
electronics

Article

FastUAV-NET: A Multi-UAV Detection Algorithm for
Embedded Platforms

Amir Yavariabdi 1,* , Huseyin Kusetogullari 2,3 , Turgay Celik 4,5 and Hasan Cicek 1

����������
�������

Citation: Yavariabdi, A.;

Kusetogullari, H.; Celik, T.; Cicek, H.

FastUAV-NET: A Multi-UAV

Detection and Tracking Algorithm for

Embedded Platforms. Electronics 2021,

10, 724. https://doi.org/10.3390/

electronics10060724

Academic Editor: Byung-Gyu Kim

Received: 9 February 2021

Accepted: 6 March 2021

Published: 19 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Mechatronics Engineering Department, Faculty of Engineering, KTO Karatay University,
42020 Konya, Turkey; hasan.cicek@karatay.edu.tr

2 Department of Computer Science, Blekinge Institute of Technology, 371 41 Karlskrona, Sweden;
huseyin.kusetogullari@bth.se

3 School of Informatics, Skövde University, 541 28 Skövde, Sweden
4 School of Electrical and Information Engineering and the Wits Institute of Data Science, University of the

Witwatersrand, Johannesburg 2000, South Africa; celikturgay@gmail.com
5 School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
* Correspondence: amir.yavariabdi@karatay.edu.tr

Abstract: In this paper, a real-time deep learning-based framework for detecting and tracking
Unmanned Aerial Vehicles (UAVs) in video streams captured by a fixed-wing UAV is proposed. The
proposed framework consists of two steps, namely intra-frame multi-UAV detection and the inter-
frame multi-UAV tracking. In the detection step, a new multi-scale UAV detection Convolutional
Neural Network (CNN) architecture based on a shallow version of You Only Look Once version 3
(YOLOv3-tiny) widened by Inception blocks is designed to extract local and global features from input
video streams. Here, the widened multi-UAV detection network architecture is termed as FastUAV-
NET and aims to improve UAV detection accuracy while preserving computing time of one-step
deep detection algorithms in the context of UAV-UAV tracking. To detect UAVs, the FastUAV-NET
architecture uses five inception units and adopts a feature pyramid network to detect UAVs. To obtain
a high frame rate, the proposed method is applied to every nth frame and then the detected UAVs are
tracked in intermediate frames using scalable Kernel Correlation Filter algorithm. The results on the
generated UAV-UAV dataset illustrate that the proposed framework obtains 0.7916 average precision
with 29 FPS performance on Jetson-TX2. The results imply that the widening of CNN network is a
much more effective way than increasing the depth of CNN and leading to a good trade-off between
accurate detection and real-time performance. The FastUAV-NET model will be publicly available to
the research community to further advance multi-UAV-UAV detection algorithms.

Keywords: deep learning; CNN; detection and tracking; Unmanned Aerial Vehicle; UAVs pursuit-
evasion

1. Introduction

An Unmanned Aerial Vehicle (UAV) is a low-to-medium altitude, light weight, small,
low cost, and slow aircraft that can be controlled either remotely by a human operator or
autonomously via an onboard computer. UAVs have simple mechanical structure as well
as they can fly outdoor or indoor at various speeds, hover over a point of interest, perform
maneuver in close distance to obstacles, and pursue difficult tasks without putting opera-
tor’s health and safety in danger [1]. Due to the aforementioned advantages, UAVs have
been employed in a wide range of military and civil applications such as surveillance [2],
aerial photography [3], infrastructure inspection [4], express delivery [5], pesticides spray-
ing [6], disaster monitoring and rescue [7], and many others [8]. Generally, many of these
applications have employed individual UAVs, but in recent years, there has been tremen-
dous escalation in development of applications using multiple UAVs and UAV swarms.
Therefore, currently, the main research effort in this context is directed toward developing
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unmanned aerial systems for UAVs cooperation, multi-UAV autonomous navigation, and
UAVs pursuit-evasion problems. This paper focuses on multi-UAV pursuit problem.

In UAVs pursuit problem, the vital task is to detect and track a target or leader UAV
using a tracker or follower UAV. Therefore, the strategies in this context can be either
competitive or collaborative between UAVs. For detection and tracking purposes, UAVs
must sense their environment. To achieve this, optical sensors are the most suitable ones due
to: (1) they are cheap and light; (2) they provide rich information about surrounding scene;
and (3) they have low power consumption. To develop vision-based UAVs for pursuit
purpose, a real-time detection algorithm must be developed to localize and recognize one
or multiple UAVs appearing in video streams captured by tracker/follower UAV. However,
this is a very challenging problem because of several issues: (1) large variations in target
or leader UAV’s visual appearance caused by many factors such as illumination changes,
weather conditions, distance between UAVs, UAVs’ orientation, occlusion, and specular
light (see Figure 1a–f); (2) existence of shadows (see Figure 1g); (3) low contrast between
UAV and background (see Figure 1h); (4) large variations in scene background; and (5)
limited computing power and memory of onboard embedded devices of UAV platforms.
In this paper, to address these challenges, a new shallow deep learning-based method
for multi-UAV detection and tracking is proposed to achieve high detection and tracking
accuracy while having low computational complexity.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Detecting target or leader UAV in video streams, captured by tracker or follower UAV, deals with several issues
including: (a–f) large variations in UAV’s visual appearance, viewpoint, dimension of UAVs, illumination, and weather
conditions; (g) existence of shadows in scene; as well as (h) low contrast between UAV and background.

In the field of computer vision, many object-detection algorithms have been devel-
oped in the last few decades [9]. Conventional object-detection methods (e.g., [10,11]) have
been used in many applications and they are mainly based on sliding window search
or regional proposal and handcrafted features. Generally, these methods provide low
detection accuracy in complex scene scenarios as handcrafted features cannot express the
characteristics of objects precisely and they are computationally expensive. Consequently,
these approaches are not applicable to real-time computer vision applications. To cope with
the limitation of the conventional approaches, recently many object-detection algorithms
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based on deep Convolutional Neural Networks (CNNs) have been developed and em-
ployed [12,13]. Generally, deep learning-based object-detection algorithms can be divided
into two classes: two-stage and one-stage object detectors. In the former approach, first,
a region proposal network is used to estimate candidate object bounding boxes. Then in
the second stage, the network extracts features from each candidate box and performs
classification and bounding-box regression. In this manner, several methods such as R-
CNN [14], SPP-Net [15], Fast R-CNN [16], Faster R-CNN [17], R-FCN [18], and FPN [19]
have been proposed. Even though these methods have demonstrated high accuracy, they
usually suffer from high computational cost. The latter object detector approach uses a
single deep neural network with regression strategy to directly classify and detect objects.
Please note that in this approach, the process of region proposal is avoided. Some of the
one-step detectors are OverFeat [20], AttentioNet [21], G-CNN [22], Single Shot Detector
(SSD) [23], You Only Look Once (YOLO) [24], YOLOv2 [25], YOLOv3 [26], DSSD [27],
DSOD [28], RetinaNet [29], and RefineDet [30]. These methods provide both time efficiency
and reasonable accuracy which are the ultimate goals of the real-time object-detection task.
Among others, YOLO series algorithms have shown a good track record in solving UAV
pursuit problem and achieved a higher mean average precision (mAP) than other real-
time deep learning-based systems. For instance, A. Bonnet et al. [31], S. Arola et al. [32],
and M. A. Akhloufi et al. [33] propose a deep learning framework to detect and track a
follower or leader UAV using an optical camera mounted on another UAV. To achieve
this, a search area proposal based on particle filters [34] is combined with YOLOv2 CNN
model [25] to improve the performance of YOLO algorithm for tracking a UAV located
far from the tracker or follower UAV. In these works, the estimated bounding boxes using
YOLOv2 is given to particle filters algorithm to predict the target positions in next frames.
H. Saribas et al. [35] proposes a real-time hybrid detection and tracking method to pur-
suit an UAV in video frames. In this manner, Kernelized Correlation Filter (KCF) [36] is
integrated with YOLOv3 [26] and YOLOv3-tiny detection models. More, specifically, this
framework uses shallow version of YOLOv3 (YOLOv3-tiny) to detect a UAV in the first
frame or in frames where the tracker fails, and it employs KCF to maintain the tracking
in intermediate frames. Although the state-of-the-art methods show the applicability of
YOLO series CNN models in real-time UAV-UAV detection and tracking, the methods are
tested on simple scenarios as (1) YOLO and YOLOv2 CNN backbones are designed for
large objects and (2) YOLOv3-tiny CNN network is a relatively shallow and small network
which cannot extract UAV image features with high precision. Therefore, to meet the needs
of high UAV detection accuracy, it is vital to develop a new framework to make a trade-off
between speed and accuracy for multi-UAV pursuit application. The differences between
the proposed method and the existing UAV detection and tracking frameworks are shown
in Table 1.

Table 1. A comparative overview of UAV-UAV detection and tracking methods.

Method Detection Strategy Backbone Width of CNN Layers Tracking Strategy Problem Type

Bonnet et al. [31–33] YOLOv2 Darknet-19 1 32 particle filters single-UAV pursuit

Saribas et al. [35] YOLOv3-tiny Darknet-19 1 24 KCF single-UAV pursuit

Proposed Method FastUAV-NET Inception module 4 28 sKCF multi-UAV pursuit

This paper presents a novel real-time deep learning-based framework on embedded
computer systems for multi-UAV detection and tracking in airborne videos captured in
complex and dynamic outdoor environments. The proposed UAV detection framework is
inspired by YOLOv3-tiny algorithm and modifies its CNN model to enhance its feature
extraction capability while preserves its fast detection speed. Generally, in the context of
UAV pursuit, YOLOv3-tiny [26] detection method provides low detection accuracy, and the
main reason is three-fold. The first reason is because it uses shallow and simple Darknet19
network architecture as backbone which causes insufficient feature extraction, especially at
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the deep convolutional layers where the small UAVs may not have enough information to
learn from the network. The second reason is that it makes deep CNN model by simply
stacking convolutional and max pooling layers, which simply can result in overfitting
and degradation of neural network. The third reason is that YOLOv3-tiny’s internal CNN
layers use fixed filter sizes (3× 3) to detect UAVs. However, UAVs and the objects in their
surrounding environments appear with large variations in sizes and aspect ratios so that
it is important to design a new network architecture with different filter sizes to extract
features with high precision. To solve all these issues, we develop a new CNN architecture,
called FastUAV-NET, with the following characteristics:

1. It is an embedded-based CNN network architecture as it needs low compute and
memory demand.

2. It is a sparsely connected CNN architecture, inspired by Inception model [37], to main-
tain the computational cost, while increasing the depth and width of the CNN model.

3. It is a tiny wide network architecture which uses five Inception blocks, where each
block is a combination of 1× 1, 3× 3, 5× 5 convolutional layers and a max pooling
layer, to extract features from scene objects with various sizes and aspect ratios as
well as multiple orientations.

Furthermore, the proposed CNN architecture adopts a feature pyramid network to
detect UAVs in two different scales. Even using the proposed tiny wide CNN network
architecture, the detection frame rate is still low on computer embedded systems mounted
onto UAVs. Therefore, the proposed FastUAV-NET is only used to initialize bounding
boxes for UAVs in the scene and then sKCF tracking algorithm [38] which can run at a high
frame rate is used to track the bounding boxes. The proposed UAV detection algorithm
is applied to every 6th frame and then the detected UAVs are tracked in intermediate
frames via sKCF [38]. The experiments are performed on a variety of test videos and
results indicate that the proposed method is robust to issues caused by fast moving UAVs,
changes in scale and aspect ratio of UAVs, illumination variation, camera viewpoint change,
specular light, and shadow. Moreover, results show that the proposed framework has the
least error detection rate compared to the state-of-the-art methods.

Contributions:

The main contributions of the paper are as follows:

1. proposing a new framework composed of a detector based on a novel deep learning
architecture, named FastUAV-NET, and a tracker based on scalable kernel correla-
tion filter;

2. fast and accurate localization o multiple UAVs in airborne video frames;
3. developing a framework that could run online on a GPU embedded platform mounted

onto an UAV; and
4. generating the largest UAV-UAV dataset which consists of 25,000 video frames with

large variations in both UAVs’ backgrounds and foregrounds.

This paper is organized as follows. Section 2 briefly describes the YOLOv3-tiny
algorithm. Section 3 describes the proposed framework for multi-UAVs pursuit. Section 4
provides experimental results of the proposed method and compared with state-of-the-art
methods. The paper is concluded in Section 5.

2. Brief Review of YOLOv3-Tiny

Currently, one-step object-detection algorithms (e.g., [20–30]) have been widely used
in many object-detection problems. Among others, YOLOv3 [26] is one of the most popular
object detectors since a single convolutional neural network simultaneously predicts multi-
ple bounding boxes and class probabilities at high accuracy and a fast inference speed. To
extract features and detect objects, YOLOv3 [26] stacks two fully convolutional underlying
architectures with 1× 1 and 3× 3 convolution kernels. More specifically, Darknet53 [26]–it
is inspired by Resnet [39]–with 53 convolutional layers is used as a backbone to extract



Electronics 2021, 10, 724 5 of 19

features and then 53 more layers are stacked onto it to achieve object detection. However,
using 106 convolutional layers causes heavy computational cost and large run-time memory
footprint so that the model is not able to achieve real-time speed in embedded systems. In
other words, Darknet53 network deals with a problem of diminishing feature reuse, which
makes this network slow. To take advantage of this widely used object-detection method
in real-time applications, a lightweight version, called YOLOv3-tiny, has been developed.
The YOLOv3-tiny uses Darknet19 network architecture which includes 13-layer for feature
extraction and 11 more layers for object detection. The structure of YOLOv3-tiny is shown
in Table 2. Generally, this method achieves up to 220 Frame Per Second (FPS), whereas
YOLOv3 achieves up to 35 FPS on a computer with a Titan X GPU. In YOLOv3-tiny, to
achieve this high computational performance, first, the Darknet53 architecture is simplified
by reducing the size of the backbone model and then a two-scale prediction strategy is
used to detect objects on two-scale feature maps.

Table 2. YOLOv3-tiny network structure which uses Darknet19 as the backbone network and 2-scale prediction.

Layer (L) Type Filter (F) Kernel Stride Input Output

0 Conv 16 3× 3 1 416× 416× 3 416× 416× FL0

1 Maxpool 2× 2 2 416× 416× FL0 208× 208× FL0

2 Conv 32 3× 3 1 208× 208× FL0 208× 208× FL2

3 Maxpool 2× 2 2 208× 208× FL2 104× 104× FL2

4 Conv 64 3× 3 1 104× 104× FL2 104× 104× FL4

5 Maxpool 2× 2 2 104× 104× FL4 52× 52× FL4

6 Conv 128 3× 3 1 52× 52× FL4 52× 52× FL6

7 Maxpool 2× 2 2 52× 52× FL6 26× 26× FL6

8 Conv 256 3× 3 1 26× 26× FL6 26× 26× FL8

9 Maxpool 2× 2 2 26× 26× FL8 13× 13× FL8

10 Conv 512 3× 3 1 13× 13× FL8 13× 13× FL10
11 Maxpool 2× 2 1 13× 13× FL10 13× 13× FL10

12 Conv 1024 3× 3 1 13× 13× FL10 13× 13× FL12

13 Conv 256 3× 3 1 13× 13× FL12 13× 13× FL13

14 Conv 512 3× 3 1 13× 13× FL13 13× 13× FL14

15 Conv 3× (4 + 1 + classes) 1× 1 1 13× 13× FL14 13× 13× FL15

16 Detection
17 Route 13
18 Conv 128 1× 1 1 13× 13× FL13 13× 13× FL18

19 Up-sampling 2 1 13× 13× FL18 26× 26× FL18

20 Route 19 & 8
21 Conv 256 3× 3 1 26× 26× (FL18 + FL8 ) 26× 26× FL21

22 Conv 3× (4 + 1 + classes) 1× 1 1 26× 26× FL21 26× 26× FL22

23 Detection

2.1. Detection Procedure in YOLOv3-Tiny

YOLOv3-tiny is an end-to-end object-detection method. In this method, the input
image splits into S × S grid cells (i.e., 13 × 13 and 26 × 26) which are used in a CNN
architecture to predict 3 bounding boxes and c class probability for each grid cell. In this
manner, the network predicts bounding-box center coordinates (x, y) relative to the bounds
of the grid cell as well as width and height (w, h) relative to the whole image. Moreover, a
confidence score (C) for each bounding box is estimated based on product of the probability
that the bounding box contains the object of interest (p(object)) and Intersection over Union
(IoU) of predicted box and ground-truth box. This can be formulated as follows:

C = p(object)× IoUGT
pred (1)

Please note that IoU represents a value between 0 and 1. To calculate IoU, first the
overlapping area between the predicted bounding box and ground-truth must be calculated
to manipulate intersection and then the intersection must be divided with union which
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is the total area between both predicted and ground-truth. Ideally, when the IoU value
closes to 1, it means the predicted bounding box is close to the ground-truth. Moreover,
in YOLOv3-tiny parallel with the bounding-box prediction, each grid cell also predicts c
conditional class probability.

p(c|object)× p(object)× IoUGT
pred = p(ci)× IoUGT

pred (2)

where the class-specific confidence score, which reflects how possible the object belonging
to the class exists in individual box confidence, is estimated via the product of the individual
box confidence and conditional class probability.

In contrast to the other YOLO versions, YOLOv3 and YOLOv3-tiny predict the ob-
jectness score (p(object)) for each bounding box using a multilabel classification approach
based on logistic regression rather than SoftMax to better model the data. The model
in this framework returns a tensor of shape S × S× number of anchors × (bounding-box
offsets+objectness prediction+c), where number of anchors, bounding-box offsets, and object-
ness prediction are set to 3, 4, and 1, respectively. In the final step of YOLOv3-tiny, the fine
tune bounding box(es) is generated using class-specific confidence score thresholding and
non-maximum suppression. Finally, to train YOLOv3-tiny, sum of the squared error loss is
used for bounding box and binary cross-entropy loss is used for the objectness score and
class probabilities. More specifically, YOLOv3-tiny loss function is broken into four main
parts: (1) error in bounding-box centers; (2) error in bounding-box dimensions; (3) loss
related to confidence score; and (4) object classification loss. In this manner, YOLOv3-tiny
employs the following loss function (L):

L = λcoord

s2

∑
i=0

B

∑
j=0

1obj
ij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

(3)

+ λcoord

s2

∑
i=0

B

∑
j=0

1obj
ij (2− wi × hi)

[
(wi − ŵi)

2 +
(

hi − ĥi

)2
]

−
s2

∑
i=0

B

∑
j=0

1obj
ij
[
Ĉilog(Ci) + (1− Ĉi)log(1− Ci)

]
− λnoobj

s2

∑
i=0

B

∑
j=0

1noobj
ij

[
Ĉilog(Ci) + (1− Ĉi)log(1− Ci)

]
−

s2

∑
i=0

1obj
i ∑

c∈classes
[ p̂i(c)log(pi(c)) + (1− p̂i(c))log(1− pi(c))]

where λcoord is a weight used to increase emphasis on boxes with objects whereas λnoobj

is used to lower the emphasis on boxes with no objects. In Equation (3), s2 is the number
of cells, B is the number of bounding boxes predicted by each grid, c is the number of
classes, C refers to the confidence score, and p(c) refers to the class prediction. Moreover,
1obj

i describes whether the object is in grid i, and 1obj
ij denotes that the jth bounding-box

predictor in grid i is responsible for that prediction.

2.2. YOLOv3-Tiny Network Architecture

The Darknet19 structure of the YOLOv3-tiny network consists of 24 layers where layer
0 to 12 are convolutional and pooling layers for extracting features of the target objects from
the input images. In the backbone architecture, each convolutional layer with filter size 3
and stride 1 is followed by a batch normalization, a Leaky ReLU activation function, and a
pooling layer with kernel size 2. In this algorithm, max pooling strategy is used to achieve
dimensionality reduction. After feature extraction, YOLOv3-tiny tends to detect objects at
two different scales using feature pyramid network. To achieve this, the first detection is
made by the 16th layer. For the first 15 layers, the input image is down sampled to generate
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feature map of size 13× 13. Then, the detection is made using the 1× 1 detection kernel,
resulting a feature map of 13× 13× 3 × (5 + c). Then, the feature map from layer 13 is
subjected to a 1× 1 convolutional layer before up-sampling by factor of 2 to dimensions
of 26× 26. To improve the performance of feature pyramid, the up-sampled feature map
is concatenated with the feature map from layer 8, which is the corresponding resolution
feature map generated by the Darknet19. Then, the combined feature maps are passed
through a 3× 3 convolutional layer and followed by 1× 1 convolutional layer to fuse
the features from the earlier layer. Next, the second detection is made by the 23rd layer,
yielding a detection feature map of 26× 26× 3× (5+ c). Then to detect objects, the position
of the objects is estimated using the semantic information, and a bounding box is dedicated
to all possible targets based on 6 anchors at two scales. Finally, the non-maximum value
suppression is used to remove redundant bounding boxes to determine the optimal final
bounding box.

2.3. Limitations of YOLOv3-Tiny in UAV Detection

YOLOv3-tiny can achieve real-time detection on GPU. However, as shown in Table 2,
the Darknet-19 has very limited number of convolutional layers (depth) of CNN, resulting
in limited feature extraction capability. This simply leads to low detection accuracy when
the scene complexity is high. Consequently, in the UAV pursuit application where the
complexity in scene and demand for detection precision are high, YOLOv3-tiny detection
algorithm cannot be used without improving its CNN Darknet-19 network architecture.

3. Proposed UAV-UAV Detection and Tracking Framework

This paper presents a new real-time framework to detect and track target or leader
UAVs in airborne video streams captured by a tracker or follower UAV. The proposed
framework consists of two steps. In the first step, the proposed FastUAV-NET architecture
is used to detect UAVs. In the second step, the detected UAV(s) is tracked using scalable
Kernel Correlation Filter (sKCF) [38].

3.1. FastUAV-NET Architecture

To cope with the aforementioned limitations of YOLOv3-tiny multi-UAV detection,
there can be two different solutions: (1) increasing depth of the Darknet-19 network by
adding more layers and (2) increasing width of the Darknet-19 network by adding more
filter sizes. By increasing depth using different strategies (e.g., Resnet [39], VGG [40],
and Darknet-53 [26]) the network can extract features and approximate the target model
with higher accuracy as it increases network nonlinearity. However, this strategy also
increases the computational cost and complexity of the network, which makes the network
be more difficult to optimize and limits YOLOv3-tiny application in embedded systems.
In contrast with the first strategy where more convolution layers are naively stacked for
higher performance, inevitably increasing computational cost, in the second strategy, the
aim is to increase the width of the Darknet-19 network. To achieve this, the Darknet-19
architecture must be redesigned based on Inception module [37]. In the Inception-based
networks the goal is to increase both speed and accuracy by integrating different filter sizes
and factorization convolutions to simultaneously extract both local and global features in
an image. Therefore, in this paper, the Darknet-19 architecture of YOLOv3-tiny is widened
based on Inception module [37] to extract features more precisely from airborne videos
without increasing network’s complexity. More precisely, the proposed CNN architecture
aims at increasing the detection accuracy of YOLOv3-tiny without incurring too much
additional computational cost.

The proposed network architecture not only uses the high detection performance of
dense thin CNN networks, but also keeps the sparsity of the network, which makes it
applicable in GPU embedded systems. The proposed FastUAV-NET architecture, which is
shown in Figure 2, includes 43 convolutional, 11 pooling, 6 concatenation, 1 up-sampling,
and 2 detection layers. Even though the proposed architecture has high number of elements,
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it still has low computational cost. This is due to the fact that the proposed CNN architecture
uses multiple convolutional layers on the same level, rather than naively stacking them
sequentially. This makes the proposed CNN architecture suitable for real-time applications.
The proposed method is divided into two parts: (1) backbone where different inception
blocks are used to extract features and (2) head subnet where YOLOv3-tiny detection
network is used to detect UAVs.
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Figure 2. Proposed FastUAV-NET detection architecture. In layers, f and s denote filter size and stride, respectively.

Backbone:

In the proposed backbone architecture, multiple filters with different filter kernel sizes
are applied on an input feature map to generate a wider network rather than deeper. In
this manner, the backbone of the proposed FastUAV-NET contains five Inception blocks.
Each Inception building block consists of 3 units: input unit, feature map generator unit,
and output unit. The input unit consists of a 3× 3 convolutional layer and a max pooling
layer with kernel size of 3× 3 and stride of 2, which reduces the size of the feature map
by a factor of 2. In the feature map generator unit, 3 convolutional layers, consisting of
5× 5, 3× 3 and 1× 1, and a max pooling layer with kernel size of 3× 3 and stride of 1 are
used. However, one main issue with the feature map generator unit is that the 3× 3 and
5× 5 convolutions are computationally expensive on the top of the convolutional layer
with many filters, which can limit the applicability of the proposed network on the GPU
embedded systems. Thus, to make the proposed network lighter, 1× 1 convolution is used
to reduce dimensionality of the input feature map before applying the 3× 3 and 5× 5
convolutions as shown in Figure 2. Furthermore, 1× 1 convolution is also used after the
max pooling layer. Finally, in the output unit, the generated feature maps are concatenated.
Batch Normalization is used after each convolutional layer followed by the Leaky ReLU
activation function. Based on the aforementioned properties of the backbone architecture,
the proposed backbone structure consists of 23 convolutional layers, 6 pooling layers, and
5 concatenation layers.

Head subnet:

The head subnet of the FastUAV-NET architecture employs a multi-scale feature
pyramid network to strengthen the features of the backbone network and construct a
more efficient multi-scale feature pyramid. More specifically, the FastUAV-NET builds
feature pyramid network on the top of the backbone architecture and constructs a pyramid
with down-sampling strides 32 and 16. Thus, two levels of the pyramid, which are
based on 13 × 13 and 26 × 26 resolution feature maps, are used to detect UAVs with
various sizes. In this manner, the FastUAV-NET performs large-to-medium scale UAVs
detection in 13× 13 resolution feature maps and detects the small-scale UAVs in 26× 26.
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Moreover, to construct 26× 26 resolution feature map, the proposed FastUAV-NET uses
concatenation to perform the merging step in lateral connections. In other words, the
concatenation layer is used to take a feature map from earlier in the network and merge
it with up-sampled features to get more precise semantic information. In the proposed
architecture, instead of using a fully connected layer, a 1× 1 convolutional layer with
the tensor shapes of 13× 13× (3× (4 + 1 + 1)) for the lower resolution feature map and
26× 26× (3× (4 + 1 + 1)) for the higher resolution feature map are used. As a result, at
each scale, the number of filters in the last convolutional layer is set to 18. In the final step
of FastUAV-NET, the fined tune bounding box(es) is generated using thresholding UAV
confidence score and non-maximum suppression.

In each detection layer of the proposed FastUAV-NET, 3 anchor boxes must be pro-
vided to achieve high detection rate. The anchor boxes are one of the vital and critical
parameters and they should be provided to the proposed network based on the scale
and size of UAVs in the training data. In the proposed method, to automatically find
the 6 optimum anchor boxes, the k-means++ algorithm, where k = 6, is applied to the
training annotations. The estimated 6 anchor parameters are sorted based on area and then
distributed evenly across scales. Please note that only the prior box which has the highest
intersection over union with the ground-truth label will be considered for detecting a UAV.

3.2. Tracking Strategy

The proposed FastUAV-NET provides a great accuracy in finding location of UAV(s)
in airborne video frames; however, it cannot be considered to be a tracking strategy as
it has still high computational time on onboard embedded systems. To solve this issue,
a swift and efficient tracking algorithm must be integrated to the FastUAV-NET detection
algorithm. Currently, various tracking methods have been proposed and
developed [36,38,41–45]. Among others, scalable Kernel Correlation Filter (sKCF) tracker [38]
provides an efficient and fast-tracking algorithm to track objects [41]. Therefore, in this
paper, sKCF tracker [38] algorithm is combined with the proposed FastUAV-NET to track
UAV(s) within a certain frames.

Recently, the KCF tracking algorithm [36] and its variants [41] have been widely
used in real-time visual tracking as they have high accuracy and low computational
time. The KCF tracker is based on the idea of conventional correlational filter and uses
a kernel strategy and circulant matrices to significantly improve the computation speed.
However, the KCF uses a fixed size kernel so that the tracker is not able to handle scale
changes occurring during motion, which is a very common issue in the corresponding
problem. To solve the fixed size limitation in the KCF, the improved KCF tracking algorithm,
which is sKCF [38], is used. In this algorithm, a keypoint-based model and adjustable
Gaussian kernel function are employed for scale estimation. Furthermore, this tracking
algorithm improves the computational time as it integrates the HOG descriptors and
complex conjugate symmetric packed format. Therefore, in this proposed framework, the
sKCF algorithm is combined with FastUAV-NET to track UAVs.

The sKCF tracker needs initialization in the first frame and in case tracking fails due
to motion of camera, illumination change, occlusion, and motion change. Hence, it is
important to develop a strategy to take advantage of both FastUAV-NET and sKCF to solve
their limitations. In this paper, the FastUAV-NET is applied to detect UAV(s) in every 6th

frame and then the detected UAV(s) is used as an initial solution for sKCF tracker [38]
to track UAVs in intermediate frames. In this manner, the proposed framework has the
following advantages: (1) low memory footprint, (2) applicable to GPU embedded systems,
and (3) ability to lock onto each UAV target/track during the pursuit.

4. Results and Discussion

In this section, the performance of the proposed FastUAV-NET multi-UAV detection
architecture with and without sKCF tracking [38] is quantitatively and qualitatively evalu-
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ated on outdoor videos captured under different range of variability in real scenes. The
proposed method is compared with state-of-the-art detection methods.

4.1. Dataset

The dataset is generated from 11 different videos which are used for training and
testing. The video frames contain one or two UAVs and are captured in RGB color space
under: (1) large background combinations, (2) various weather conditions, (3) different
illumination changes, (4) different viewpoints, scales, and aspect ratios (see Figure 3), and
(5) existence of shadows. In this dataset, size of UAVs varies from 11× 8 to 300× 150
pixels. The height and width of the video frames are 416× 416. To generate training
dataset, 6 different videos are used and the remaining 5 videos are used to construct testing
dataset. In this manner, the training and testing datasets consist of 15,000 and 10,000 video
frames, respectively. Moreover, they are manually annotated by bounding boxes. The basic
characteristics of the constructed dataset are summarized in Table 3.

Figure 3. Example UAV images from different videos captured by airborne optic camera. These images show the
characteristics and complexity of training and testing dataset.
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Table 3. Attributes of UAV-UAV dataset.

Videos Video Frames Number of UAVs Resolution Color Space Annotation

Training 6 15,000 17,843 416× 416 RGB Bounding Box

Test 5 10,000 11,128 416× 416 RGB Bounding Box

4.2. Quantitative Measurement Metrics

To validate the detection results, three different quantitative error measures such as
recall, precision, and Average Precision (AP) are used. Recall refers to the ratio of true
positives (TP) to the number of true positives plus the number of false negatives (FN).
Recall score is written as Recall = TP

TP+FN
. The precision refers to ratio of true positives (TP)

to the number of true positives plus the number of false positives (FP). This metric can be
formulated as Precision = TP

TP+FP
. To determine whether a predicted bounding box by a

model is true positive, false positive, or false negative, the overlap between UAV detection
result (RP) and ground-truth bounding box (RGT) is considered.

IoU =
|RGT ∩ RP|
|RGT ∪ RP|

(4)

When the IoU score is greater than 0.5, it is considered a true positive, else it is
considered a false positive. Moreover, when the model could not detect an UAV is con-
sidered a false negative. The third metric is average precision which is the area under
precision-recall curve.

4.3. UAV Detection Methods

To understand and analyze the performance of the detection methods, the proposed
model is compared with YOLOv3 [26] and YOLOv3-tiny models. Moreover, to improve
the computational cost, all the UAV detection methods are applied to every 6th frame and
then the detected UAVs are tracked in intermediate frames via the sKCF algorithm [38].
In this manner, the tracking performance of UAVs is also examined using different UAV
detection models.

In the proposed and the compared UAV detection methods, anchor boxes are used to
predict bounding boxes. Please note that YOLOv3 algorithm uses nine anchors whereas
the proposed and YOLOv3-tiny methods employ six anchors. In YOLOv3, nine anchors
are selected using k-means++ clustering and they are set to (11, 15), (25, 18), (47, 30),
(39, 53), (88, 54), (71, 106), (138, 85), (221, 130), and (289, 188). In the proposed method
and YOLOv3-tiny methods, the anchors are set to (11, 15), (39, 53), (71, 106), (138, 85),
(221, 130), and (289, 188). In all the methods, the parameters such as learning rate, batch
size, and subdivision are selected as 0.0001, 64, and 16, respectively. Moreover, threshold
score for all the methods is set to 0.5. In the proposed and YOLOv3-tiny methods, epoch
is set to 20,000 whereas in YOLOv3, epoch is 40,000. The convolutional neural network
frameworks are implemented in CUDA C++ on the Windows platform. They train and
test on a computer with a single NVIDIA GTX 1050TI GPU, an Intel i7-7700HQ CPU, and
16 GB RAM. Moreover, the algorithms also are tested on a Jetson TX2 module embedded
on a UAV.

4.4. Performance Comparison of UAV Detection Methods

In this section, the performance of the proposed FastUAV-NET multi-UAV detec-
tion model is compared with the state-of-art detection methods which are YOLOv3 and
YOLOv3-tiny. The proposed FastUAV-NET and compared detection methods are trained
with the 15,000 collected training dataset and are tested on 10,000 video frames from
testing dataset. To evaluate the accuracy of obtained bounding boxes using proposed
FastUAV-NET detection method as well as YOLOv3 and YOLOv3-tiny, different quantita-
tive measurements such as precision, recall, IoU, and AP quantitative measurements are
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used. According to the recall and precision rates of the test results obtained using different
methods, the precision-recall curves of UAV detection are plotted and shown in Figure 4.
Figure 4 shows that FastUAV-NET performs favorably against YOLOv3 and YOLOv3-tiny.
Moreover, the IoU and AP of these 3 models on the generated test dataset are shown in
rows 2 to 4 of Table 4. The proposed FastUAV-NET provides 0.7576 AP and 0.6175 average
IoU, YOLOv3 has 0.4579 AP and 0.5225 average IoU, and YOLOv3-tiny gives 0.4210 AP and
0.4683 average IoU. The results in Figure 4 and Table 4 show that the proposed multi-UAV
detection method provides the highest AP and IoU scores. The IOU results simply show
that the proposed FastUAV-NET achieves a higher overlap between the predicted bounding
box and the ground-truth. On the other hand, the YOLOv3-tiny detection method provides
the lowest accuracy. The main reasons that the proposed method is more efficient than the
other two methods are two-fold. First, the proposed model is based on different kernel
sizes for convolution operation which causes multi-level feature extraction. Please note
that extracting multiple features using multiple filters with different kernel sizes simply
improves the performance of the network as the network can learn UAVs from small
details, middle sized features or almost whole images. Second, the proposed network is
specifically designed for UAV detection in wild airborne scenes; however, this is not the
case in YOLOv3 and YOLOv3-tiny where their network architectures are designed to detect
various objects in natural scenes. Consequently, the FastUAV-NET is more robust to large
variations in both UAVs’ backgrounds and foregrounds. Moreover, the results show that
the widening of CNN network is a much more effective way of improving performance of
UAV detection compared to increasing depth CNN network.

Figure 4. Precision and recall scores of FastUAV-NET and the state-of-the-art detection methods on
the UAV testing dataset.
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Table 4. Quantitative results for 10,000 testing video frames. The algorithms are tested on both PC
and a Jetson TX2 GPU embedded system mounted onto UAVs.

Method FPS

PC Jetson-Tx2 IOU AP

Proposed Method 21.35 13 0.6175 0.7576

YOLOv3 13.53 7 0.5225 0.4579

YOLOv3-Tiny 50.36 25 0.4683 0.4210

Proposed Method + sKCF 52.83 29 0.6583 0.7916

YOLOv3 + sKCF 34.04 19 0.5470 0.4788

YOLOv3-Tiny + sKCF 75.34 36 0.5046 0.4568

The task of UAV pursuit is considered to be a very challenging problem due to the
existence of shadows, image instability, platform motion, instant change in size of the
captured UAVs, existence of many interfering objects in the environment, and finally
variation of camera orientation and illumination. To visualize this, 3 detection methods are
applied to 12 different frames of 5 test videos under different scenarios and the results are
depicted in Figure 5. The results shows that the proposed method is robust to existence of
shadows and sudden changes in illumination, weather condition, background, scale, aspect
ratio, and viewpoints. Figure 5 illustrates that the proposed detection method effectively
detects all UAVs. Furthermore, it can be seen that the proposed detection method can
drastically improve accuracy of the predicted bounding boxes in terms of scale and aspect
ratio. However, in multi-UAV scenario (see Video 2), the results show that the proposed
method can fail to detect multiple UAVs when UAVs lie very close to each other. Moreover,
Figure 5 also demonstrates that the YOLOv3 and YOLOv3-tiny networks have high miss
detection rates under most of the scenarios. Consequently, the overall experiment results
show that the widened network architecture can even outperforms thin 106-layer deep
YOLOv3 network.

The experimental results that are obtained on the computational time are tabulated
in Table 4. The computational time on the desktop computer shows that all methods can
be used for real-time applications. On the other hand, the computational results on the
embedded Nvidia Jetson TX2 show that only the FastUAV-NET and YOLOv3-tiny can
be considered for embedded applications as YOLOv3 can run at 7 FPS, which is very
slow. Table 4 illustrates that the proposed model is approximately two times quicker than
YOLOv3. After training, the proposed network runs at about 13 FPS on Nvidia Jetson
TX2. However, the YOLOv3-tiny network is quicker than the proposed network as it
runs at 25 FPS. The main reason that YOLOv3-tiny is quicker than the proposed network
architecture is simply because the YOLOv3-tiny has only 13 convolutional layers which
decreases computational time, but with the cost of decreasing accuracy and quality of
solutions. Even though the proposed CNN architecture is slower than YOLOv3-tiny, it is
significantly provides higher detection accuracy.
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Video 1:Frame 6 Video 1:Frame 120

Video 1:Frame 2250 Video 1:Frame 3000

Video 2:Frame 500 Video 2:Frame 2000

Video 3:Frame 240 Video 3:Frame 1450

Video 4:Frame 120 Video 4:Frame 600

Video 5:Frame 1200 Video 5:Frame 1220

(a) Proposed Method (b) YOLOv3-Tiny (c) YOLOV3 (d) Proposed Method (e) YOLOv3-Tiny (f) YOLOV3

Figure 5. Illustration of UAV detection results in different video frames using proposed FastUAV-NET method, YOLOv3-tiny
and YOLOv3.

4.5. Performance Comparison of UAV Detection Methods with Tracking

Here, the intention is to test the performance of detection algorithms with the sKCF
tracking method [38] on the 5 test videos. To this end, the detection algorithms are applied
to every 6th frame and then the predicted bounding box(es) is tracked in intermediate
frames using the sKCF algorithm. To conduct experiments, the estimated bounding boxes
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using sKCF algorithm are used to calculate IoU and AP scores and the results are tabulated
in the last 3 rows of Table 4. The results show that the highest and the lowest accuracies
belongs to the sKCF tracking method initialized with the FastUAV-NET and YOLOv3-tiny,
respectively. Table 4 shows that the proposed method with the sKCF tracker provides
0.7916 AP and 0.6583 average IoU, YOLOv3 with the sKCF tracker gives 0.4788 AP and
0.5470 average IoU, and YOLOv3-tiny with the sKCF tracking method provides 0.4568 AP
and 0.5046 average IoU. More specifically, the results indicate that the proposed detection
method with the sKCF tracker outperforms approximately by 65% and 73%. Furthermore,
Table 4 shows that integration of UAV detection methods with the sKCF tracking algorithm
reduces the computational cost, and thus to speed up the multi-UAV detection and tracking
methods. From the results it is obvious that both proposed framework and YOLOv3-tiny
can only be considered to run in real time on the embedded Nvidia Jetson TX2. Finally, we
present a visual comparison of the proposed method along with YOLOv3-tiny on the test
videos dataset and the qualitative detection results are shown in Figure 6. The tracking
results in video 1 illustrate that initializing the sKCF tracker with the proposed network
successfully tracks the UAV in all the inter-frames, but initializing the sKCF with YOLOv3-
tiny fails to detect the UAV at inter-frame 2750. Video 2 demonstrates multi-UAV scenario,
and the results show that the proposed framework tracks UAVs in most of the frames,
except where the UAVs are very close to each other. On the other hand, the sKCF tracker
with YOLOv3-tiny provides very low tracking performance. For instance, the proposed
method can detect both UAVs at video frames 640 and 850, but the sKCF tracker with
YOLOv3-tiny could only track one of the UAVs. Video 4 belongs to complex background
scenario and the results depict that our method can track the UAV in all the video frames;
however, the compared framework fails to track the UAV at video frames 380 and 410.
Consequently, the qualitative results verify that the proposed method can initialize the
sKCF tracker with higher accuracy than the YOLOv3-tiny.

4.6. Discussion

The ultimate goals of the multi-UAV detection and tracking are two-fold. First, UAVs
must be localized with high precision. Second, the processing speed should also be high so
that the localization system could be run online on a GPU embedded system mounted onto
an UAV. To achieve these goals, the current state-of-the-art methods tries to integrate the
most popular real-time object-detection methods such as YOLOv3-tiny and YOLOv2 with
one of the fast-tracking algorithms including KCF and particle filters. The YOLOv3-tiny
and YOLOv2 methods use the Darknet-19 backbone structure to extract features. However,
in this paper, it is shown that the detection methods based on the Darknet-19 architecture
are fast, but cannot perform well with the constructed UAV dataset, which comprises RGB
video frames with large variations in both UAVs’ backgrounds and foregrounds. This is
because the Darknet-19 is a shallow and simple CNN network and cannot extract features
and approximate the UAV model with high accuracy. Moreover, the experiments show that
when focusing on UAV’s pursuit problem, a customized CNN architecture must be used to
improve the detection performance. In this manner, we propose to widen the backbone
structure of the YOLOv3-tiny detection method to balance the localization performance
by learning more robust features and the speed without massively increasing the depth of
convolutional layers. The results clarify that the proposed method can detect UAVs with
high precision even at harsh environmental conditions. However, the experimental results
indicate the proposed method can fail to detect multiple UAVs when UAVs fly very close
to each other. To further improve the computational time of the FastUAV-NET detection
algorithm, scalable Kernel Correlation Filter (sKCF) tracker which is an efficient and fast-
tracking algorithm is used. More specifically, the FastUAV-NET detection algorithm is
applied to every 6th frame and then the detected UAV(s) is tracked in intermediate frames
using the sKCF tracker. The experimental results show that FastUAV-NET combined with
the sKCF tracker outperforms sKCF tracker initialized with YOLOv3-tiny approximately
by 73%.
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Video 1: Proposed Method Video 1: YOLOv3-Tiny + sKCF

F:20 F:40 F:80 F:120 F:160 F:20 F:40 F:80 F:120 F:160

F:240 F:320 F:500 F:640 F:750 F:240 F:320 F:500 F:640 F:750

F:850 F:1000 F:1280 F:1500 F:2000 F:850 F:1000 F:1280 F:1500 F:2000

F:2250 F:2560 F:2750 F:3000 F:3250 F:2250 F:2560 F:2750 F:3000 F:3250
Video 2: Proposed Method Video 2: YOLOv3-Tiny + sKCF

F:20 F:40 F:80 F:120 F:160 F:20 F:40 F:80 F:120 F:160

F:240 F:280 F:320 F:500 F:640 F:240 F:280 F:320 F:500 F:640

F:750 F:850 F:1000 F:1280 F:1500 F:750 F:850 F:1000 F:1280 F:1500

F:2000 F:2250 F:2560 F:2750 F:3000 F:2000 F:2250 F:2560 F:2750 F:3000
Video 4: Proposed Method Video 4: YOLOv3-Tiny + sKCF

F:10 F:20 F:40 F:60 F:80 F:10 F:20 F:40 F:60 F:80

F:120 F:130 F:160 F:180 F:240 F:120 F:130 F:160 F:180 F:240

F:280 F:300 F:320 F:380 F:410 F:280 F:300 F:320 F:380 F:410

F:450 F:500 F:580 F:600 F:620 F:450 F:500 F:580 F:600 F:620

Figure 6. Illustration of UAV tracking results in different video frames using proposed framework and YOLOv3-tiny with
the sKCF tracker.
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5. Conclusions

In this paper, a new real-time deep neural network framework to detect and track
multi-UAV in airborne videos is proposed. To achieve this, a new tiny wide deep Con-
volutional Neural Network (CNN) based on YOLOv3-tiny detection method is designed
and combined with scalable Kernelized Correlation Filter (sKCF) tracking algorithm. The
major improvement of the FastUAV-NET is owning to the Inception model which allows
the network gets wider and extract feature with higher accuracy without significantly
increasing the computational cost. In addition, the sKCF tracking algorithm is used to
track the detected UAVs within a certain video frames. This simply improves the per-
formance of the detection and tracking as well as the computational cost. Therefore, the
proposed framework is a light, fast and efficient algorithm which can also be used on GPU
embedded systems mounted on UAVs. The proposed framework is compared with the
state-of-the-art detection methods and they are tested on different videos captured under
various complexities. Moreover, experimental results demonstrate that the FastUAV-NET
takes full advantage of image features in the framework and improves the performance of
multi-UAV detection accuracy with low memory footprint. More specifically, the proposed
framework achieves 0.7916 AP with 29 FPS performance on an embedded Jetson TX2
platform. Considering a trade-off between accuracy and speed, the proposed framework
exhibits the best performance in many complex scenarios. As a future work, to further
develop the proposed framework, we will focus on autonomous UAV target tracking tech-
nique that sequentially builds upon its prior knowledge of the environment and the current
location of the target UAV. To achieve autonomous target UAV tracking, a reinforcement
learning-based approach can be developed to predict the follower UAV motion actions
based on detection and tracking results.
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