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Abstract: Operator4.0 was coined in 2016 to create a research arena to understand how the physical, 
cognitive, and sensorial capabilities of an operator could be enhanced by automation. To create an 
interaction between operator and robots, there are important factors that needs to be defined. Two 
important factors are the task and function allocation. Without well-defined tasks it is hard to allocate the 
tasks between the robot and the human to create resource flexibility. Furthermore, it the tasks are 
knowledge-based rather than rule-based, the cycle time between operators can differ a lot. Two 
assumptions are discussed regarding knowledge-based tasks and automation. These are also tested in an 
experiment. Results show that it is a large variation of the cycle time for both humans (between 1,58 
minutes up to 4,40 minutes) and robots (between 1,94 minutes up to 4,49 minutes) when it comes to 
knowledge-based and machine learning systems. 
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1. INTRODUCTION 

Final assembly can be described as the last area in the 
product flow and is often manual due to the large variety, 
high degree of flexibility, batch size one and mass 
customisation of the final product. In final assembly, 50 
percent of production time, 20 percent of overall cost and 20 
to 70 percent of labour cost is associated with tasks that are 
primarily done by human operators (Hu et al., 2011). A 
majority of tasks performed by the human operators are 
preformed based on prior experience i.e. the tasks are based 
on knowledge or skill (75 percent according to a Swedish 
study (Fast-Berglund and Stahre, 2013), making them more 
difficult to automate since the tasks are not fully defined. If 
the task is not fully defined a variety of the cycle-time can 
occur depending on the operator’s capability to understand 
and solve the tasks. Optimization of cycle time is one of the 
most important goals in industrial applications (Sayler and 
Dillmann, 2011). A varying cycle-time can have a big impact 
on both the overall time, quality and productivity of the 
product (Johansson et al., 2016). The variation makes it 
difficult to balance the line and to allocate different tasks to 
different resources.  

The thrive towards a more physically automated final 
assembly were done in the end of 1990s by defining the 
optimum modular assembly system as  a combination of 

flexible workstations of differing degrees of automation, 

ranging from robot workstations to manual workstations with 

automated material handling. (Heilala and Voho, 1997) 

To achieve this task and function allocation is vital. 

Twenty years later. a thrive towards a more cognitively 
automated lead to the definition of smart manufacturing,  

“Smart manufacturing can be described as a data intensive 

application of information technology at the shop floor level 

and above to enable intelligent, efficient, and responsive 

operations.” (Thoben et al., 2017) 

 
Both these strategies will be needed in order to go towards a 
focus towards an even more personalised demand than mass 
customisation i.e. industry 5.0 (Javaid and Haleem, 2020). 
This industrial revolution is required to provide better 
interaction among humans and machines to achieve effective 
and faster outcomes.  

The operator 4.0 was coined in 2016 to understand how the 
physical, cognitive, and sensorial capabilities of the operator 
could be enhanced with help of the enabling technologies of 
industry4.0 (Romero et al., 2016). This, to achieve a flexible 
and smart assembly system. 

For Operator 4.0 (Romero et al., 2020) it is vital to sustain a 
human-centric approach even though the level of automation 
is increasing (Kaasinen et al., 2020). Our assumptions are 
that even though there are a lot of technologies available, the 
final assembly will still be performed by human operators 
and maybe a combination in human-robot teams (Malik Ali 
and Bilberg, 2019). To combine humans and robots, well 
defined tasks are needed (or at least the goal of the station).  

Task and function allocation can be described as what to do 
and who that will do it. In a future assembly system with 
more intelligent and self-learning robots, the robots will act 
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1. INTRODUCTION 

Final assembly can be described as the last area in the 
product flow and is often manual due to the large variety, 
high degree of flexibility, batch size one and mass 
customisation of the final product. In final assembly, 50 
percent of production time, 20 percent of overall cost and 20 
to 70 percent of labour cost is associated with tasks that are 
primarily done by human operators (Hu et al., 2011). A 
majority of tasks performed by the human operators are 
preformed based on prior experience i.e. the tasks are based 
on knowledge or skill (75 percent according to a Swedish 
study (Fast-Berglund and Stahre, 2013), making them more 
difficult to automate since the tasks are not fully defined. If 
the task is not fully defined a variety of the cycle-time can 
occur depending on the operator’s capability to understand 
and solve the tasks. Optimization of cycle time is one of the 
most important goals in industrial applications (Sayler and 
Dillmann, 2011). A varying cycle-time can have a big impact 
on both the overall time, quality and productivity of the 
product (Johansson et al., 2016). The variation makes it 
difficult to balance the line and to allocate different tasks to 
different resources.  

The thrive towards a more physically automated final 
assembly were done in the end of 1990s by defining the 
optimum modular assembly system as  a combination of 

flexible workstations of differing degrees of automation, 

ranging from robot workstations to manual workstations with 

automated material handling. (Heilala and Voho, 1997) 

To achieve this task and function allocation is vital. 

Twenty years later. a thrive towards a more cognitively 
automated lead to the definition of smart manufacturing,  

“Smart manufacturing can be described as a data intensive 

application of information technology at the shop floor level 

and above to enable intelligent, efficient, and responsive 

operations.” (Thoben et al., 2017) 

 
Both these strategies will be needed in order to go towards a 
focus towards an even more personalised demand than mass 
customisation i.e. industry 5.0 (Javaid and Haleem, 2020). 
This industrial revolution is required to provide better 
interaction among humans and machines to achieve effective 
and faster outcomes.  

The operator 4.0 was coined in 2016 to understand how the 
physical, cognitive, and sensorial capabilities of the operator 
could be enhanced with help of the enabling technologies of 
industry4.0 (Romero et al., 2016). This, to achieve a flexible 
and smart assembly system. 

For Operator 4.0 (Romero et al., 2020) it is vital to sustain a 
human-centric approach even though the level of automation 
is increasing (Kaasinen et al., 2020). Our assumptions are 
that even though there are a lot of technologies available, the 
final assembly will still be performed by human operators 
and maybe a combination in human-robot teams (Malik Ali 
and Bilberg, 2019). To combine humans and robots, well 
defined tasks are needed (or at least the goal of the station).  

Task and function allocation can be described as what to do 
and who that will do it. In a future assembly system with 
more intelligent and self-learning robots, the robots will act 

 
 

     

 

more towards knowledge-based tasks. To understand the 
importance of defining the tasks in a more rule-based manner 
this paper aims to discuss the following assumption. 

Assumption:  

Knowledge-based tasks will give a variance in cycle-time 

regardless humans or robots learning a task 

The variety is vital to understand and to consider when 
designing so called human-robot teams (Wang et al., 2017). 
The more different interactions the system have between 
robots and humans the more important it is to decrease the 
variance of the cycle-time. Solutions such as Human-Robot 
Orchestration are using advanced algorithms for scheduling, 
but the tasks are often easy and rule-based or to use the 
human as little as possible to only intervene when it is 
absolutely necessary (Chatzikonstantinou et al., 2020) or that 
that the HRC-design is seen as a classic scheduling problem 
were the human workers follow exactly the given work plan 
and execute each task at the specified time (Bogner et al., 
2018). If both the human and the robot shall be seen as 
flexible resources that learns in a more knowledge-based 
way, the cycle-time also needs to be taken into consideration.  

 

2. KNOWLEDGE-BASED TASKS 

The model of Skill, Rule and Knowledge was developed by 
Rasmussen in 1983 (Rasmussen, 1983) and describes the 
human behaviour and decision making in a human-machine 
environment. It was and still is, mostly used in human factors 
and for complex tasks and error handling (or preventing 
errors).  
Knowledge-based tasks can be described as unfamiliar events 
occur where neither existing skill nor rules appear. This can 
be comparable to problem solving or reasoning. This 
behaviour is true for both novice operators but also for 
experienced operators 
The cognitive iceberg and what, in recent years, has become 
known as system 1 and system 2 (Kahneman, 2011), is not 
very farfetched. While Kahneman showed many examples of 
the decision making process breaking down due to overuse of 
the intuitive system 1 as opposed to the reasoning system 2, 
his conclusions in no way degrade system 1 to some sort of 
flaw in human decision making but rather stresses the need 
for both systems in order for us to function efficiently in a 
complex society. Similarly automatic information processing 
(Shiffrin and Schneider, 1977), or automatism, has been 
known for a long time and while errors in decision making 
are also made here, it is widely acknowledged that the fast, 
intuitive, and resource efficient behaviour that is attributed to 
automatism, or system 1, is a property of decision making 
that we cannot live without. It is in fact the case that when 
system 1 functions properly and is applied on appropriate 
tasks, it is highly efficient and accurate as it lays the 
foundation for routine behavior. Breakdowns generally occur 
when intuition conflicts with the actual world and the human 
fails to recognize the need for deeper reasoning and 
activation of system 2. 

Knowledge-based tasks are aligned with more complex 
decision making, requiring conscious thought and focus to 
perform, thereby using system 2 in Kahneman’s terms.  
 
To use system 2 takes effort and time. Since it is also built on 
previous experiences, all human operators will deal with the 
knowledge-based tasks differently. 
 

 

3. LEARNING PHASE FOR OPERATORS AND ROBOTS 
For human-robot collaboration applications to function 
efficiently, the situation awareness (SA) of the human must 
be considered. SA can be further described into three levels 
of the perception of the surroundings; “the perception of the 
elements in the environment within a volume of time and 
space (level 1), the comprehension of their meaning (level 2) 
and the projection of their status in the near future (level 3) 
(Mica R. Endsley, 2000).  
In order to understand this complexity, both the operator and 
the robot perspective needs to be considered (Hoc, 2000). 
Three phases has been identified as important phases when 
creating a cognitive automation strategy (Mattsson et al., 
2020b); the learning phase, the operational phase and the 
disruptive phase. In this paper, the challenges are discussed 
for the two first phases from an operator and a robot 
perspective. 
 
Operator perspective  

From the operator’s perspective, in the learning phase of a 
new assembly task the operator is often utilizing knowledge-
based behaviour to learn, illustrated in figure 1, while our 
argument is that the optimal behaviour would be more rule 
based. If the operator is doing the task based on too much 
skill it is hard to miss small changes, for example customer 
changes. 
 

 
Fig. 1 phases and behaviour in assembly systems, operator 
perspective  
 
Two challenges for operator 3.0 that has been seen are 
(Tarrar et. al, 2020) connected to the task allocation and the 
different behaviour levels; 
Know what task to perform. For common tasks, knowing 
what task to perform is often done by own experience, 
However, infrequent tasks are easily forgotten (disruptive 
phase, knowledge-based), and this coupled with poor quality 
or availability of instructions. 
Know how to perform a task. The knowledge of how to 
perform a task is often acquired during training. However, 
updates to the task, disturbances, or contextual changes might 
require new tasks or ways to perform a task (knowledge-
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based behaviour in terms of reasoning (Mattsson et al., 
2020a). The knowledge of how to perform a specific task is 
also highly affected by the level of variation in work tasks 
(Hu et al., 2011), a high product variation entails a higher 
cognitive demand as more bits of information needs to be 
remembered (Brolin et al., 2017). The same issue might 
appear in very long task or takt times. A task which recurs 
rarely is naturally more difficult to remember.  
 
 
Robot perspective 

In traditional industrial robot applications, there are no 
learning phase for the robots. They are programmed on or 
off-line directly for the operational phase and they are 
operating based on rules (or robot code). The methods used 
today i.e. programming are mostly rule-based i.e. if…then, go 
to, grasp, pick etc. With new technologies such as contact-
based manipulation (Sayler and Dillmann, 2011), learning by 
demonstration (Argall et al., 2009) and machine learning 
(Sharp et al., 2018), there is a more clear learning phase for 
the robots (Fig. 2).  There are three different strategies when 
training machine learning agents: unsupervised learning, 
reinforcement learning, and supervised learning. In 
unsupervised learning the agents gradually detect patterns in 
the input data and forms potentially useful clusters. 
Reinforcement learning means that the agent is “rewarded” or 
“punished” depending on output value. An agent receiving 
supervised learning gets a training set containing input data 
and corresponding output values. If the output value is part of 
a finite set, e.g. is an image a dog or a cat, it is a solution to a 
classification problem. Values that are real numbers, e.g. 
tomorrows stock market, are solutions to regression 
problems. (Russell and Norvig, 2013). An early viable 
method is called R-CNN, which focus on the classification 
problem by dividing the image into many sub sections 
(region proposals) (Girshick et al., 2014). Since the number 
of proposals generated for each image can be very large, this 
is method is rather computationally heavy, but improvements 
in methods Fast R-CNN (Girshick, 2015) and Faster R-CNN 
(Ren et al., 2015) have reduced the computation and training 
time significantly. It is also possible to approach the object 
localisation problem as a regression problem, which is the 
case for the Single Shot Detector (SSD) algorithm (Liu et al., 
2016). For a more in-depth view of the evolution of various 
approaches see (Zhao et al., 2019). 

 
Fig. 2 phases and behaviour in assembly systems, robot 
perspective  
 
Hence, there can be a difference in time to learn and time to 
teach. The trade-off between speed and accuracy of machine 
learning approaches makes choosing the correct approach 
rely on the specific requirements of the application (Huang et 

al., 2017). With supervised learning, there is a notion of 
absolute accuracy: since every training example is labelled 
with the desired output, the network predicts this output 
either correctly or incorrectly. This contrasts with 
unsupervised learning, where the machine learns underlying 
structure that is unlabelled in the training data. Without 
output-labelled training examples, there is no notion of 
absolute accuracy (Andreassen et al., 2019). 
There are several challenges for the robot applications in 
terms of control and programming, both when it comes to the 
learning phase, the operational phase, and the integration 
with other systems (the interoperability). Furthermore, 
interaction between the human and robots and real-time 
programming and interaction 
 
4. RESULTS FROM EXPERIMENTS 
Results from the assumptions shows that there can be 
knowledge-based learning from both humans and robots and 
that the cycle-time to learn and understand can differ in both 
cases. Two experiments made in lab environment will show 
the assumptions in a more practical way. 
 
Nut detection using Machine Learning with robots 

One experiment was a test using supervised learning in 2019 
(Wedin et al., 2020). Supervised learning was used to detect 
inverted and non-inverted nuts. The inverted nuts should be 
untouched, and the others shall be fastened at the station, 
today this is done manually by operators, but the quality is 
poor and it is easy to miss a nut. The nut detection process 
consisted of three parts: review of the field, setting up an 
environment, and training and testing of machine learning 
models, illustrated in fig. 3. Two machine learning methods 
have been tested; Faster R-CNN (Ren et al., 2015) and SSD 
(Liu et al., 2016).  

 
Fig. 3 Station set-up for the robot and the detection of the 
nuts  
 

The learning phase is done with help of a human that 
identifies the different types of nuts and then the algorithms 
are trained to detect the nuts. 

Four tests were performed and test four reached the highest 
accuracy with a total hit rate of 95,7% using 322 images, 
identifying 928 nuts in 4,49 seconds. This is a significantly 
higher number than the 35,7% of mean accuracy found in a 
systematic comparison test (Huang et al., 2017). That 
comparison is however based on the COCO data set and tires 
to detect many objects of various sizes and shapes. It is much 
easier to optimise an algorithm to only detect specific objects 
(Jiang and Learned-Miller, 2017).  
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Between the four tests, the detection speed differed from 1,94 
seconds up to 4,49 seconds (231 percent) and the hit-rate 
differed from 67 percent up to 95,7 percent. 

The type of algorithm used does play some factor, the result 
shows that SSD is faster than Faster R-CNN, again, this was 
something already known. The trade-off between speed and 
accuracy of machine learning approaches makes choosing the 
correct approach rely on the specific requirements of the 
application (Huang et al., 2017). 

Knowledge-based tasks for problem solving 

The second experiment was designed to show that a high 
degree of knowledge-based tasks will affect the cycle time of 
the task using an operator. A station was design with high 
degree of knowledge-based tasks. The minimum of task 
needed to complete the station are 10 interactions with the 
robot. According to Miller, more than 7 tasks are cognitively 
demanding for a human without cognitive support (Miller, 
1956) so this can be seen as a complex task to perform. The 
task is a problem-solving task were the participant shall sort 
three different boxes with three different colours of blocks 
(Start) to three boxes were the same colours are in the same 
box (Finish). The problem is a classic problem that can be 
found in many experiments that test the logic thinking and 
problem-solving skills (Fig. 4).  

 

Fig. 4 Sorting problem 

None of the participants had solved this problem before so 
they can all be called novice with low experiences, so they 
are expected to use system 2 for problem solving. 

Twenty participants, 11 men and 9 women from the age 21 to 
61 years old, did the test. The participants where students and 
teachers from Chalmers university but from different areas of 
education and roles. Half of the participants were master 
students in production engineering or design and half were 
teachers or researchers in the areas of robotics, cognitive 
automation, and economics. Some have had experiences with 
industrial robots (35 percent) and industrial robots for 
collaborative applications (45 percent). The robot moved 
when the participants pushed the robots in the given 
directions. To solve the sorting problem a minimum of 10 
interactions between operator and robot are needed. The 
experiment was set up as in fig. 5 (one cycle can be viewed at 
https://youtu.be/J-TGoD3rYMk). 

Fig. 5 station set-up  

The data collection from the experiment was both qualitative 
and quantitative. In this paper, only the cycle-times are 
included. The result from the experiment is shown Fig. 6 
showing the differences for the cycle-time are presented in 
the three different rounds. 

 

Fig. 6 Cycle times from round one to three  

The median for the cycle time has decreased from 1st to 3rd 
round which indicates the participants has learned how to 
perform the task. From the video and the interviews, it was 
clear that around 60 percent (n=12) had a strategy from 1st to 
3rd round, how to improve the method. The differences are 
the biggest in round 3 were both the differences in min-max 
and 25-75 percentile has increased, only the median had 
decreased. This can indicate the group has improved the 
cycle time but the differences between the members in the 
group have increased. This is a small group of participants, 
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but it is still an indication that the cycle-time will differ 
between operators if the task is more knowledge based, this 
can make it hard to balance and can lead to stress among the 
participants outside the “25-75 box” (n=7).  For the next 
result regarding number of interactions, there is also an 
indication towards an increase number of interactions 
between the rounds. An interesting result is that the number 
of interactions is the highest in round 2. This can indicate that 
the participants without a clear strategy are testing a new way 
which often resulted in increased numbers of interactions. 
Some participants were also more stressed during round 2 
and med mistakes, pushing the robot to the wrong box which 
“costs” 2 interactions. Four of the participants, stuck to their 
strategy and had the same number of interactions all three 
rounds, two of them had the “optimal” number of interactions 
(n=10), both female, all four decreased the cycle time from 
1st to 3rd round but the two with 14 interaction was above the 
median of the cycle-time. The interaction with the robot is an 
important factor since it costs around 20 percent of the cycle 
time if you do one wrong interaction. The participants were 
not aware of this, and if they were, this could maybe lead to a 
more cautious handling of the robot. The experiment was a 
small sample experiment and more people need to be part of 
the experiment before more solid conclusions can be made 
regarding the differences in cycle-time and number of 
interactions. Hence, there is an indication that the hypothesis 
a high degree of knowledge-based tasks will affect the cycle 

time and the ability to automate the task. is true. The degree 
of knowledge-based task was high because the participant 
could choose multiple ways of solving the task and there was 
little indication on how to solve it. An early indication is also 
that all the female participants (P12-P20) improved their 
result from 1st to the 3rd round, this is a very small sample 
though so no direct conclusions can be drawn from this 
result. The experiment has given a lot of new thoughts about 
how to optimise and allocate tasks and functions in a human-
robot team cell. For future work, it would be interesting to 
continue to look at implications for the differences in cycle 
time; if adding small hints in the second round could help 
reduce the differences, if social robots and the area of 
anthropomatics can be further tested to see if participant are 
willing to ask for help or if the think that their plan is 
optimal. More tests regarding interaction and collaboration 
between humans and robots will be performed as well, an 
interesting aspect can be if both the robot and the human are 
using the unsupervised learning at the same time and the 
situation awareness in this environment. 

5. DISCUSSION AND CONCLUSION 

Even though the experiment samples were small, they both 
gives an indication on a variance in cycle time. If to design a 
Human-Robot Team station, tasks that are more towards 
knowledge based or disruptive nature should not be joint 
together as a first step. The tasks need to be more rule based 
if a collaborative station should work optimal and the spread 
needs to be decreased. If both the human and the robot uses 
knowledge-based tasks, it will also be hard to balance the 
stations and to have interactions over the level of co-existing 
tasks (e.g. synchronizing, cooperative and collaborative 

interactions). These higher levels of interaction will either 
needed to have a more rule-based task allocation or more 
complex communication and interaction between the human 
and the operator. Results from scheduling problems and 
human-robot orchestration will be an important factor to be 
able to perform task and function allocation in future 
systems. Furthermore, if humans will still be in the loop, 
cognitive support for the operators will be vital to have a 
situation awareness of the system and to be able to 
understand, react and collaborate with the robot.  
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result. The experiment has given a lot of new thoughts about 
how to optimise and allocate tasks and functions in a human-
robot team cell. For future work, it would be interesting to 
continue to look at implications for the differences in cycle 
time; if adding small hints in the second round could help 
reduce the differences, if social robots and the area of 
anthropomatics can be further tested to see if participant are 
willing to ask for help or if the think that their plan is 
optimal. More tests regarding interaction and collaboration 
between humans and robots will be performed as well, an 
interesting aspect can be if both the robot and the human are 
using the unsupervised learning at the same time and the 
situation awareness in this environment. 

5. DISCUSSION AND CONCLUSION 

Even though the experiment samples were small, they both 
gives an indication on a variance in cycle time. If to design a 
Human-Robot Team station, tasks that are more towards 
knowledge based or disruptive nature should not be joint 
together as a first step. The tasks need to be more rule based 
if a collaborative station should work optimal and the spread 
needs to be decreased. If both the human and the robot uses 
knowledge-based tasks, it will also be hard to balance the 
stations and to have interactions over the level of co-existing 
tasks (e.g. synchronizing, cooperative and collaborative 

interactions). These higher levels of interaction will either 
needed to have a more rule-based task allocation or more 
complex communication and interaction between the human 
and the operator. Results from scheduling problems and 
human-robot orchestration will be an important factor to be 
able to perform task and function allocation in future 
systems. Furthermore, if humans will still be in the loop, 
cognitive support for the operators will be vital to have a 
situation awareness of the system and to be able to 
understand, react and collaborate with the robot.  
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