most typical threat types, with occurrence rates of
30.06%, 25.32%, and 19.46% separately. The least presented threat
type is Http Response Splitting with an occurrence rate of 0.18%.

Each vulnerability instance has a specific CVSS v2 vector which
shows the exploitability and impact of this vulnerability. For each CVSS
v2 characteristic, we further compared the contribution of each label to
explore the trend of vulnerability exploitability and impact over time.
From our statistical analysis of historical data, we observed that most of
the reported vulnerability instances are highly exploitable and do not
require additional conditions to exploit. The majority of vulnerability
instances are accessed through the network and are therefore remotely
exploitable, while a minority of vulnerability instances require local
access or local account. Vulnerability instances that require adjacent
network access, i.e. access to the collision domain of the vulnerable
software, has been reported only since the year 2012, and has appeared
in a comparably high frequency in the index year of 2014. Generally,
the knowledge level and skills to trigger a successful attack have in-
creased, as evidenced by the trend of the even distribution between low
complexity and medium complexity over the past ten years. Meanwhile,
attackers need to authenticate none or only one time to be able to
exploit most of the existing vulnerability instances. The distribution of
impact severities indicates a higher diversity of impact compared to the
diversity of exploitability in general. The distributions of confidentiality
impact, integrity impact and availability impact also show similar
diversity patterns, in which partial-impact and none-impact have more
appearances.

4.4. Threat categorisation

We evaluated the learning algorithms’ performance on an unseen
validation dataset, and chose six multi-label classification metrics intro-
duced earlier in Section 3.2. We computed measurements for mlACC,
mlPRE, mlREC, mlFS, mlEMR by applying corresponding equations,
and then we used hamming_loss metric from the sklearn.metrics package
to calculate mlHLS.

To evaluate the performance of our pipeline algorithm and to
choose base Ensemble models, we generated a total of 31 performance
files in 5 rounds and marked the best models. The individual models
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Fig. 5. Individual machine-learning model performance for threat classification.

Fig. 6. Average performances of each training-round for threat classification.

KNN and LR have comparatively weaker performance than LSTM,
NBSVM and MLP, as illustrated further in Fig. 5. Still, the overall
ensemble’s performance stayed relatively stable when these weaker
base learners are counted in for the ensemble. This is the benefit of
soft-voting that considers the confidence of each base learner and not
just binary choices. We calculate the average performance of models
in each round. Except for mlHLS, all the other five metrics have better
performance when the amount of participating base learners increase,
as illustrated further in Fig. 6.

We further compared best-performing models of each round, as
shown in Fig. 7. In all configurations, our pipelined ensemble model
gives the best performance. In the first round, individual model MLP
reveals the best performance. In the second round, the ensemble of
LSTM and MLP exhibits the best performance. In the third round, the
ensemble of LSTM, SVM and MLP has the best performance. In the
fourth round, the ensemble of LSTM, SVM, KNN and MLP has the
best performance. And finally, the fifth round has only one ensemble
model, therefore no comparative counterparts. The ensemble of LSTM
and MLP provides the best performance overall. Nevertheless, the
ensemble of LSTM, NBSVM and MLP provides very close performance.
Most of the predictive performances like mlACC, mlPRE, mlFS reach
their peak value for the ensemble model with base learners LSTM and
MLP. Interestingly, mlHLS has the best performance among individual
models, meaning that ensemble models may have more loss generated
in the bit string of class labels during prediction. There is no similar
12
Fig. 7. Best performing models of each training-round for threat classification.

threat classification study in the literature results up to our knowledge.
Nevertheless, a mlEMR score of 91.63% by the ensemble of LSTM and
MLP proves the prediction power of our model.

4.5. CVSS characteristic classification and score prediction

To compute the missing CVSS v2 score of a reported vulnera-
bility instance, we need to conduct six separate classification tasks
for all the CVSS v2 characteristics. For each classification task, we
applied 5-fold stratified cross-validation for selected models. Then,
we evaluated the learning algorithms’ performance on unseen val-
idation dataset, and chose 6 metrics from sklearn.metrics packages,
i.e. balanced_accuracy_score package for baACC; confusion_matrix and
sklearn.utils.multiclass for maPRE, maREC, and maFS; cohen_kappa_score
for maCKS; hamming_loss for maHLS. These metrics are introduced ear-
lier in Section 3.2, and are chosen considering the imbalanced classes
of CVSS metrics.

Unlike the soft-voting scheme adopted in threat classification, we
apply hard voting or majority voting for CVSS-characteristic classifica-
tion and score prediction. Majority voting works when the amount of
base learners is equal to or bigger than 3. And hence, we only generated
21 performance files in 4 rounds for each CVSS characteristic classifi-
cation or score prediction. The main results, i.e. the best performing
models of each training round, are illustrated in Fig. 8. More details
of the average performances of the trained models of each round are
presented in Fig. 9. Next, we provide a narrative assessment of the
obtained results in those tables.

– In AccessVector Classification (Figs. 8(a) and 9(a)), the individ-
ual model NBSVM has the best prediction performance overall.
We can therefore regard NVSVM classifier as a strong classifier,
and consider the other four classifiers as weak classifiers. The
ensemble of these four weak classifiers performs much better than
their individual performances. The average performance increases
when the amount of base learners increases from 1 (or Round 1)
to 3 (or Round 2), and from 3 (or Round 2) to 5 (or Round 4),
but drops when the amount is 4 (or Round 3).

– In AccessComplexity Classification (Figs. 8(b) and 9(b)), the in-
dividual model NBSVM and the ensemble of LSTM, NBSVM and
MLP deliver very close performance, both of which outperform
the other models. For metrics baACC, maFS, maCKS, maHLS, the
average performance of the models increases when the amount
of base learners increases from 1 to 3, and from 3 to 5, but
drops when the amount is 4. Metric maPRE has better average
performance when the amount of base learners increases. Metric
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Fig. 8. The best performing models of each training-round for cvss-characteristic classifications.
maREC has the best average performance when the amount of
base learns is 3.

– In Authentication Classification (Figs. 8(c) and 9(c)), it is clearly
seen that the ensemble of base learners LSTM, NBSVM and MLP
has the best prediction performance. Most of the metrics have bet-
ter performances when the amount of participated base learners
increases.

– In ConfidentialityImpact Classification (Figs. 8(d) and 9(d)), the
individual model NBSVM has the best prediction performance.
However, the ensemble of base learners LSTM, NBSVM and MLP
also shows a strong performance.

– In IntegrityImpact Classification (Figs. 8(e) and 9(e)), the ensem-
ble of base learners LSTM, NBSVM and MLP has the best predic-
tion performance. Individual models in Round 1 has the weakest
average performance, while the ensemble model in Round 4 has
the strongest average performance.

– In AvailabilityImpact Classification (Figs. 8(f) and 9(f)), the en-
semble of base learners, LSTM, NBSVM and MLP, has the best pre-
diction performance. In general, the ensemble models in Round 2
13
have a sharp improvement in average performance compared to
the individual models in Round 1.

Experimental analysis results for threat and CVSS characteristic
categorisations emphasises the need to utilise the multi-round ensemble
paradigm, since it is unknown beforehand which round can deliver the
best ensemble model, as illustrated in Figs. 7 and 8. For example, in the
authentication-categorisation task, Round 2 delivers the best ensemble
model. In the confidentiality-impact categorisation task, Round 1 deliv-
ers the best ensemble model. In the threat-categorisation task, ensemble
models in Round 2 and Round 3 outperformed the ones in the other
rounds. The experimental analysis shows that our ensemble model
picks appropriate algorithms from 5 standard classifiers, to extend their
individual performances in the context of cybersecurity analysis.

We also evaluated the accuracy of CVSS v2 score prediction, which
is computed considering the results of the above six classification tasks,
using Eq. (2) and using two values for 𝛿 (0.5 and 0.05). And hence,
the CVSS score accuracy is a harsh metric similar to Exact-Match-Ratio,
which reflects the proportion of complete and correct predictions of all
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Fig. 9. Average performances of the trained models of each training-round for cvss-characteristic classifications.
Table 3
Evaluation of CVSS V2 Score Prediction on Untrained Dataset.
Model CVSS-ACC (𝛿 = 0.05) CVSS-ACC (𝛿 = 0.5)

NBSVM 64.58% 92.93%

LSTM+NBSVM+MLP 64.75% 93.05%

LSTM+NBSVM+MLP+LR 63.27% 92.81%
LSTM+NBSVM+MLP+KNN+LR 64.06% 92.90%
he previous six classifications. Using the CVSS score accuracy metric,
he ensemble of LSTM, NBSVM, and MLP has the best performance, as
hown in Table 3.

. Conclusion and future works

In this paper, we propose a cognitive cybersecurity analysis frame-
ork that streamlines data integration, information processing and
nowledge generation to enable cybersecurity intelligence. We discuss
he detailed process and logic of (a) heterogeneous data streams cat-
14

gorisation and fusing into a collaborative information system, (b)
ingested information transformation into knowledge combined with
knowledge formalism, and (c) ML pipeline that automatically finds
out the best ensemble model for different cybersecurity classification
tasks. More precisely, our ensemble-based approach enables context-
aware data analysis that aids situation awareness. In doing so, we
empower security operators involved at various SOC levels with a
localised and synchronised database that fetches data from several
online sources of cybersecurity information. We resolve conflicting
vulnerability-severity scores and diverse terminologies used by differ-
ent parties before adopting the discovered vulnerability instances as

training ground truth. We evaluate the proposed ensemble paradigm
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through an experimental analysis that involves five commonly used
text-mining models. This comparative study shows promising results of
our ensemble approach in the cybersecurity scenario of threat categori-
sation and severity scoring. Furthermore, this exercise provides means
to adjust security investments at various organisational levels.

We plan three future directions in our machine-leaning based cy-
bersecurity research (i) adding more cybersecurity data sources such
as technical blogs to support analysis, and (ii) further testing ensemble
techniques like stacking methods in order to better differentiate vul-
nerability instances, and (iii) addressing challenging issues like class
imbalance problems and computing resource management.
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