
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 4th International Workshop on Cyber
Threat Intelligence Management (CyberTIM 2021), August 17 – August 20, 2021, held in
conjunction with ARES 2021: The 16th International Conference on Availability, Reliability
and Security, Vienna, Austria, August 17 - 20, 2021.

Citation for the original published paper:

Jiang, Y., Jeusfeld, M A., Ding, J. (2021)
Evaluating the Data Inconsistency of Open-Source Vulnerability Repositories
In: ARES 2021: The 16th International Conference on Availability, Reliability and
Security, 86 (pp. 1-10). Association for Computing Machinery (ACM)
https://doi.org/10.1145/3465481.3470093

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-19849

Evaluating the Data Inconsistency of Open-Source Vulnerability
Repositories

Yuning Jiang
University of Skövde
Skövde, Sweden

yuning.jiang@his.se

Manfred A. Jeusfeld
University of Skövde
Skövde, Sweden

manfred.jeusfeld@his.se

Jianguo Ding
University of Skövde
Skövde, Sweden

jianguo.ding@his.se

ABSTRACT
Modern security practices promote quantitative methods to pro-
vide prioritisation insights and support predictive analysis, which
is supported by open-source cybersecurity databases such as the
Common Vulnerabilities and Exposures (CVE), the National Vulner-
ability Database (NVD), CERT, and vendor websites. These public
repositories provide a way to standardise and share up-to-date
vulnerability information, with the purpose to enhance cybersecu-
rity awareness. However, data quality issues of these vulnerability
repositories may lead to incorrect prioritisation and misemploy-
ment of resources. In this paper, we aim to empirically analyse the
data quality impact of vulnerability repositories for actual infor-
mation technology (IT) and operating technology (OT) systems,
especially on data inconsistency. Our case study shows that data
inconsistency may misdirect investment of cybersecurity resources.
Instead, correlated vulnerability repositories and trustworthiness
data veri�cation bring substantial bene�ts for vulnerability man-
agement.

ACM Reference Format:
Yuning Jiang, Manfred A. Jeusfeld, and Jianguo Ding. 2021. Evaluating the
Data Inconsistency of Open-Source Vulnerability Repositories. In The 16th
International Conference on Availability, Reliability and Security (ARES 2021),
August 17–20, 2021, Vienna, Austria. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3465481.3470093

1 INTRODUCTION AND BACKGROUND
The cumulative reported vulnerabilities and the potential to exploit
them pose severe challenges to the cybersecurity research commu-
nity. For example, the recently disclosed security holes in Microsoft
Exchange may lead to at least 26 000 exchange servers in Germany
being directly accessible from the Internet. This vulnerability is
disclosed in the Common Vulnerability Exposure (CVE)1 repository
with an ID as CVE-2021-26855. CVE database is one of the most
in�uential forces in sharing and standardising vulnerability infor-
mation under the cybersecurity community e�orts. CVE repository
discloses more than 150 000 reported and exploited vulnerabilities

1https://cve.mitre.org/index.html

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2021, August 17–20, 2021, Vienna, Austria
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9051-4/21/08. . . $15.00
https://doi.org/10.1145/3465481.3470093

from 1999 until March 2021. It provides standardised but unstruc-
tured textual descriptions of vulnerabilities, which are fed into
the National Vulnerability Database (NVD)2 for further vulnera-
bility assessment like vulnerable system con�gurations, weakness
categories and common vulnerability severity scores (CVSS)3.

1.1 Background
Modern security practices promote quantitative methods to provide
prioritisation insights and support predictive analysis supported
by cybersecurity databases. Research e�orts are seen in vulnera-
bility or threat feature extraction (like malware signatures) [19],
and cyber intelligence collection [10][8] from public vulnerabil-
ity repositories and technical blogs. Besides, some commercialised
vulnerability management and assessment products, such as In-
sightVM 4 from Rapid7 Research, Nessus 5 and Tenable.io from
Tenable, deploy system scans that are matched with CVE repos-
itory to monitor vulnerabilities and exposures of infrastructures.
Both of these research and commercial solutions heavily rely on
integrating multiple open-source cybersecurity information, which
makes it critical to resolve con�icts and establish the correctness
of such information.

Data quality of public cybersecurity data sources has raised con-
cerns in the cybersecurity community [9]. Incomplete [3], outdated
and incorrect vulnerability entries, may leave a risk window for po-
tential zero-day attacks [13] [14][13]. Public vulnerability databases
heavily rely on manual reporting like the CVE Numbering Authori-
ties (CNA) 6 led process and further analysis, which leaves room
for potential errors [15]. For instance, around 25% CVE reports that
involve Google Chrome as a�ected products have incorrect Chrome
version strings [14]. Besides, NVD, VulDB7, and other similar repos-
itories that extract data feeds from CVE may provide contradicting
analysis for reported vulnerabilities [1].

1.2 Related Works
Data inconsistency researches are primarily focused on the iden-
ti�cation of inconsistencies [9] and truth discovery of multiple
con�icting information that is provided in di�erent websites [17].

Nappa et al. spent substantial e�orts to identify and report dis-
crepancies in NVD vulnerability entries. They crawled online se-
curity advisories in Mozilla website and compared extracted vul-
nerable version ranges published in NVD. They summarised three

2https://nvd.nist.gov/vuln
3https://www.�rst.org/cvss/
4https://www.rapid7.com/products/insightvm/
5https://www.tenable.com/products/nessus
6https://cve.mitre.org/cve/cna.html
7https://vuldb.com/

Aurelie
© 2021 by the authors. This is the author's version of the work. It is posted here for your personal use.
Not for redistribution. The definitive version was published in CyberTIM in conjunction with ARES 2021,
https://doi.org/10.1145/3465481.3470093.

ARES 2021, August 17–20, 2021, Vienna, Austria Yuning Jiang, Manfred A. Jeusfeld, and Jianguo Ding

main inaccurate issues of NVD entries, namely missing vulnera-
ble versions, extraneous vulnerable versions, and missing vulner-
able program �le versions. The third issue is particularly true for
Microsoft products such as msword.exe, according to the authors
[13]. Dong et al. conducted quantitative analysis on vulnerable
software version inconsistencies between CVE and NVD. Their ex-
perimental data include vulnerabilities reported from January 1999
to March 2018, which indicates that only 59.82% of the CVE sum-
maries strictly match with the standardised NVD entries [4]. They
also compared the matching rate of vulnerable software versions
between NVD against CVE and �ve other public cybersecurity data
sources, namely OpenWall, Security Focus, Security Focus Forum,
Security Tracker, and ExploitDB. The result shows that the match-
ing rate between NVD and ExploitDB is the highest, followed by
the matching rate between NVD and CVE.

Jo et al. developed a text-mining technique based tool, GapFinder,
to identify semantic inconsistencies and technical inconsistencies
of open-source malware threat reports [9]. By combining malware
graph constructor with named entity recognition (NER) and relation
extraction (RE) language processing techniques, their tool also
addresses various language-speci�c issue and malware domain-
speci�c issues. Anwar et al. perform a systematic evaluating of
the consistency and completeness of NVD data feeds, based on
which they further improve the quality of the data [1]. Farhang et
al. [5] have investigated the degree to which Android smartphone
vendors have included vulnerabilities in their security bulletins and
found signi�cant di�erences in the timeliness of reporting and the
consistency of the reports.

However, to be best of our knowledge, there has not been a
study investigating the implications of data inconsistencies of open-
source cybersecurity repositories from the perspective of computing-
system users. In this paper, we conduct a case study of a real-world
IT/OT system to examine the impact of data inconsistencies in
vulnerability repositories on cybersecurity prioritisation decision-
making. We also investigate the possible factors contributing to
data inconsistencies, which provides insights for the cybersecurity
community on the curation of online security data sources.

1.3 Problem Statement
Data quality dimensions are used to guide the measurement of data
validation. Commonly used data quality dimensions include and
are not limited to accuracy, completeness, uniqueness, timeliness,
currency, and consistency [7, 11]. In this paper, we focus on the issue
of data inconsistency. We adopt the de�nition from David Loshin
that data inconsistency refers to data values in one data set not
being consistent with values in another data set [11]. The research
questions we explore in this paper are: do multiple open public
cybersecurity data sources provide consistent information regarded
to vulnerability analysis? Furthermore, how to evaluate the impact
of data inconsistencies of these cybersecurity repositories?

In this paper, we aim to investigate the impact of data incon-
sistencies in open-source vulnerability repositories for real-world
IT/OT infrastructures. In this case study, we match the system scan
against a set of public vulnerability databases like CVE, NVD and
vendor security repositories. By doing so, we extract component-
based vulnerability lists for our investigated system, based onwhich

we identify inconsistencies of retrieved vulnerability information.
As a result, the gap between theoretical vulnerabilities in open-
source vulnerability repositories and the actual systems is measured.
Further, the implication of our �ndings is discussed with domain
experts to solidify the results. More speci�cally, we interviewed
three IT technicians from one organisation in Sweden and two
cybersecurity experts from other organisations. Deep analysis of
con�icting vulnerability reports also indicates important insights
and guidance for the cybersecurity community on the usage of
online public vulnerability data sources.

The rest of this paper is organised as follows. In Section 2, we
de�ne the concept of data inconsistency, followed by an introduc-
tion of the major types of data inconsistency issues in vulnerability
repositories. Section 3 discusses the employed data sources and the
targeted vulnerability attributes in this paper, along with detailed
guidance of our inconsistency identi�cation approach. In Section
4, we present a case study whereby we perform a vulnerability
assessment of actual IT/OT systems to validate the impact of data
inconsistencies. We show the results of this case study through ex-
tracted statistic patterns and summarise our interview evaluation,
followed by some discussion on limitation and key insights. We
give some concluding remarks and future research directions in
Section 5.

2 DATA INCONSISTENCY DEFINITION
Given a list of n vulnerability data sources [V1, · · · ,Vi , · · · ,Vn] (0 <
i n), when we query data source Vi , we generate a new set of k
vulnerabilitiesV 0

i ✓ Vi . For each vulnerability�i, j 2 V 0
i (0 j k),

it has a set of attributes ap 2 A (0 < p m). Therefore, each
vulnerability instance �i, j has a vector �i, j=[�a1i, j ,. . . ,�

ap
i, j ,. . . ,�

am
i, j].

According to David Loshin, consistency analysis include 5 contexts,
namely record-level, cross-record, temporal, application/business-
level, and reasonableness-level consistency [11]. In this paper, we
mainly consider record-level and cross-record data inconsistencies.

2.1 Record-Level Inconsistency
Record-level inconsistency exists between vulnerability attributes
�
ap1
i, j and �ap2i, j (0 < p1 m, 0 < p2 m,p1 , p2). Record-level in-

consistency is seen where multiple names are provided to represent
the same entity, such as vendor names, vendor-product names, and
vulnerable product versions [1]. Vendor names are not identical
in CPE metadata due to various reasons such as misspelled names
(e.g. Schneider Electric has been spelled as ’schneider-electic’ and
’chneider-electric’), and using abbreviated names (e.g. General Elec-
tric Company has been expressed as ’ge’ and ’general-electric’). The
causes for inconsistent vendor product names are similar to the
ones for vendor names, but is also related to the fact that di�erent
stakeholders may provide di�erent names for the same product.
Record-level inconsistency appears when di�erent attributes of the
same vulnerability provide contradictory information.

2.2 Cross-Record Inconsistency
Cross-record inconsistency exists between vulnerabilities �api1, j and
�
ap
i2, j whereby �i1, j 2 Vi1,�i2, j 2 Vi2 (0 < i1 n, 0 < i2 n).

This inconsistency indicates scenarios where the same attributes

Data Inconsistency of Open-Source Vulnerability Repositories ARES 2021, August 17–20, 2021, Vienna, Austria

such as vulnerability severity scores, publication dates and vulner-
able products are con�icting, or where multiple attributes indicate
contradicting vulnerability characteristics.

Di�erent data-repository sources may provide con�icting sever-
ity scores. For example, the vulnerability CVE-2015-6461 is assigned
CVSS V2 base score of 5.5 by NVD and 3.2 by ICS-CERT. The
score inconsistency arises due to contradictory conclusions on the
access vector of this vulnerability, for which NVD assigns it as
network-based and ICS-CERT assigns it as local-based. Under CVE-
2017-6023, this vulnerability is assigned CVSS V3 base score of
9.8 with vector AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H by NVD and
7.3 with vector AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:L by ICS-CERT,
separately.

Publication dates indicate the time when vulnerabilities become
public and provide essential tracks for system protection prioritisa-
tion. Nevertheless, inconsistencies of such publication dates occur
commonly due to disagreement between NVD publication dates
and public disclosure dates on other vulnerability databases and
cybersecurity blogs [1][9].

CPE8 (referring to Common Platform Enumeration) vulnera-
ble version ranges for each NVD entry can be inconsistent with
identi�ed vulnerable versions from third-party analysers like CERT
Coordination Center [6] and vendors [4]. One example is CVE-2019-
5527 that refers to a use-after-free vulnerability in the virtual sound
device. According to the security advisory VMware, mitigation for
this vulnerability is to upgrade the vulnerable component VMware
ESXi to ESXi670-201904101-SG (this is a patch package name and
is linked with build number 13006603). And hence, VMware ESXi
versions later than ESXi670-201904101-SG are not a�ected by this
vulnerability. However, those later versions like ESXi670-202004001
are listed as vulnerable versions in NVD.

3 DATA INCONSISTENCY ANALYSIS
In this section, we �rst brie�y introduce the vulnerability data
sources used in this paper. Then we present the process of data-
inconsistency identi�cation and validation in a step-by-step format.

3.1 Data Sources
We query related vulnerability instances of our investigated system
from 3 main cybersecurity repositories, namely CVE (or VCV E),
NVD (or VNVD , and include CPE entries), and Vendor websites (or
V�endor). MITRE Corporation publishes the CVE industry-standard
to assign an identi�er to each discovered vulnerability. It maintains
a publicly accessible database of all identi�ers. NVD is a vulnerabil-
ity database built upon CVE. We obtain the vulnerability reposito-
ries by downloading the data feeds from CVE and NVD, and then
parse and query them in the local computer terminal using Python.
CPE based search capabilities are also accessed through NVD entry.
Besides, we deploy vendor data as an additional source to add the
perspective of manufacturers. We crawl vendor websites such as
the Microsoft Security Response Centre (MSRC)9 and the VMware
Security Advisories10. We then fetch and parse extracted vulnera-
bility data for a�ected products and version ranges. For instance,

8https://cpe.mitre.org/
9https://msrc.microsoft.com/update-guide/vulnerability
10https://www.vmware.com/security/advisories.html

Attribute CVE NVD Vendors
Description Yes Yes Yes

Applicable Product Yes Yes Yes
Version Range Yes Yes Yes
CVSS Score N/A Yes Some

Impact Element N/A Yes Some
Weakness Type Some Yes Some

Table 1: Deployed Vulnerability Data Sources

Microsoft security updates are accessible through an o�cial API 11.
Additionally, there are open-source Github projects (e.g. VIA4CVE
12) that query this API and fetch Microsoft bulletins and vulnera-
bility data in JSON format. Note that NVD entries are structured,
while CVE reports and crawled vendor texts are unstructured.

A vulnerability is de�ned by the Society for Risk Analysis (SRA)
[2] as “the degree a system is a�ected by a risk source or agent; or the
degree a system can withstand speci�c loads; or the risk conditional
on the occurrence of a risk source/agent; or the uncertainty about and
severity of the consequences, given the occurrence of a risk source”.
Based on this de�nition, combining multiple attributes, such as
the criticality of vulnerable components, the severity of emerging
vulnerability instances, as well as the likelihood of exploiting at-
tacks, contributes to the computation of the vulnerability index. The
criticality property is weighed with attributes like the applicable
product, version range, and functionality importance of the vulner-
able component. The severity property is measured with attributes
like CVSS score and impact elements (or sub CVSS metrics like
con�dentiality impact). The likelihood property is estimated with
attributes like attack vector, attack complexity, exploit development
status, and remediation development status.

In this paper, we aim to compare inconsistencies between CVE,
NVD, and vendor repositories. Therefore, we focus on six attribute
sets for vulnerability analysis that are available in a minimum of
two data sources, as depicted in Table 1. Description typically cov-
ers the applicable product, version range, the vulnerable function,
and sometimes the weakness type. Among them, the applicable
product and version range can be identi�ed manually or extracted
using an open-source NER (referring to Named Entity Recognition)
model [16]. CVE, NVD, and vendor websites provide accesses to
such vulnerability descriptions. The applicable product and ver-
sion range are also easily identi�ed and extracted from the CPE
metadata. Note that the CPE metadata also indicates the applica-
ble vulnerable system con�gurations. For example, vulnerability
instance CVE-2020-0964 describes a remote code execution vulner-
ability in Windows Graphics Device Interface, which applies to a
list of servers like Windows Server 2016 and Windows Server 2019.
Another vulnerability instance CVE-2020-0966 indicates a remote
code execution vulnerability in the VBScript, which is only appli-
cable to Window Server 2016 and 2019 when Internet Explorer 11
is running on the server. Therefore, accurate and complete system
con�guration information is needed to extract relevant vulnerabil-
ity instances.

11https://github.com/microsoft/MSRC-Microsoft-Security-Updates-API
12https://github.com/cve-search/VIA4CVE

ARES 2021, August 17–20, 2021, Vienna, Austria Yuning Jiang, Manfred A. Jeusfeld, and Jianguo Ding

Figure 1: Overview of the Data Inconsistency Analysis Process

3.2 Data Inconsistency Analysis Process
The process of data inconsistency analysis is composed of four main
steps, as illustrated in Figure 1.

Firstly, we collects system con�guration information and compo-
nent details. We then write an import �lter to translate component
information into query tags. Data items like models, versions and
the latest patching update (e.g. cumulative security update KB, or
knowledge base, package numbers) are necessary for vulnerability
retrieval from online public vulnerability data sources. Due to soft-
ware upgrade versioning, version numbers directly extracted from
computer speci�cations are usually release versions. Yet, release
versions may not re�ect the installed update-package numbers of
the component or the internal-version numbers from the vendors.
One example is the VMware vCenter Server with internal version
numbers from the earliest version virtualCenter 2.5.0 GA to the latest
version vCenter Server 7.0 update 1d (7.0.1.00300), till March 8th 2021.
The release version vCenter Server 6.0 has 18 di�erent internal ver-
sion numbers, each of which is related to various release updates.
For instance, given component model “VMware vCenter server”,
version number “6.0”, and build number “9109103”, we check the
internal version number as “u3g”and generate query tags like type:
software, vendor: VMware, product: vcenter_server, version: 6.0:u3g
in a format similar to the CPE match-list metadata.

Secondly, the translated tags from the previous step were used
in Python-based queries in the PC terminal to extract component-
based vulnerability instances. These tags are matched against the
CPE metadata to retrieve corresponding vulnerability instances
from NVD. To do so, we �rst convert the downloaded disk-based
JSON �les from NVD into a Python Dictionary data structure that
organises the data as key-pair values. Some values are scalars (e.g.
CVSS entries), while others can be either a list of other dictionaries
(e.g. CPE entries). We then match the query tags against CPE entries
of each vulnerability instance and return the instances that contain
these tags. We parse the description entry of CVE XML �les to
extract matching vulnerability instances. This manner is further
composed of multiple traditional text processing sub-steps such

as tokenisation and removing stop-words [18], as well as word
matching. Similar data preprocessing process is applied to crawled
vendor reports in CSV or JSON format. To fetch vulnerability reports
from vendor websites, we employ two approaches. We locate the
vendor-related URL references of disclosed vulnerabilities in CVE
through referencemaps, based onwhichwe fetch the contents of the
referred websites. The other method is that, given a vendor product,
we directly connect to and request the vendor website to fetch
vulnerability-related data. We then take the union of all retrieved

vulnerability reports
N–
i=1

{�i, j }, or VCV E
–
VNVD

–
V�endor .

Thirdly, we extract attributes listed in Table 1 for each vulnera-
bility instance. By doing so, one vulnerability instance has a vector
of six attributes �i, j=[�a1i, j ,. . . ,�

ap
i, j ,. . . ,�

a6
i, j] (0 < p 6), where each

attribute has a list of up to 3 values. We employ two approaches
to obtain these values. We directly parse the NVD JSON �les for
the targeted attributes like a�ected products and version ranges.
We then build a NER module based on an open-source project
13 and pre-trained token embeddings from another open-source
project 14. The latter project is trained on data from CVEDetails15

website. In doing so, we annotate applicable product and version
range in vulnerability descriptions extracted from CVE reports as
well as crawled vendor text �les. For example, vulnerability report
for the instance CVE-2017-1442 is assigned with PoS (referring to
part-of-speech) tags where AP refers to application product, VR
refers to version range, and 0 refers to other information: “(IBM,
AP) (Emptoris, AP) (Services, AP) (Procurement, AP) (10.0.0.5, VR) (is,
0) (vulnerable, 0) (to, 0) (cross-site, 0) (request, 0) (forgery, 0) (which, 0)
(could, 0) (allow, 0) (an, 0) (attacker, 0) (to, 0) (execute, 0) (malicious, 0)
(and, 0) (unauthorized, 0) (actions, 0) (transmitted, 0) (from, 0) (a, 0)
(user, 0) (that, 0) (the, 0) (website, 0) (trusts, 0).”By doing so, we create
two new data sources for vulnerable product and version ranges
from unstructured CVE reports and vendor reports, besides the ones

13https://github.com/crownpku/Information-Extraction-Chinese
14https://github.com/pinkymm/inconsistency_detection
15https://www.cvedetails.com/

Data Inconsistency of Open-Source Vulnerability Repositories ARES 2021, August 17–20, 2021, Vienna, Austria

directly parsed from NVD JSON �les. We apply similar NER-based
methods to extract weakness type in vulnerability reports.

Fourthly, we compare the attribute sets of each vulnerability
instance set to diagnose inconsistencies. We extract the statistic
patterns based on vulnerability instances retrieved from di�erent
data sources, to assess the degree of data inconsistencies. We then
evaluate the impact of data inconsistencies of multiple online cy-
bersecurity data sources in supporting vulnerability analysis. This
validation is done by interviewing �ve cybersecurity experts. The
interviews focus on two questions: 1) Does this case study deliver a
signi�cant number of reports for the investigated system and cover
unknown weaknesses that �t the gap of vulnerability management?
2) How is the impact of the identi�ed data inconsistencies in cyber-
security decision making, especially if the vulnerability analysis
results can be misleading in priority patching? By answering these
two questions, we quantify the in�uence of data inconsistencies of
open-public cybersecurity repositories on vulnerability assessment
and cybersecurity decision making.

4 CASE STUDY
We conducted a case study on vulnerability analysis of the IT and
OT systems of a company in Sweden. Next, we brie�y introduce the
systems under investigation, followed by empirical analysis of the
main causes and impact of data inconsistencies in the vulnerability-
analysis result of our investigated systems.We focus on cross-record
data inconsistency in this study.

4.1 Investigated System
The investigated IT system is composed of a DataCentre (contain-
ing both hardware and operating system layers), an application
layer and a network layer, as depicted in Figure 2. In DataCentre,
hardware components like physical servers integrate with operat-
ing system software and manage PC storage. DataCentre contains
14 components. For example, a middleware server bridges multi-
ple partners’ systems, while an USBHub server works as a USB
network gate. Additionally, a hypervisor host deploys and serves
virtual systems, which provides an abstraction layer for virtuali-
sation. This virtualisation layer supports multiple hypervisors (or
virtual machines), together with heterogeneous operating systems
and applications that run in isolation.

The application layer includes the con�guration of 3 system pack-
ages supported by hypervisors, namely the IoT (referring to the
internet of things) system (containing 138 components), customer
management system (containing 137 components), and control sys-
tem (containing 27 components). Among these three systems, the
control system enables monitoring and controlling of the physical
system. The IoT system records physical process data and then
sends collected information to the customer management system
through the middleware server. The customer management system
stores, analyses, and manages consuming data. In an IoT system, for
example, 4 hypervisors are included to integrate guest operating
system, access control (AC) server, encryption key-store (EKM)
server, database (DB) server and application (APP) server. Note that
servers within the same security zone are reachable to each other.
Servers in di�erent zones can communicate through speci�c access
lists.

Figure 2: Structures of Investigated IT System

Physical servers in the DataCentre are connected to switches
through �bres. The network layer represents the wireless connec-
tions of the IT network that contains 7 components. Some of the
critical components are �rewall, network operating system and
wireless controller. These switches are further connected to the OT
servers. The OT system is composed of 16 components that collect
information and directly monitor physical processes.

4.2 Retrieved Vulnerability
The investigated system contains components provided by 18 dif-
ferent vendors, among which 10 vendors provide speci�c sections
for security advisories. We found vulnerabilities for our system
from all these 10 vendor websites. For the remaining 8 vendor data
sources, we identi�ed vulnerabilities related to 3 vendors from CVE
and NVD. The distributions of vulnerability instances in di�erent
systems are listed in Columns 3-5 in Table 2. The network has
comparatively more vulnerability instances per component, while
DataCenter has the least vulnerability instances per component. We
extract 562, 536 and 457 instances from CVE, NVD, and vendors sep-
arately. If we take the union of all the identi�ed vulnerabilities, we
have a total amount of 597 vulnerability instances. The amount of
vulnerabilities changes to 435 when we take the intersection of the
vulnerabilities, as listed in Columns 6 in Table 2. We observe that
except for OT related vulnerabilities, the union of vulnerabilities
retrieved from CVE and NVD cover the vulnerabilities extracted
from the vendor websites. This observation only applies to this
case study as the involved vendors are limited. On average, in the
intersection set, the customer management system has the highest
number of vulnerability instances per component. In contrast, the
operating system has the least amount of vulnerability instances
per component.

In this case study, we focus on cross-record data inconsistencies,
especially between NVD and vendor advisories. CNA discloses
vulnerabilities that are further analysed by NVD, vendor and other
security analysers. CVE reports are deployed to provide ground
truths in some studies that perform inconsistency detection [4]. In

ARES 2021, August 17–20, 2021, Vienna, Austria Yuning Jiang, Manfred A. Jeusfeld, and Jianguo Ding

Investigated
System

Component
Amount CVE NVD

(CPE) Vendor Union Intersection

IoT System 138 75 77 69 77 69
Customer

Management
System

137 309 319 311 319 309

Control System 27 50 53 28 53 28
OT 16 5 5 25 25 5

DataCentre 8 18 18 13 18 13
Network 7 105 75 11 105 11

Table 2: Retrieved Vulnerability Instances of The System

contrast, some other studies employ NVD entries as ground truths
[13]. Nevertheless, the assumption of CVE or NVD as ground truth
may not be valid. Instead, we try to explore the impact of relying on
a singular data source for vulnerability analysis, especially between
NVD and vendor repositories. The inconsistencies between di�erent
vulnerability report sources are re�ected in the a�ected products
and version ranges, weakness categorisation, exploit correlation,
and vulnerability severity, which is discussed next.

4.3 Data Inconsistencies in A�ected Products
and Version Ranges

In this section, we discuss the impact and cause of discrepancies in
terms of a�ected products and version ranges. Such discrepancies
are re�ected in the di�erent amounts of identi�ed vulnerabilities in
Table 2. These discrepancies mainly result from inconsistent prod-
uct names and di�erent views on whether a speci�c component
version is vulnerable. The network has the highest rate of inconsis-
tent vulnerabilities in the IT system, followed by the IoT system and
control system. Table 3 lists the vulnerability instances found in
NVD and compares the results to the ones found in vendor entries.
We also analysed if the component with the most vulnerabilities of
each investigated system di�ers when involving di�erent vulnera-
bility data sources. We started with an investigation into the rate of
data inconsistencies in each investigated system, as discussed next.

• The communication network system has the top data in-
consistency rate among the six investigated subsystems,
followed by the OT system. For example, in the OT sys-
tem, the open platform communication (OPC) component
has the highest amount of vulnerabilities when consider-
ing only NVD entries. When taking into consideration only
the vendor entries, the protection and control component
contributes the most vulnerabilities. The other four systems
have relatively lower rates of data inconsistencies.

• In the IoT system, the database toolset component has the
most vulnerabilities in the operating system, when consider-
ing only vendor entries. When accounting only NVD entries,
the most vulnerable component in the operating system
is the directory component. Similarly, the remaining four
system servers, namely access control server, encryption key-
store server, database server, as well as application server,
have di�erent rankings of the most vulnerable component
after considering data inconsistencies.

• In the customer management system, the web server con-
tributes an enormous amount of inconsistent vulnerabilities.
The inconsistencies in the vulnerability sets of customer
management system do not a�ect which component has the
largest amount of vulnerabilities in each subsystem.

• In the control system, the application server has a higher
rate of inconsistent vulnerabilities compared to the operat-
ing system. When accounting only entries from the vendor,
the runtime library component has the most vulnerability
instances in the application server, which is recti�ed to the
database management component when accounting only
entries from NVD.

4.4 Data Inconsistencies in CVSS, Impact
Element and Weakness Type

The inconsistencies between di�erent vulnerability report sources
are re�ected in weakness categorisation, impact evaluation, and vul-
nerability severity. We examined the CVSS version 2 base-scores of
our investigated systems to check if inconsistent vulnerabilities af-
fect the average severity of these investigated systems. As depicted
in Figure 3, the customer management system and IoT system have
almost similar vulnerability severity score distributions no matter
which cybersecurity data source is used. In contrast, vulnerabili-
ties from NVD entries contribute more vulnerabilities with higher
severity scores (equal to or larger than 7) to Data Centre, Network,
and Control System. This is particularly true for the communica-
tion network related vulnerability instances, whereby a large ratio
of NVD vulnerability entries has a CVSS V2 base score between
7.0 and 8.0. Another interesting observation is that, vulnerabilities
found in NVD contribute on average a lower CVSS score in terms
of the OT system when compared to the instances found in the
vendor sites.

We measured the in�uence of inconsistent vulnerabilities on
exploitability and impact levels of the whole investigated system,
as shown in Figure 4. Only accounting for NVD entries, these
vulnerability instances may lead cybersecurity analysers to pay
closer attention to threats with local path based attacks, low access
complexity, as well as no authentication requirement. Meanwhile,
the analysis result suggests that our investigated system is su�ered
from a higher impact on con�dentiality, integrity and availability.

We then correlated the extracted vulnerabilities with weakness
enumerations CWE16 to explore the major weaknesses of each in-
vestigated system. As shown in Table 4, the top 3 weaknesses with
the highest occurrence frequencies in all the investigated subsys-
tems are partially changed or revised with rankings, except for the
control system. For instance, the most frequently appeared network
weaknesses when only accounting vendor entries are (i) exposure
of sensitive information to an unauthorised actor, and (ii) incor-
rect permission assignment for the critical resource. Among these
two network weaknesses, the �rst weakness occurs due to direct
or indirect insertion of sensitive information such as system envi-
ronment, network status and con�guration, intellectual property,
private customer records, etc., into resources that are accessible to
unauthorised actors. This information leak may be exploited with
attacks like excavation and �ngerprinting and may lead to loss of

16https://cwe.mitre.org/index.html

Data Inconsistency of Open-Source Vulnerability Repositories ARES 2021, August 17–20, 2021, Vienna, Austria

IoT System Component
Number

Consider NVD Only Consider Vendor Entries Only

Vulnerability Component with The
Most Vulnerabilities Vulnerability Component with The

Most Vulnerabilities
Operating System 3 21 Directory Component 12 Database Toolset Component

Access Control (AC) Server 16 48 Anti-malware Component 28 Runtime Library Component
Encryption Key-store (EKM) Server 36 75 SDK Component 55 Runtime Library Component

Database (DB) Server 40 66 Database Management Component 46 Runtime Library Component
Application (APP) Server 43 74 Database Management Component 46 Runtime Library Component

Customer Management System Component
Number

Consider NVD Only Consider Vendor Entries Only

Vulnerability Component with The
Most Vulnerabilities Vulnerability Component with The

Most Vulnerabilities
Operating System 4 20 Remote Desktop Component 19 Remote Desktop Component

Customer Management (CM) Server 64 253 O�ce Application Component 232 O�ce Application Component
Database (DB) Server 52 68 SDK Component 48 SDK Component
Web (WEB) Server 17 44 Runtime Library Component 17 Runtime Library Component

Control System Component
Number

Consider NVD Only Consider Vendor Entries Only

Vulnerability Component with The
Most Vulnerabilities Vulnerability Component with The

Most Vulnerabilities
Operating System 4 12 Directory Component 8 Directory Component

Application (APP) Server 23 65 Database Management Component 45 Runtime Library Component

Other Systems Component
Number

Consider NVD Only Consider Vendor Entries Only

Vulnerability Component with The
Most Vulnerabilities Vulnerability Component with The

Most Vulnerabilities
Data Center 8 19 Hypervisor Component 11 Hypervisor Component
Network 7 75 Network Operating Component 11 Firewall Component

OT 7 5 Open Platform
Communications Component 25 Protection and

Control Component

Table 3: Retrieved Vulnerability Instances Considering Di�erent Data Sources

con�dentiality. Possible mitigations against this weakness include
encryption and password-protection of sensitive data and appro-
priate compartmentalisation that reinforces privilege separation
functionality. The second network weakness, or incorrect permis-
sion assignment for critical resource, may impact con�dentiality
and integrity of sensitive properties once successfully exploited by
attacks like signing malicious code. The second network weakness
can be remediated by environment hardening. The remaining net-
work weaknesses are singular cases and are not listed in Table 4.
Taking NVD as the only data source, then the major network weak-
nesses are revised as (i) improper input validation, (ii) improper
neutralisation of special elements used in an OS command, and (iii)
uncontrolled resource consumption. These ambiguous weaknesses
may address more attention towards protecting the system against
code execution, DoS, bypass protection mechanism, and other sim-
ilar cyber threats, while resulting in less budget in mitigating the
existing weaknesses.

4.5 Case Study Evaluation
We interviewed �ve cybersecurity experts to collect their feedback
on the applicability and usefulness of our data inconsistency analy-
sis. Among these �ve experts, three of them are employed in the
investigated organisation in Sweden to ensure the con�dentiality
of the studied system and vulnerability data. These three experts
cover the roles of IT administrators, IT security technicians and
OT security operator. They hence have in-depth knowledge of the
system status. The other two interviewees work as cybersecurity

researcher and industrial cybersecurity consultant in Sweden, sep-
arately. These two interviewees are not involved in this case study.
The feedback from these �ve interviewees is summarised below.

A signi�cant number of vulnerability reports are found using
public vulnerability repositories, especially for embedded software
in the customer management system and control system. These
retrieved vulnerability instances deliver valuable references and a
broad picture of the vulnerable level of the whole system. Vulnera-
bility analysis in the perspective of severity scores and major threat
categories also guide patching prioritisation. Still, some known
vulnerabilities in the OT system cannot be found using online cy-
bersecurity repositories and are not published by the vendor. The
lack of OT vulnerability records also indicates the incompleteness
of online cybersecurity data sources.

The vulnerability analysis results indicate some weaknesses that
the three IT technicians are not aware of. One interesting exam-
ple refers to the o�ce application components that contribute a
signi�cant amount of vulnerability instances in the customer man-
agement system, as shown in Table 3. These vulnerability instances
also have a high ratio of critical severity scores. Nevertheless, o�ce
application components are regarded as low criticality and may not
address enough attention in the perspective of cybersecurity in this
company. Another example is the runtime library components that
contribute signi�cant numbers of vulnerabilities and are challeng-
ing to maintain. According to the cybersecurity researcher, it is also
surprising to know that the �rewall component in the network has
a high vulnerable level. Data inconsistencies are not uncommon
for vulnerabilities’ a�ected products and version range. These data
inconsistencies bring a higher level of uncertainty in cybersecurity

ARES 2021, August 17–20, 2021, Vienna, Austria Yuning Jiang, Manfred A. Jeusfeld, and Jianguo Ding

Figure 3: CVSS Version2 Scores of The Investigated Systems

decision making with amendments in the ratios of major weakness
and threat types.

4.6 Discussion
4.6.1 Limitation. Query generation, vulnerabilities retrieval, and
data inconsistencies evaluationwere conducted in a semi-automated
manner in this case study. To be speci�c, we generated query tags
through both automatic terminology extraction and manual check.
These query tags were matched against cybersecurity data sources
to obtain related vulnerability instances. We also manually checked
the inconsistent vulnerabilities to �lter out instances that do not
apply to our system. The whole process took around four weeks to
complete, which may leave a gap between a vulnerability exploit
occurrence and the deployment of an available patch. Meanwhile,
relying on individual experts’ knowledge could introduce recurrent
costs, subjective evaluations and contradicting outcomes. Improv-
ing the level of automation supports a timely vulnerability-analysis
lifecycle and allowsmitigation to occur within the time interval that
span the disclosure and patch of vulnerabilities. We did not investi-
gate the root causes of the inconsistencies, i.e. which vulnerability

instance was created �rst, when it was updated, when or if dupli-
cates were detected, and so forth. Our study does however indicate
that better work�ows should be installed to synchronise and correct
vulnerability instances in the public and vendor repositories.

4.6.2 Key Insights. Multiple cybersecurity reports and bulletins
provide various perspective for vulnerability analysis. Yet, dis-
crepant reports bring challenges to cybersecurity decision making
in terms of patching prioritisation. Our case study results indi-
cate that cybersecurity budget allocation may di�er diversely by
relying upon only NVD vulnerability entries or only vendor secu-
rity bulletins. The systematic integration of vulnerability instances
into a kind of data warehouse o�ers the opportunity to detect in-
consistencies and refer them to the maintainers of the original
sources. The case study also showed that the number of incon-
sistencies could largely di�er depending on the type of software
component. An approach that deploys trustworthiness data veri�-
cation brings substantial bene�ts to vulnerability identi�cation and
management. Furthermore, vulnerabilities are reported in various
standards, which increases the di�culty of vulnerability-related
provisioning and sharing. Vulnerability reporting standardisation is

Data Inconsistency of Open-Source Vulnerability Repositories ARES 2021, August 17–20, 2021, Vienna, Austria

Figure 4: Exploitability and Impact of The Investigated Systems

Investigated System Most Frequently Appeared Weaknesses
Consider NVD Only

Most Frequently Appeared Weaknesses
Consider Vendor Entries Only

DataCentre

1. Improper use of previously-freed memory.
2. Improper certi�cate validation.
3. Exposure of sensitive information to an
unauthorised actor.

1. Improper certi�cate validation.
2. Insu�ciently protected credentials.
3. Improper use of previously-freed memory.

Network

1. Improper input validation.
2. Improper neutralisation of special elements
used in an OS command.
3. Uncontrolled resource consumption.

1. Exposure of sensitive information to an
unauthorised actor.
2. Incorrect permission assignment for
critical resource.

IoT System
1. Improper privilege management.
2. Improper permissions and access controls.
3. Improper input validation.

1. Improper privilege management.
2. Improper input validation.
3. Improper permissions and access controls.

Customer Management
System

1. Improper restriction of operations within
the bounds of a memory bu�er.
2. Improper input validation.
3. Exposure of sensitive information to an
unauthorised actor.

1. Improper restriction of operations within
the bounds of a memory bu�er.
2. Exposure of sensitive information to an
unauthorised actor.
3. Improper input validation.

Control System

1. Improper neutralisation of input
during web page generation.
2. Improper control of generation of code.
3. Improper permissions and access controls.

1. Improper neutralisation of input
during web page generation.
2. Improper control of generation of code.
3. Improper permissions and access controls.

OT
1. Incorrect permission assignment for critical
resource.
2. Improper privilege management.

1. Out-of-bounds Read.
2. Out-of-bounds Write.
3. Incorrect permission assignment for
critical resource.

Table 4: Most Frequently Appeared Weaknesses

ARES 2021, August 17–20, 2021, Vienna, Austria Yuning Jiang, Manfred A. Jeusfeld, and Jianguo Ding

one way to enhance the quality of shared cyber threat intelligence
(CTI).

5 CONCLUSION
Verifying the trustworthiness of vulnerability information is chal-
lenging but necessary before employing this information into cy-
bersecurity decision making. In this paper, we evaluate the data
inconsistencies of open-source vulnerability repositories in vulner-
ability assessment, particularly in the perspective of cybersecurity
awareness enhancement. To do so, we carried out an empirical case
study of the IT and OT system of a company in Sweden, mainly
its data centre, network, control software, and the IoT segments.
During this case study, we extracted a signi�cant amount of vul-
nerability instances, based on which we reveal some unexpected
weaknesses that decision-makers were not aware of before. We also
observed that inconsistent vulnerabilities are retrieved from CVE,
NVD and vendor websites using the exact query keywords. We
then systematically measured the in�uence of inconsistent vulnera-
bilities on exploitability and impact levels, and the major weakness
types of thewhole investigated system. The high rate of inconsistent
vulnerabilities in the control system and the network components
are only valid in this case study. The rate of data inconsistency may
di�er in other organisations. Still, speci�c sub-systems can render
a high percentage of data inconsistency.

To further enhance public cybersecurity data sources, we plan to
explore data reliability validation automation. Vulnerability reposi-
tories of trusted vendors could be incorporated into a cross-linked
local vulnerability database to detect inconsistencies automatically.
Other cybersecurity data sources like security blogs where vul-
nerabilities are �rst identi�ed also provide valuable references to
be integrated. Natural language processing [18] and text mining
techniques [12] can be employed to automate correlation between
multiple cybersecurity repositories and correction of inconsistent
vulnerability information.

REFERENCES
[1] Afsah Anwar, Ahmed Abusnaina, Songqing Chen, Frank Li, and David Mohaisen.

2020. Cleaning the NVD: Comprehensive Quality Assessment, Improvements,
and Analyses. arXiv preprint arXiv:2006.15074 (2020).

[2] Terje Aven, Yakov Ben-Haim, H Boje Andersen, Tony Cox, Enrique López
Droguett, Michael Greenberg, Seth Guikema, Wolfgang Kröger, Ortwin Renn,
Kimberly M Thompson, and others. 2018. Society for risk analysis glossary.
Society for Risk Analysis, August (2018).

[3] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta,
Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detecting missing
information in bug descriptions. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 396–407.

[4] Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing, Yuqing Zhang, and GangWang.
2019. Towards the detection of inconsistencies in public security vulnerability
reports. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 869–885.

[5] Sadegh Farhang, Mehmet Bahadir Kirdan, Aron Laszka, and Jens Grossklags.
2020. An Empirical Study of Android Security Bulletins in Di�erent Vendors. In
WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, Yennun
Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen (Eds.). ACM / IW3C2,
3063–3069. DOI:http://dx.doi.org/10.1145/3366423.3380078

[6] Allen D Householder, Garret Wassermann, Art Manion, and Chris King. 2017.
The cert guide to coordinated vulnerability disclosure. Technical Report. Carnegie-
Mellon Univ Pittsburgh Pa Pittsburgh United States.

[7] Matthias Jarke, Manfred A Jeusfeld, Christoph Quix, and Panos Vassiliadis. 1999.
Architecture and quality in data warehouses: An extended repository approach.
Information Systems 24, 3 (1999), 229–253.

[8] Yuning Jiang, Yacine Atif, and Jianguo Ding. 2020. Cyber-Physical Systems
Security Based on a Cross-Linked and Correlated Vulnerability Database. In
Critical Information Infrastructures Security, Simin Nadjm-Tehrani (Ed.). Springer
International Publishing, Cham, 71–82.

[9] Hyeonseong Jo, Jinwoo Kim, Phillip Porras, Vinod Yegneswaran, and Seungwon
Shin. 2020. GapFinder: Finding Inconsistency of Security Information From
Unstructured Text. IEEE Transactions on Information Forensics and Security 16

Data Inconsistency of Open-Source Vulnerability Repositories ARES 2021, August 17–20, 2021, Vienna, Austria

(2020), 86–99.
[10] Xiaojing Liao, Kan Yuan, XiaoFeng Wang, Zhou Li, Luyi Xing, and Raheem

Beyah. 2016. Acing the ioc game: Toward automatic discovery and analysis of
open-source cyber threat intelligence. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 755–766.

[11] David Loshin. 2010. Master data management. Morgan Kaufmann.
[12] Syed ShariyarMurtaza,Wael Khreich, AbdelwahabHamou-Lhadj, and Ayse Basar

Bener. 2016. Mining trends and patterns of software vulnerabilities. Journal of
Systems and Software 117 (2016), 218–228.

[13] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor Dumi-
tras. 2015. The attack of the clones: A study of the impact of shared code on
vulnerability patching. In 2015 IEEE symposium on security and privacy. IEEE,
692–708.

[14] Viet HungNguyen and FabioMassacci. 2013. The (un) reliability of nvd vulnerable
versions data: An empirical experiment on google chrome vulnerabilities. In
Proceedings of the 8th ACM SIGSAC symposium on Information, computer and
communications security. 493–498.

[15] MingJian Tang, Mamoun Alazab, and Yuxiu Luo. 2017. Big data for cybersecurity:
Vulnerability disclosure trends and dependencies. IEEE Transactions on Big Data
5, 3 (2017), 317–329.

[16] Zhilin Yang, Ruslan Salakhutdinov, and William W Cohen. 2017. Transfer learn-
ing for sequence tagging with hierarchical recurrent networks. arXiv preprint
arXiv:1703.06345 (2017).

[17] Xiaoxin Yin, Jiawei Han, and S Yu Philip. 2008. Truth discovery with multiple
con�icting information providers on the web. IEEE Transactions on Knowledge
and Data Engineering 20, 6 (2008), 796–808.

[18] Ziyun Zhu and Tudor Dumitraş. 2016. Featuresmith: Automatically engineering
features for malware detection by mining the security literature. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
767–778.

[19] Ziyun Zhu and Tudor Dumitras. 2018. Chainsmith: Automatically learning the
semantics of malicious campaigns by mining threat intelligence reports. In 2018
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 458–472.

