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ABSTRACT
Machining process efficiencies can be improved by minimising the non-machining time, thereby
resulting in short operation cycles. In automatic-machining centres, this is realised via optimum
cutting tool allocation on turret-magazine indices – the “tool-indexing problem”. Extant literature
simplifies TIP as a single-objective optimisation problem by considering minimisation of only the
tool-indexing time. In contrast, this study aims to address the multi-objective optimisation tool-
indexing problem (MOOTIP) by identifying changes that must bemade to current industrial settings
as an additional objective. Furthermore, tool duplicates and lifespan have been considered. In addi-
tion, a novel mathematical model is proposed for solving MOOTIP. Given the complexity of the
problem, the authors suggest the use of a modified strength Pareto evolutionary algorithm com-
bined with a customised environment-selection mechanism. The proposed approach attained a
uniform distribution of solutions to realise the above objectives. Additionally, a customised solution
representation was developed along with corresponding genetic operators to ensure the feasibility
of solutions obtained. Results obtained in this study demonstrate the realization of not only a signif-
icant (70%) reduction in non-machining time but also a set of tradeoff solutions for decision makers
to manage their tools more efficiently compared to current practices.
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1. Introduction

In flexible manufacturing systems (FMS), the produc-
tion time can be significantly reduced by performing a
sequence of machining operations on a single Comput-
erised Numerical Control (CNC) lathe machine. Depend-
ing on the process plan, these operations require the
use of different tool types in a predefined order. The
turret magazine or automatic tool changer (ATC) can
hold multiple tools in different tool indexes (i.e. pockets,
slots, or stations) to facilitate automatic execution of the
sequence of operations. The turret magazine delivers the
required tools in the cutting position of a CNC machine
by rotating about its vertical axis.

The rotation of the turret magazine from one tool
index to the next is called unit rotation, whereas the time
required by the turret to switch from one tool to another
is referred to as the turret- or tool-indexing time. Because
no cutting operation can be performed during turret
rotations to switch between different tools, the turret-
indexing time is also referred to as the non-machining
time. The total processing time equals the sum of the cut-
ting and tool-indexing times. Although the cutting time

CONTACT Kaveh Amouzgar kaveh.amouzgar@angstrom.uu.se Division of Industrial Engineering and Management, Uppsala University, PO Box 534,
Uppsala, 75121 Sweden; School of Engineering Science, University of Skövde, Skövde 541 28, Sweden

can be shortened by optimising the machining process,
we assumed this to remain constant because such opti-
mizations are beyond the scope of this study. However,
the tool-indexing time can be significantly reduced by
determining the best strategy for allocating appropriate
index positions to cutting tools on the turret magazine
of a CNC machine. This problem of indexing the tools
in appropriate slots to minimise the total number of
unit rotations (or the tool-indexing time) of the turret
is referred to as the tool indexing problem (TIP) or ATC
indexing problem (Dereli and Filiz 2000).

Turret magazine can rotate in any one or both direc-
tions about its vertical axis. In bidirectional rotating tur-
rets, the sum of unit rotations from the current to the
target index is always less than or equal to half the turret
capacity. Consequently, bi-directional turrets are more
preferred owing to the ability to determine the smallest
angle of rotation required to switch between two tools.

If the number of required tools exceeds that of avail-
able index positions, some tools on the magazine may
need to be removed and replaced by another tool, thereby
resulting in an additional optimisation problem aimed at
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minimising the number of tool switches required over
time. This is referred to as the tool-switching problem
(ToSP).

In real-world industrial applications, the cutting tools
placed onATC indexes are used to perform solitary oper-
ation or their sequences on several workpieces or parts.
Accordingly, life of a cutting tool is determined in terms
of the number of parts it can machine prior to being
no longer usable. That is, if a tool can machine 100
parts, it has a lifespan of 100 parts, whereas another tool
with twice that lifespan would require replacement after
machining 200 parts. Thus, it is crucial to resolve TIP
whilst considering the lifespan of all tools placed in a
turret magazine. This implies that the index positions of
tools placed in a magazine must be so determined that
the total tool-indexing time for all parts could be min-
imised. In other words, a magazine must be removed
from aCNCmachine onlywhen all tools placed in it need
replacement.

Most prior TIP studies have assumed that either the
tools do not undergo wear or their operating life is suf-
ficiently long to operate on a single part, thereby simpli-
fying the problem to that involving single-step optimisa-
tion.

In contrast to prior research, this study aims at solv-
ing TIP for a real-world industrial case pertaining to the
automotive industry by accounting for the entire lifespan
of tools used in the machining of 1304 crankshafts. Thus,
we intend to resolve TIP encountered in a more realistic
scenario involving an actual machining centre.

Most studies have identified TIP and ToSP as NP-
hard problems (Dereli and Filiz 2000; Baykasoğlu and
Dereli 2004; Baykasoğlu and Ozsoydan 2016). Fur-
thermore, in Atta, Sinha Mahapatra, and Mukhopad-
hyay (2019), TIP has been formally defined and mod-
elled as a quadratic assignment problem (QAP) (Loiola
et al. 2007), an NP-hard problem. This implies that find-
ing an optimal solution using exact methods is com-
putationally expensive. Consequently, resorting to meta-
heuristic methods is the main option, especially in our
case with a large decision space.

In contrast to the literature in which the TIP is simpli-
fied into a single-objective optimisation problem by only
minimising the total tool-indexing time in this study,
inspired by observation in a real case, one more cri-
terion, namely the number of changes required from
the current industrial setting is found to be of impor-
tance for the industrial partner, which transforms the TIP
to a multi-objective optimisation problem (MOOP), or
henceforth referred to as themulti-objective optimisation
of tool indexing problem (MOOTIP).

In the preference-based or priori technique for solv-
ing MOOPs, the preference vector transforms MOOP

into a single-objective problem by considering high-level
information in the beginning of the optimisation process
(Deb 2001). Consequently, the ideal or posteriori tech-
nique, wherein a solution set is obtained in the form of
Pareto-optimal solutions, is generally preferred over the
priori technique for solving MOOPs. This affords deci-
sion makers the freedom to analyse the obtained results
with a better understanding of the involved variables,
objectives, and the relationship between them prior to
selecting the desired solution based on high-level infor-
mation alone.

The characteristics of evolutionary algorithms (EA),
by virtue of which a solution population can evolve
in generations, makes them suitable for use in solving
MOOPs within the ideal-approach framework. How-
ever, solutions obtained using EA might not be truly
Pareto-optimal. Moreover, it is impossible to validate the
Pareto optimality of solutions when the problem at hand
lacks analytical expressions involving objectives and con-
straints. Therefore, tradeoff or non-dominated solutions
are considered conventional when referring to solutions
obtained using EAs. AlthoughMOOTIP has not yet been
investigated in detail, previous studies have reported a
range of MOOPs solved using EAs in several FMS appli-
cations (Reddy and Rao 2006; Tseng et al. 2008; Zhang
et al. 2010; Soolaki 2013; Shen and Yao 2015).

Having said the above-mentioned gaps, this paper
proposes a novel mathematical model for MOOTIP.
Moreover, an implementation of thewell-known strength
Pareto evolutionary algorithm (SPEA2) (Zitzler, Lau-
manns, and Thiele 2001) to solve a complex industry-
inspired MOOTIP is presented. The said SPEA2 was
modified using a customised environment-selection
mechanism to obtain a uniform distribution of solu-
tions with regard to the second objective. In addition, to
address the specific nature of the problem at hand, a cus-
tomised solution representation and its corresponding
genetic operators were developed to ensure the feasibility
of the solutions obtained.

The major contributions of this study can be sum-
marised as follows.

• This study represents an attempt to solve a com-
plex real-world problem inspired by the automotive
industry

• Tool wear has been considered for the first time in TIP
• A new objective function is proposed to transform

TIP into an MOOP with a view to improve existing
industrial practices

• A novel mixed-integer non-linear programming
model for MOOTIP is proposed for the first time

• A well-known MOO algorithm has been mod-
ified by customising the solution representation,
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environmental selection, and genetic operators to
solve MOOTIP

The remainder of this paper is organised as follows.
Section 2 provides a review of the related literature.
Section 3 describes an actual case study performed in
an automobile-engine production plant. A mathemati-
cal model for MOOTIP is presented in Section 4. Details
concerning the modified SPEA2 and related mechanism
are described in Section 5. Section 6 discusses the results
obtained in this study. Lastly, major conclusions drawn
from this study are presented in 7.

2. Literature review

The three possible ATC scenarios can be summarised as
follows (Baykasoğlu and Dereli 2004).

(1) ToSP: NT > NS,
(2) TIP: NT < NS,

(a) (a)without tool duplicates
(b) (b)with tool duplicates

(3) TIP: NT = NS,

Here,NS denotes the number of index positions avail-
able on the turret magazine, andNT denotes the number
of tools required to execute a given sequence of opera-
tions.

The first study concerning ToSP was performed by
Hertz et al. (1998), and it has since attracted increased
research attention. Several ToSP solution methodologies
proposed to date include the genetic algorithm (GA)
(Keung, Ip, and Lee 2001), branch & cut and branch
& bound (Laporte, Salazar-González, and Semet 2004),
and multiple start algorithm (Salonen, Raduly-Baka, and
Nevalainen 2006). Additionally, a multi-objectives algo-
rithmic framework for ToSP has been proposed by Furrer
and Mütze (2017). Tool positions with arbitrary produc-
tion sequences have been pre-optimised in another study
(Ménard, Quimper, and Gaudreault 2019).

The consideration of more than one objectives in
ToSP optimisation has featured in several prior stud-
ies. Keung, Ip, and Lee (2001) optimised the number of
tool switches in ToSP using a GA, albeit in combina-
tion with the preference-based approach. In addition, the
unit-switching problem in stock keeping, which is closely
related to ToSP in FMS, has been optimised via the use of
a heuristic decomposition approach (Schwerdfeger and
Boysen 2017).

ToSP related to FMS scheduling have also been
reported in several studies. A biased random-key GA
to solve a scheduling problem with tool constraints has
been reported in Soares and Carvalho (2020), whereas

a mathematical modelling and multi-attribute rule min-
ing approach for job-shop scheduling has been described
in Zhang et al. (2019). The realization of consecutive
blockminimisation via use of heuristicmethods has been
reported in Soares et al. (2020).

In a study by Wang et al. (2020), the total non-
productive time of the machining process, including tool
travelling time, tool switching time and Z-axis com-
pensation moving time is minimised by presenting a
hybrid variable neighbourhood search/tabu search and
neighbourhood generation strategy. Wang, Zou, and
Wang (2020) found the optimal solutions to a paral-
lel machine scheduling problem combining operation
scheduling, tool scheduling and restrained resources are
obtained by a Tabu-Genetic algorithm. Dang et al. (2021)
proposed a mathematical model and combination of a
genetic algorithm and an integer linear programming
formulation to solve industry-size instances of parallel
machine scheduling with tool replacements.

The provision of job sequencing as an input to FMS
has been reported in several studies concerning ToSP
(Crama et al. 2007; Konak, Kulturel-Konak, and Azi-
zoğlu 2008; Raduly-Baka and Nevalainen 2015). Addi-
tionally, the use of a heuristic approach to solve the job
sequencing and tool-switching problem (SSP) has been
reported in Paiva and Carvalho (2017). In another study
(Ahmadi et al. 2018), SSP has beenmodelled as a second-
order travelling-salesman problem, and the same has
been solved using a learning-based GA.

A multi-commodity flow mathematical model for
SSP is presented (da Silva, Chaves, and Yanasse 2020).
In the most recent study (Mecler, Subramanian, and
Vidal 2021), SSP is solved by a hybrid genetic search
based on a generic solution representation.

However, despite TIP’s significant influence on the
FMS machining efficiency, very few studies have been
performed to minimise the non-machining time.

The first attempt to address TIP was made by Dereli
et al. (1998) and Dereli and Filiz (2000). They devel-
oped a GA-based optimisation software to facilitate opti-
mal allocation of cutting tools on ATC/turret-magazine
index positions. Baykasoğlu and Dereli (2004) proposed
a meta-heuristic optimisation system to minimise the
total tool-indexing time. The possibility of allocating
more than one instance of some or all tools indexed
on the turret magazine was considered. The number of
duplicates for each tool type and optimum index loca-
tion for each tool on the ATC was obtained using the
simulated-annealing (SA) algorithm, thereby resulting
in the realization of minimum tool-indexing time. The
objective function was calculated by constructing a tree
of all possible options and evaluating all alternatives to
determine the best possible index-routing strategy.
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A similar study proposed the use of an ant colony
(AC) algorithm to determine the optimum index posi-
tion for cutting tools (Gopala and Rao 2006). Baykasoğlu
andOzsoydan (2016) improved their prior study (Bayka-
soğlu and Dereli 2004) by evaluating the objective func-
tion by integrating the shortest-path algorithm as a sub-
optimisation problem of the larger ATC indexing prob-
lem to address TIP (Baykasoğlu and Ozsoydan 2016).
In another study (Baykasoğlu and Ozsoydan 2017), the
SA algorithm was used to solve the TIP and ToSP prob-
lems simultaneously. In addition, a solution strategy for
solving TIP and ToSP simultaneously in a dynamic envi-
ronment has been proposed by Baykasoğlu and Ozsoy-
dan (2018). Changes in lot sizes and those in operat-
ing personnel represent two types of dynamic operating
conditions considered in that study.

A study (Atta, Sinha Mahapatra, and Mukhopad-
hyay 2019) aimed to solve TIP via the use of a cus-
tomised harmony search (HS) algorithm in combination
with a harmony-refinement strategy. Tool duplicateswere
ignored, and it was considered that if the number of slots
on the turret magazine exceeds the number of required
tools, some slots would remain unoccupied.

In a recent work (Amouzgar, Ng, and Ljustina 2020)
a GA is proposed to solve a real-world case consid-
ering tool duplicates and tool wear. Palubeckis (2020)
presented an approach integrating SA and variable neigh-
bourhood search algorithm for bidirectional loop layout
problem. The algorithm was tested on two sets of tool
indexing problem instances.

Noteworthy research in this direction has been sum-
marised in Table 1.

As it can be observed from the Table, this study is the
first attempt to fill the existing gap in the literature by
considering tool wear and multi-objective optimisation
while addressing TIP. Furthermore, a novel mathemat-
ical model for MOOTIP is proposed and a real-world
complex industrial case is solved by utilising an efficient
meta-heuristic algorithm.

3. Problem description

TIP is the allocation of cutting tools on the indexes of
turret magazine to reduce the tool indexing time or total
number of unit rotations. Figure 1 (adopted from Dereli
and Filiz 2000) illustrates a turret magazine with eight
indexing stations and four different cutting tools (T1–T4)
allocated to the slots.

As already mentioned, the proposed study is inspired
by the sequence of machining operations, referred to as
Operation 30 (OP30), performed in the engine produc-
tion unit of a major automotive company. In OP30, a
biaxial CNC lathe is used to machine the crankshafts
of 4-cylinder engines. OP30 comprises 19 turning oper-
ations that involve use of 15 different tools. The CNC
lathemachine considered in this studywas equippedwith
two circular bidirectional turret magazines each capable
of holding 45 tools (inserts). Both magazines measured
more than 500mm in diameter with a turret-indexing
time of approximately 0.2 s. The turrets are mounted on

Figure 1. Tool indexing on an 8-index turret magazine (Dereli
and Filiz 2000).

Table 1. Summary of research performed to address tool-indexing problems.

Number of objectives

study
Tool

Duplicate
Empty
Index

Tool
Wear

Mathematical
Model

Solution
Approach TIP ToSP SOO MOO

Dereli et al. (1998) GA o o
Dereli and Filiz (2000) GA o o
Baykasoğlu and Dereli (2004) o SA o o
Gopala and Rao (2006) o AC o o
Baykasoğlu and Ozsoydan (2016) o SA,VNS o o
Baykasoğlu and Ozsoydan (2017) o o SA o o o
Baykasoğlu and Ozsoydan (2018) o o SA o o o
Atta, Sinha Mahapatra, and Mukhopadhyay (2019) o o HS o o
Amouzgar, Ng, and Ljustina (2020) o o o GA o o
Palubeckis (2020) o SA,VNS o o
This study o o o o GA o o

Note: Genetic algorithm (GA), simulated annealing (SA), ant colony (AC), harmony search (HS), tool-indexing problem (TIP), tool-switching problem (ToSP), single-
objective optimisation (SOO), multi-objective optimisation (MOO), variable neighbourhood search (VNS).
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Figure 2. (a) Turret magazine with 45 index positions used in OP30; (b) schematic of OP30 turret.

Table 2. OP30 operationswith required tools and tool life (i.e. the
number of crankshafts each tool can machine before complete
wear out).

Operation number O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

Tool number T1 T2 T6 T5 T7 T5 T6 T7 T4 T3
Tool life 145 131 326 326 326 326 326 326 131 326

two axes of a CNC machine that are operated in parallel.
The right and left turrets can perform 10 and 9 different
operations, respectively, by using 7 and 8 different cutting
tools. It is noteworthy that although this study focuses on
the right turretmagazine, the proposedmethodology and
algorithm can be readily applied to other magazines as
well. Figure 2 depicts a schematic of the turret magazine
used in OP30. As can be seen, the figure illustrates the
relative positions of the crankshaft and turret.

Table 2 lists the sequence of OP30 operations along
with the type of tools requires to execute them. The
said operations and tool types are denoted by sym-
bols O1–O10 and T1–T7, respectively. The number of
crankshafts a tool can machine before wearing out (fixed
tool life) is also stated in the table.

To reduce the frequency of performing the complex
and time-consuming task of removing turret magazines
from the CNC lathe and replacing worn-out tools with
new ones, it is considered apt to maximise the time
for which each magazine remains in operation prior to
tool replacement. To this end, the number of duplicates
required for each tool type can be determined by solv-
ing a simple optimisation problem, the objective of which
is to maximise the number of crankshafts that can be
machined without the need to remove the turret maga-
zine. In this study, this maximum number of crankshafts
equals 1304.

Table 3 describes the current setting of the OP30
sequence, including the different tool types, number of

Table 3. Number of duplicates for each tool andmagazine-index
positions allocated to each tool based on the current factory
settings.

Tool No. No. of Duplicates Index positions

T1 9 1,3,5,8,12,16,20,24,28
T2 10 2,4,6,10,14,18,22,26,30,32
T3 4 7,19,21,33
T4 10 9,11,13,15,17,23,25,27,29,31
T5 4 34,36,40,42
T6 4 35,37,41,43
T7 4 38,39,44,45

duplicates, and station (or index) number corresponding
to the placement of each tool on the magazine. Figure 3
illustrates the tool-allocation strategy currently employed
in the factory. In accordance with the objective of this
study, the product of the number duplicates for each tool
(Table 3) and the corresponding tool life (Table 2) is equal
or greater than 1304 for all tools. For instance, if one
considers tool T1, it is obvious that 9 × 145 = 1305 >

1304.
The current tool-allocation strategy is trial-and-error-

based and depends on the experience of the production
and tooling engineers. To the best of our knowledge,
no prior research has attempted to minimise the tool-
indexing time whilst optimising existing tool-allocation
strategies. Furthermore, altering the index positions of
the cutting tools from the current setting will require
additional feasibility studies. For instance, a collision
detection analysis must be performed prior to adoption
of an optimum tool-allocation strategy in the produc-
tion line to detect any possible intersection of the tool
engaged in the cutting operation with adjacent tools or
that between individual tools and the crankshaft. Like-
wise, a load-balancing analysis of the turret can be under-
taken after altering the tool-index positions.

Due to the above-mentioned complexities and based
on the decision makers’ suggestion, a second objective
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Figure 3. Factory-settings-based tool allocation on 45-index turret.

was added to the problem to be minimised, i.e. the num-
ber of changes in index positions from the current set-
ting in the factory. Therefore, inspired by this industrial
requirement, the proposed investigates the possibility of
converting a classical TIP into anMOOPwith the follow-
ing objectives.

• Objective1: Minimizing the total tool-indexing time
(hereinafter referred to as the number of rotations
(NoR)) required for machining 1304 crankshafts

• Objective2:Minimizing the number of changes in the
cutting-tool index (hereinafter referred to as the num-
ber of changes (NoC))

It is believed that the set of non-dominated solu-
tions obtained in this study would enhance the decision-
making process in industrial settings. In fact, the
proposed reduction in the number of changes has
been considered in prior studies (Pehrsson, Ng, and
Bernedixen 2016; Ng, Siegmund, and Deb 2018) aimed
at resolving problems concerning efficiency improve-
ment production lines. However, consideration of the
same to improve the machining process has not yet been
reported.

The following assumptions aremadewhile solving this
problem:

• All tools have fixed lifespans based on the number of
crankshafts they can machine before replacement

• The number of tool duplicates is pre-determined
based on the tool lifespan and operation sequence

• No tool breakage occurs prior to the expiry of the
turret lifespan – i.e.beforemachining 1304 crankshafts

• There exist no collisions between tools placed in the
two magazines nor between individual tools and the
crankshafts being machined

4. Mathematical formulation of MOOTIP

In this study, a mixed-integer non-linear programming
model (MINLP) is proposed to solve MOOTIP. The
MINLP formulation was used to minimise two objec-
tives: (1) total number of rotations required to perform
a sequence of operations on crankshafts and (2) total
number of changes required to modify the current tool
allocation on the magazine in the company. The MINLP
model used in this study was developed based on the
following assumptions.
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• The number of slots (s = 1, . . . ,NS) on a turret mag-
azine needs to be filled using a given number of tools
(t = 1, . . . ,NT)

• Thenumber of tools required to performa sequence of
operations is less than or equal to the number of slots
on the magazine, NT ≤ NS

• It is possible to have duplicates for each tool type on
the magazine

• Unlike the literature that have assumed the tools do
not undergo wear or the tool life is long enough for
carrying out cutting operation for a single part, this
study takes into account the tool wear by solving TIP
for the entire tool life

Tables 4–6 define the notations of sets, parameters,
and decision variables used in this study to formulate TIP.

Minimize NoR =
NP∑
p=1

NO−1∑
o=1

NS∑
s=1

NS∑
s′=1

zpos

× zp,o+1,s′ × dss′ (1)

Minimize NoC =
NS∑
s=1

NT∑
t=1

1
2

∣∣yst − ycst
∣∣ (2)

Subjected to
NS∑
s=1

zpos = 1 ∀p,∀o, (3)

Table 4. TIP sets and their
definitions.

Sets Definition

t : 1, . . . ,NT Tool index
s, s′ : 1, . . . ,NS Slot index
o : 1, . . . ,NO Operation index
p : 1, . . . ,NP Part index

Table 5. TIP parameters and their definitions.

Parameters Definition

NT : Number of tools
NS: Number of slots
NO: Number of operations
NP: Number of parts
lt : Tool life of tool t
dupt : Duplication of tool t

foot :
{

1: if operation o uses tool t
0; otherwise

ycst :
{

1: if tool t is placed on slot s in current magazing status
0; otherwise

d(s, s′): minimum number of rotations between slot s and s′ ;
min{|s′ − s|, |s + NS − s′|}

Table 6. TIP decision variables and their definitions.

Decision variables Definition

yst :
{

1: if tool t is placed on slot s
0; otherwise

zpos :
{

1: if operation o uses slot s for machining part p
0; otherwise

NO∑
o=1

NS∑
s=1

zpos = NO ∀p, (4)

yst � foot × zpos ∀p,∀s,
∀o,∀t ∈ {foot = 1}, (5)

NT∑
t=1

yst = 1 ∀s, (6)

NS∑
s=1

yst = dupt ∀t, (7)

NP∑
p=1

zpos � lt ∀s,∀o,∀t ∈ {foot = 1}.

(8)

In the proposedmodel, Equation (1) aims tominimise
the total number of rotations (NoR) required by the mag-
azine to perform the operations, whereas Equation (2)
minimises the total number of tool replacements to
be made to the current setting (NoC). In addition,
Equation 3 ensures that formachining of each part at each
operation only one slot can be used, while Equation (4)
determines that the total number of visited slots used for
machining each part is equal to the number of opera-
tions. Equation (5) implies that in order to machine part
p in operation o by tool t and slot s, the corresponding
tool for that operation (i.e. foot = 1), must be positioned
on that slot as well. Equations (6) ensures that each slot
is occupied by a single tool, whereas Equation (7) guar-
antees that the total number of each tool placed in the
slots equals the number of duplicates for that tool (dupt).
Equation (8) dealswith tool life inwhich the total number
of parts that can be machined by each tool cannot exceed
the pre-specified tool life.

To provide a better insight of the problem, a small scale
MOOTIP in a turning operation for 12 parts consisting of
5 operations and 4 tool types using a 8-index turret mag-
azine is solved using the proposed mathematical model.
Figure 1 shows the current tool allocation of cutting tools
on the magazine which is considered as the basis for the
calculation of the second objective.

Table 7 lists the sequence of operations along with the
type of tools required to execute them. The number of
parts a tool can machine before wearing out (fixed tool
life) is also stated in the table.

Table 7. Operationswith required tools and tool life (i.e. thenum-
ber of parts each tool can machine before complete wear out).

Operation Number O1 O2 O3 O4 O5

Tool number T2 T3 T4 T1 T2
Tool life 4 6 12 6 4
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Table 8. Number of duplicates for each tool andmagazine-index
positions allocated to each tool based on the settings illustrated
in Figure 1.

Tool no. No. of duplicates Index positions

T1 2 1,2
T2 3 4,5,8
T3 2 3,6
T4 1 7

Figure 4. Solutions in the objective space for the 8-index turret
magazine solved by the mathematical model.

Table 8 describes the current setting of operations’
sequence, including the different tool types, number of
duplicates, and station (or index) number corresponding
to the placement of each tool on the magazine.

The two objective optimisation problem is converted
to a single-objective optimisation by employing the ε-
constrained method. The solutions in objective space are
illustrated in Figure 4. It should be noted that the 3 solu-
tions marked by the red circles are the non-dominated
solutions of the MOOTIP in this example, as they domi-
nate the other 3 solutions.

Due to the complexity of the TIP which has been
argued to be NP-hard in the literature solving the
MOOTIP using the proposed mathematical model in
computationally expensive. Therefore, a MOO genetic
algorithm for addressing the large-scale real-world
MOOTIP is developed and presented in the next section.

5. Proposedmodified SPEA2 (m-SPEA2)

In this study, we modified the implementation of the
well-known (SPEA2), which has been previously used to
optimise real-world engineering problems (Rezaei and
Davoodi 2012; Amouzgar, Rashid, and Stromberg 2013;
Tang et al. 2016; Amouzgar et al. 2018; Rao et al. 2019;
Amouzgar et al. 2019). Figure 5 describes the SPEA2
process workflow.

Figure 5. Flowchart of the SPEA2 algorithm.

The algorithm can be described as follows Zitzler,
Laumanns, and Thiele (2001).

Input: N (populationsize)
N (archivesize)
T (maximumnumberofgenerations)

Output: A (non − dominatedset)

Step 1: Initialization: Generate an initial population P0
and archive (external set) P0. Set t = 0.

Step 2: Fitness assignment: Calculate fitness values of
individuals in Pt and Pt .

Step 3: Environment selection: Copy all non-dominated
individuals in Pt and Pt to Pt+1. If the size
of Pt+1 exceeds N, a reduction in Pt+1 can be
realised in terms of the truncation operator. On
the contrary, if the size of Pt+1 is less than N,
Pt+1 is filled with dominated individuals in Pt
and Pt .

Step 4: Termination: If t > T or another stopping crite-
rion is satisfied, the non-dominated individuals
in Pt+1 create the output set A.

Step 5: Mating Selection: The binary tournament selec-
tion with replacement is performed on Pt+1 to
populate the mating pool.

Step 6: Variation: Apply the recombination (crossover)
and mutation operators to the mating pool and
set the resulting population to Pt+1; increment
the generation counter (t = t + 1) and return to
Step 2.

The difference between the algorithm used in this and
the original SPEA2 lies in the environmental-selection
step (step 3) and the use of customised genetic operators.
A detailed explanation of customised elements pertain-
ing to the proposed algorithm is provided in the following
discussions.
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Figure 6. Solution representation of 8-index turret magazine depicted in Figure 1.

Figure 7. Solution representation of current tool-allocation strategy pertaining to the 45-index turret used in factories.

5.1. Solution representation

A vector-based solution representation method that can
be readily employed in other similar cases has been devel-
oped to address the problem considered in this study.

In the proposed method, the set of obtained solutions
can be represented as a row vector with corresponding
columns representing index positions on the turret mag-
azine. The top station is identified as the first index (no.
1) with subsequent indexes being numbered in the clock-
wise direction until index no. 45. Figure 6 depicts the
solution representation corresponding to the 8-index tur-
ret magazine illustrated in Figure 1. As can be seen, the
tool T1 is placed in index numbers 1 and 2 followed by
tool T3 placed in index number 3, until tool T2 in the last
index(number 8). The proposed method facilitates the
representation of duplicate tool allocation via insertion
of applicable tool numbers in several columns.

Owing to its current use in the production line, OP30
can be considered a feasible solution representation, as
depicted in Figure 7. Therefore, other alternative solu-
tions can be easily generated by modifying the current
tool-allocation (shuffling) and using the generated solu-
tions as the initial population provided as input to the
evolutionary algorithm.

5.2. Objective functions

In this section, the two objective functions dealt with
while addressing MOOTIP are discussed in detail.

5.2.1. First objective function – noR
The primary objective of TIP is to reduce the non-
machining time, thereby increasing the productivity of
the machining process. This results in lower produc-
tion costs and increased profitability. The above benefits
can be realised by minimising the tool-indexing time
(objective-function value). The said indexing time can
be calculated by multiplying the catalog indexing time of
the CNCmachine (0.2 s in this case) by the total number
of unit rotations in accordance with the given operation

sequence. Because the catalog indexing time remains
constant, one can simply minimise the total number of
unit rotations in a typical TIP.

Contrary to published literature, the authors in this
study extended the objective function to minimise the
total number of unit rotations the turret magazine must
perform to machine 1304 crankshafts.

Consider the process to evaluate the objective function
pertaining to the simple example illustrated in Figure 1,
wherein 5 cutting operations are using 4 different tools
in the sequence T4–T2–T3–T4–T1. The tools are placed
on a turret magazine with 8 index positions. The number
of duplicates and corresponding lifespans of tools T1 to
T4 are 2, 3, 2, and 1 and 150, 100, 150, and 300 parts,
respectively.

In accordance with the given operation sequence,
we evaluated the total number of rotations required to
machine the first workpiece. The optimisation objec-
tive is to determine the smallest angle through which
the turret must rotate to position the tools T4, T2,
T3, T4, and T1 in that sequence. Such an objective-
function evaluation of each solution represents a sep-
arate optimisation subproblem of the master problem
(i.e.optimum tool allocation on the turret), which can be
converted to the shortest-path problem. To this end, we
adopted the methodology proposed in Baykasoğlu and
Ozsoydan (2016), which employs the Dijkstra shortest-
path algorithm (Dijkstra 1959)with additional dummy-in
(Din) and dummy-out (Dout) nodes. Details concerning
this methodology can be found in the cited references.

As observed, the objective value (the shortest path that
can be transformed into the number of unit rotations) for
machining the first workpiece using the allocation strat-
egy depicted in Figure 1 equals 6 unit rotations, whereas
the shortest turret-index-rotation route isDin-7-8-6-7-1-
Dout .

The utility of all methods and algorithms proposed in
previous studies ends here, and the obtained objective
function value of 6 is reported as the specific solution.
Previously proposed optimisation algorithms search for
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alternative allocation strategies with the aim of deter-
mining theminimumobjective-function value.However,
this approach is not realistic because the tools placed
on the turret cannot be replaced with a new one after
each part (crankshaft) is machined. Hence, the lifes-
pan of tools included in the shortest path used for
machining one crankshaft reduces by one. For instance,
after machining 100 parts by considering the above-
mentioned shortest route, tool T2 placed at index 8
cannot be used for machining any more parts owing
to the expiry of its 100-part lifespan. In this situation,
the Dijkstra algorithm must determine another short-
est path without consideration of the tool placed at
index 8. This process would continue until all tools on
the turret magazine are worn-out. Thus, 300 parts can
be machined using this approach. The corresponding
objective-function value can be calculated as the sum
of the product of the shortest distance and the number
of parts that can be machined with that distance. Thus,
the objective-function value for this simple 8-index tur-
ret can be calculated as follows.NoR = (6 × 100) + (6 ×
50) + (11 × 50) + (11 × 100) = 2550. Here, the first
and second numbers inside each pair of parentheses
denote the smallest number of required turret rotations
and the number of parts that could be machined in those
rotations.

Similarly, the objective-function ( unit rotation) value
corresponding to the current tool-allocation strategy
(Figure 7) based on the OP30 sequence and tool lifes-
pans (Table 2) can be calculated as follows.NoR = (23 ×
131) + (26 × 131) + (27 × 131) + (31 × 14) + (32 ×
64) + (34 × 67) + (35 × 117) + (35 × 14) + (35 ×
14) + (39 × 36) + (40 × 67) + (40 × 61) + (45 × 3) +
(48 × 61) + (48 × 34) + (48× 14) + (49× 19)+ (67 ×
3) + (69 × 11) + (71 × 53) + (76 × 78) + (76 × 14) +
(76 × 14) + (78× 14) + (79× 11) + (79× 64) + (92 ×
3) + (93 × 31) + (93 × 3) + (94 × 14) + (95 × 13) =
58, 398. This implies that the turret must perform 23
rotations to machine the first 131 crankshafts. Likewise,
machining the last 13 crankshafts would require 95 unit
rotations to be performed.

The above calculation implies that the current tool-
allocation strategy used in the factory is far optimum. For
instance, for the first batch of crankshafts when none of
the tools are worn out 23 unit rotations is required which
is 13 unit rotationsmore than the optimum.

5.2.2. Second objective function – noC
The secondobjective function (i.e. the number of changes
(NoC) required to be made to the tool-index positions)
can be easily obtained by counting the number of dis-
crepancies in the tool-index positions pertaining to a
candidate solution and the current index positions in the

Figure 8. Calculating value of second objective function (NoC)
for a random solution.

factory. For example, a random feasible solution can be
generated by modifying the current tool-allocation strat-
egy, as illustrated in Figure 8. As can be seen, the figure
highlights the tools positioned differently compared to
the current factory setting. By adding the cells high-
lighted in the solution representation, the value of the
second objective function can be calculated as NoC = 6
for the random solution.

5.2.3. Environment selection
In this study, the archive-update process (step 3 in
SPEA2) was modified to ensure the inclusion of at least
one solution from each NoC in the archive set during
each algorithm iteration.

The first step, similar to the environment-selection
step in the original SPEA2, involves copying all non-
dominated solutions to the next generation external set.
In other words, solutions from the archive and popula-
tion with fitness values less than unity are copied to Pt+1
as follows.

Pt+1 = {i|i ∈ Pt + Pt ∧ F(i) < 1}. (9)

If the size of non-dominated solutions is identical to
the archive size (|Pt+1| = N), the environment-selection
step is completed. Otherwise, the two scenarios wherein
the size of the archive set are either smaller or greater than
the archive size (N) are handled as follows.

Case 1: The archive is too small (|Pt+1| < N): In this
case, if the archive set misses an NoC result
in the non-dominated solutions, a dominated
solution with the corresponding missing NoC
corresponding to the lowest number of rotations
(NoR) is first copied to the archive set from Pt
and Pt . Subsequently, the remaining N − |Pt+1|
are populatedwith the best-dominated solutions
from the previous external set and population by
sorting themulti-set Pt + Pt+1 in the increasing
order of fitness values. Next, the firstN − |Pt+1|
solutions with F(i) > 1 from the sorted list are
copied to Pt+1. This 3-step process is illustrated
in Figure 9.
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Figure 9. Illustration of environmental selection operator when the archive is too small (first scenario) for 45-index tool magazine with
N = 50, and |Pt+1| < 50: (a) |Pt+1| = 16; i.e. the 16non-dominated solutions shown in this figure are first copied toPt+1; (b)missingNoC
solutions and 22 solutions indicated by stars are added to Pt+1, thereby increasing archive size to |Pt+1| = 16 + 22 = 38; (c) remaining
50 − 38 = 12 solutions are chosen from the best-dominated solutions in themulti-set Pt + Pt+1 and added to the archive (indicated by
diamonds); hence |Pt+1| = 50.

Case 2: The archive is too large (|Pt+1| > N): Here, the
best non-dominated NoR solution from each
NoC ismaintained; i.e. Pt+1 includes at least one
non-dominated solution from eachNoC. Subse-
quently, the archive-truncation procedure, from
the original SPEA2, is invoked, thereby result-
ing in |Pt+1| = N via elimination of solutions
from Pt+1 through an iterative process. During
each iteration, the solution i for which i ≤d j for
all j ∈ Pt+1 is eliminated in accordance with the
below expression.

i ≤d j :⇔ ∀ 0 < k < |Pt+1|: σ k
j = σ k

i ∨,
(10)

∃ 0 < k < |Pt+1| :
[(

∀ 0 < l < k : σ l
i = σ l

j

)

∧ σ k
i < σ k

j

]
. (11)

Here, σ k
i denotes the distance of i from a user-

predefined (kth) nearest neighbour in Pt+1. The
truncation procedure ensures realization of a
uniformly distributed solution selection.

5.2.4. Crossover
In general, when employing GAs, new solutions (off-
spring) are created from parent solutions via use of a
crossover operator. In the case considered in this study
with m-SPEA2, the recombination operator is embed-
ded in the variation process (step 6), wherein a crossover
operator has been designed to realise the above function.
In addition, the constraint related to the fixed number of
tool duplicates invokes a repair process on the offspring
that does not satisfy this constraint.

The novel crossover operator that exchanges the
strongest portion of the parents’ string was designed in
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Figure 10. Customised crossover-repair operator used in the simple 8-index turret-magazine case described in Figure 1. (a) Best indexing
route of the two parents is swapped. whilst maintaining other indexes constant. (b) Repair process for second offspring.

this study. Figure 10 describes the crossover operator
used in the simple 8-index turret cases mentioned earlier.

The values of the first objective function for the two
parents depicted on the left of Figure 10(a) equal 2550
and 2800 unit rotations. The crossover-repair procedure
can be described as follows.

Step 1: Determine the shortest index-rotation path
among the two parent solutions. The index posi-
tions corresponding to this path are highlighted
for both parents in the figure. That is, P1 =
{1,6,7,8} and P2 = {2,6,7,8}.

Step 2: Allocate the cutting tools placed at the best index
locations in P2 (highlighted tools on P2) to cor-
responding index locations in P1whilst retaining
other tool locations. This implies that T1, T3,
T2, and T4 are to be placed at index numbers 2,
6, 7, and 8, respectively, in P1 to create the off-
spring depicted on the right side of the figure.
The second offspring can be similarly created.

Step 3: Check the constraints on the number of instances
of all tools in the offspring to determine if repair
is needed. Reference to the figure reveals that
the second offspring comprises three T1 dupli-
cates; however, in accordance with the problem
input, only 2 instances of T1 are required. Hence,
offspring2 must be repaired to obtain a feasible
solution.

Step 4: (Repair) Figure 10(b) illustrates the repair pro-
cess. As can be understood from the figure, one
of the three T1 instances (positioned on indexes
1,2 or 4) in P1must be replacedwith T2 to obtain
an optimum solution. Because T1 in index 1
was active during the crossover process (was
exchanged from P1), the next instance of T1,
which did not participate in the crossover, can be

replaced by T2 assuming it to represent a strong
gene of the string.

It is interesting to observe that the crossover operator
considered in this study does create two strong offspring.
As observed, the fitness of both offspring (2350 and 2750)
is better compared to that of their parents.

5.2.5. Mutation
The customisedmutation operator designed in this study
locally alters two strings from a parent whilst maintain-
ing the feasibility of themutated solution. To this end, two
random tool numbers are first selected. Subsequently, the
index positions corresponding to the first instances of
the selected tools are swapped. For example, consider-
ing the first offspring created via the crossover operation,
Figure 11 illustrates the mutation operation that can be
described as follows.

Step 1: Two random numbers between 1 and 4 are cho-
sen {1, 4}. The first instances of T1 and T4 are
corresponds index numbers 1 and 8, respectively.

Step 2: Next, the positions of T1 and T4 are swapped,
thereby creating the mutated offspring with a
better first-objective value of 2300 unit rotations.

It must be noted that because the mutation operator
does not change the number of duplicates, the mutated
offspring represent a feasible solution, and a separate
repair process is not required. The mutation probability
(ρμ) can be defined as a limit on the number of crossover
offspring that can undergo the mutation process.

5.2.6. Parameter setting
The m-SPEA2 comprises three parameters: the archive
set (N), population set (N), and mutation probabil-

Figure 11. Mutation operation wherein index positions of the first instance of two random tools not participating in the crossover
process are swapped to creating fitter offspring.
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ity (ρμ). The values of these parameters must be set
reasonably.

The values of the second objective function (NoC) are
discrete and limited between the lower and upper bounds
of 0 and 45, respectively. The archive set in m-SPEA2 is
designed to contain non-dominated solutions, and there-
fore, increasing the archive size beyond 50 does not bene-
fit the algorithm performance. Thus, in this study, we set
N = 50. With this setting, the second scenario of envi-
ronment selection, wherein (|Pt+1| > N) can never be
invoked.

The values of the population set and mutation proba-
bility were tuned toN = 150 and ρμ = 0.2 in accordance
with the Taguchi method described in Appendix.

6. Results

The proposed algorithm for MOOTIP pertaining to the
OP30 sequence of operations was scripted in MATLAB_
R2019a and executed on aMacBook Pro laptop equipped
with a 2.2-GHzQuad-Core Intel Core i7 processor and 16
GB RAM.

The initial population P0 and archive (external) set
P0 were generated to ensure the realization of well-
distributed NoC solutions. Figure 12 depicts 200 random
solutions (|P0| + |P0|=200) generated for one of the
m-SPEA2 runs.

The algorithm was run 10 times with each iteration
starting with a new random initial population. The cri-
teria to stop the execution of the algorithm comprised
two different metrics: the number of generations and
convergence rate of the hypervolume indicator (Zitzler

Figure 12. Two-hundred random initial solutions generated by
executing an m-SPEA2 run.

Figure 13. Hypervolume for minimisation of MOOP considered
in this study with Nadir point as reference Amouzgar et al. (2019).

et al. 2003). The hypervolume indicator is commonly
used to compare non-dominated solutions within each
generation of an optimisation algorithm. The hypervol-
ume between a reference point (Nadir point, in this
study) and the obtained Pareto-optimal solutions can
be represented in terms of the hypervolume indicator.
Figure 13 depicts the hypervolume corresponding to the
MOOP with objectives to minimised.

The m-SPEA2 algorithm was allowed to run until
either the number of generations equalled its threshold
value (1000) or no significant change was observed in the
standard deviation of the hypervolume indicators during
the last 100 generations; i.e. STD(HV) < ε, wherein ε has
a very small value.

All 10 instances of non-dominated solutions obtained
in this study (from the 10 runs) were stored within a

Figure 14. Non-dominated solutions in the objective space
forming the Pareto front.
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set, and the fitness values of all solutions in the set were
calculated in accordancewith the fitness-assignment pro-
cedure in Step 2 of the m-SPEA2.

In this study, 36 non-dominated solutions constituted
the Pareto-front, as illustrated in Figure 14. Solutions
a and b, marked with red circles in Figure 14 denote
two extreme solutions to the problem. Solution a cor-
responds to the current tool-allocation in the factory,
whereas solution b corresponds to the best solution in
terms of NoR. Specifically, by changing the positions of
36 tools in the magazine, the total number of unit rota-
tions can be reduced to 18,421 from their current value of
58,398. As a result, the average total number of rotations
formachining a single crankshaft can be reduced from 45

to 14. In addition, by considering themachine index time
(0.2 s), the non-machining time can be reduced from
9 s to 2.8 s per crankshaft. However, changing the posi-
tions of 36 tools in the turret magazine might not be a
straightforward task; hence, the factory operator might
be interested in other solutions that offer a substantial
reduction in the non-machining timewith comparatively
lower NoC. Solutions c and d are two examples that
represent this tradeoff. The results corresponding to solu-
tions a–d are summarised in Table 9, whereas Figure 15
depicts corresponding tool-allocation layouts on the tur-
ret magazine. The positions of tools marked with a
dark background remained unchanged with the current
factory setting.

Figure 15. Tool allocation and improvement of non-machining time for 4 non-dominated solutions marked in Figure 14. Tool positions
that remain unchanged compared to the current factory setting aremarkedbydark backgrounds. (a) solution a; (b) solution b; (c) solution
c; (d) solution d.
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Table 9. Results for four different non-dominated solutions
marked in Figure 14.

Solution NoC
Total no. of
rotations

Rotation
per part

Non-machining
time per part (s)

a 0 58,398 ∼ 45 ∼ 9
b 36 18,421 ∼ 14 ∼ 2.8
c 6 38,085 ∼ 29 ∼ 5.8
d 12 27,909 ∼ 21 ∼ 4.2

Figure 16. Number of unit rotations required to execute OP30
throughout the lifespan of 45-index turret magazine under two
extreme solutions (marked by a and b in Figure 14).

Although the number of rotations per crankshaft is
stated as a constant value in Table 9, Figure 16 depicts
the number of unit rotations per part throughout the
turret-magazine lifespan to not remain constant; instead,
its value increases as different tools wear out.

The best NoR result obtained in this study (solu-
tion b) facilitates machining of the first two sets of 524
crankshafts each by performing 11 and 13 unit rotations,
respectively, and subsequently, the NoR value increases
until the last 12 crankshafts are machined by perform-
ing 38 unit rotations. In comparison, even if the current
OP30 sequence is considered to use the shortest path,
it requires 23 unit rotations to machine the first 131
crankshafts. This is more than twice the optimum num-
ber of rotations obtained in this study. Looking at the far
end of the plot depicted in Figure 16 that corresponds
to most tools being worn out, the application of solu-
tion b implies that the last crankshaft would bemachined
by performing 38 unit rotations, whereas use of the cur-
rent tool-allocation strategy (solution a) requires 95 unit
rotations.

Further in-depth analysis of the same figure reveals
that the observed deviation in NoR along the x-axis (i.e.
the lifespan of tools placed on the magazine) is lower for
the results obtained in this study compared to the existing

tool-allocation strategy. The lower the said deviation, the
lower is the deviation in the tool-indexing time during
the machining of 1304 crankshafts. This, in turn, results
in better production planning.

While the non-dominated solutions in the objective
space constitute the Pareto front (Figure 14), the solu-
tions obtained in the decision space are depicted in
Figure 17 as a heat map. Reference to the said figure
reveals the possibility of extracting several tool-indexing
sequences (indicated by black rectangles) repeated in sev-
eral solutions. For instance, the solutions with lower NoC
values (NoC<9) (and consequently higher NoR) share
the same tool-allocation sequence for indexes 1–11 and
19–27. On the other hand, solutions with NoR values
(29<NoC<34) reveal identical tool-position sequences
for indexes 1–8, 15–27, and 37–45.

The observed similarities in tool positioning for dif-
ferent solutions can be used to improve the performance
of the m-SPEA2 algorithm to obtain optimum solutions.
However, to explore the benefits of patterns hidden in the
results, data-mining and knowledge-discovery methods
must be employed. However, such efforts are beyond the
scope of this study, but the same have been considered
part of our future research endeavours.

Including the tool wear and finding the optimal
tool allocation for the entire life span of the tools
on the turret magazine in this study complements the
results obtained from the most recent studies which
assumed ‘tools do not wear out’ (Baykasoğlu and Ozsoy-
dan 2016, 2017; Atta, Sinha Mahapatra, and Mukhopad-
hyay 2019; Palubeckis 2020). In addition, this study
extends the TIP (as touched upon by previous studies)
into a more realistic industrial problem by including
more real-world assumptions and circumstances. Fur-
thermore, defining a second objective to TIP, unlike
previous studies (Amouzgar, Ng, and Ljustina 2020),
which were inspired by industry and solving it by using
a multi-objective optimisation algorithm, provides a
tradeoff of solutions to decision-makers for better tool
configuration.

Practical implications of this study include the real-
ization of a significant (70%) reduction in the tool-
indexing (from 9s to 2.8s) and cycle times, which in
return improves the production-process efficiency. Fur-
ther, the algorithm developed in this study can be used by
production and tooling engineers as a decision-making
tool to determine the optimum strategy for tool alloca-
tion on the turret magazine and other similar operations.
Moreover, access to such a tool is beneficial in the event of
changes in the operation settings due to design and devel-
opment of new products or introduction of new tools
with different lifespans.
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Figure 17. Non-dominated solutions in decision space illustrated as heat-map plot with each row representing a solution (optimum
tool allocation). Small boxes representmagazine indexes, and tools placed at given index locations aremarked by the tool number in the
box. Triangles indicate similar tool-allocation sequences shared by several solutions.

7. Conclusions

This paper presents solution methodologies, the pri-
mary objective of which is to determine a set of tradeoff
solutions to the multi-objective optimisation problem of
indexing tools on a turret magazine with due considera-
tion of individual tool lifespans and tool duplicates. To
this end, a mathematical formulation considering tool
duplicates and tool wear is proposed. Furthermore, a cus-
tomised encoding–decoding scheme has been designed,
and a modified GA (m-SPEA2) has been developed
with the first-of-its-kind environment-selection mech-
anism as well as the crossover–repair and mutation
operators.

As observed, compared to the current scheme of tool
allocation used in the industry, the proposed optimisa-
tion algorithm provides a significantly improved tool-
allocation strategy. In accordance with the optimised
strategy, the total tool-indexing time can be reduced
by 70% (from 9 to 2.8 s). Furthermore, the proposed
m-SPEA2 generates a set of non-dominated solutions
that constitute the Pareto-front in the objective space.
The said front enhances the decision-making process,

thereby improving the efficiency of the OP30 sequence
of operations. It facilitates selection of the best-suited
tool-allocation scheme based on the available resources
as well as the production and tooling requirements of the
factory. Moreover, optimisation results obtained in this
study can be further improved by combining sequences
of tool indexes observed in several non-dominated solu-
tions. However, data-mining methods must be employed
to investigate hidden patterns and extract knowledge
from the obtained results in this regard.

In future research, findings of this study could be
extended in several ways. From a problem perspective,
the development of a solution strategy for analysing
the collision detection of any solution obtained in this
study before implementing in the factory can be con-
sidered. Moreover, another optimisation problem could
be devised by considering other real-world factors, such
as the number of tools to be optimised, as the decision
variable.

Finally, other state-of-the-art algorithms with multi-
objective characteristics and customised operators can be
developed, and corresponding results obtained could be
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compared against those reported in this
paper.
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Appendix

The Taguchi design has been widely used in several applica-
tions ranging from industrial experiments to parameter setting

Table A1. Levels of m-SPEA2
parameters used in Taguchi
design.

Parameter levels N ρμ

1 50 0.1
2 100 0.2
3 150 0.3

for algorithms. The latter was considered in this study because
appropriate parameter levels can significantly enhance the per-
formance of optimisation algorithms (Tirkolaee et al. 2020). To
determine the values of the two parameters (N and ρμ), the
Taguchi method was applied to an L9(32) experimental design
(Taguchi, Chowdhury, and Wu 2005) over the 3 parameter
levels listed in Table A1.

The Taguchi design employs the design of experiments
approach to determine appropriate parameter levels. The
algorithm performance at these parameter levels becomes
insensitive to variations in uncontrollable factors without disre-
garding them (Nourmohammadi et al. 2019). This is realised by
maximising the signal-to-noise ratio (SN) and considering it to
be representative of the performance variation of the algorithm.
The means of the objective function are maximised or min-
imised depending on the nature of the problem. In this study,
because we aim to maximise the distance of non-dominated
solutions from theNadir point calculated by hypervolume indi-
cators, Equation (A1) was employed to calculate and maximise
the corresponding SN ratio (the larger the better).

SN(larger is better) = −10 × log10

⎛
⎝

∑NE
e=1

1
HV2

e

NE

⎞
⎠ (A1)

Here, NE denotes the number of experiments, and HVe
denotes the hypervolume indicator during the e-th experiment
(e = 1, . . . ,NE). Figure A1 depicts the Means and SN-ratio
plots corresponding to different combinations of parameter
levels.

According to Figure A1, values of the optimum population
size and mutation probability were set to N = 150 and ρμ =
0.2 in this study.

Figure A1. Plots obtained via Taguchi analysis for (a) Means; (b) SN ratio.
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