
84 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y
T h i s w o r k i s l i c e n s e d u n d e r a C r e a t i v e

C o m m o n s A t t r i b u t i o n 4 . 0 L i c e n s e . F o r m o r e
i n f o r m a t i o n , s e e h t t p s : //c r e a t i v e c o m m o n s .o r g /

l i c e n s e s / b y /4 . 0 /d e e d . a s t .

©SHUTTERSTOCK.COM/ENZOZO

FEATURE: PROMOTING DIGITAL SOVEREIGNTY

Tomas Gustavsson, PrimeKey
Solutions

Andrew Katz, University of
Skövde and Moorcrofts

Bengt Kvarnström, Saab
Aeronautics

Erik Lönroth, Scania CV

Anders Mattsson, Husqvarna

// Many companies

seek to engage with

open source software

(OSS) projects. Based on

insights and experience

from practice, we present

seven strategies for

organizations to leverage

long-term involvement

with OSS projects. //

THROUGH THE YEARS, individuals
and organizations have contributed to
and witnessed more widespread devel-
opment, procurement, use, and deploy-
ment of complex software systems that
involve data processing and the main-
tenance of associated digital assets in
a range of domains. This has caused
a number of challenges for private and
public sector organizations in different
usage contexts and domains.1–9

Companies in the primary and
secondary software sectors need to
deal with an increasing amount of
software provided through indus-
trial products and innovative appli-
cations and services. Several primary
software sector6 companies have ex-
tensive experience and business of-
ferings as service providers related to

Effective
Strategies for
Using Open
Source Software
and Open
Standards in
Organizational
Contexts
Experiences From the
Primary and Secondary
Software Sectors

Björn Lundell, Simon Butler, Thomas Fischer, and Jonas
Gamalielsson, University of Skövde

Christoffer Brax, Combitech

Jonas Feist, RedBridge

Digital Object Identifier 10.1109/MS.2021.3059036
Date of current version: 23 December 2021

 JANUARY/FEBRUARY 2022 | IEEE SOFTWARE 85

the development and deployment of
solutions, whereas many companies
in the secondary sector10 create soft-
ware as part of their product and ser-
vice offerings in different domains,
such as automotive, avionics, and
outdoor power products. Many orga-
nizations have long recognized that
“only a small part (5 to 10%) of the
software is differentiating” and that
involvement with nondifferentiating
software projects in open collabora-
tion has many potential benefits.11
For example, when developers paid
by a company contribute to internal
software projects that constitute a
commodity (i.e., nondifferentiating
software projects) with respect to a
company’s business, there is a sig-
nificant risk of reinventing the wheel
and wasting valuable resources. This,
in turn, may inhibit innovation and
have a demoralizing effect on the
company’s own developers.

Open source software (OSS) is
released under a license that com-
plies with the open source definition
(www.opensource.org/osd). Widely
used OSS has been provided by proj-
ects under a small set of software li-
censes approved by the Open Source
Initiative (www.opensource.org). A
standard that complies with the defi-
nition presented by European In-
teroperability Framework version 1.0
constitutes an open standard.6 Since
such standards permit implemen-
tation under different licenses and
thereby enable competition, the Swed-
ish National Procurement Services
stipulates that when organizations use
their framework agreements, they are
allowed only to reference open stan-
dards when expressing a mandatory
requirement which refer to a standard
in public procurement projects.6,12

There are complex relationships
between the development of stan-
dards and OSS projects, something

that has received attention among
policy makers and organizations
involved with standards develop-
ment.13 Formal standards may im-
pose legal and technical challenges
for OSS projects,5 and widely used
software applications that devi-
ate from a technical specification
when implementing a standard may
also impose interoperability chal-
lenges.14 Many organizations seek
to utilize OSS and open standards
to address challenges related to
lock-in, interoperability, and long-
term maintenance to process and
sustain associated digital assets
through compliant file formats and
protocols. Such standards can be
implemented through projects that
provide and deploy software under
different conditions, including vari-
ous closed source software licenses
and all OSS licenses.5

Several OSS projects have gained
significant commercial interest and
attracted contributions from individu-
als employed by different companies,
and it is clear that many success-
ful OSS initiatives are supported by
some form of nonprofit organiza-
tion.12 For example, among globally
recognized foundations that support
OSS projects, there are the Linux
Foundation (governing the Linux
kernel and many other projects), the
Eclipse Foundation (providing gov-
ernance for many projects including
development tools), and the Apache
Foundation (providing governance
for the Apache HTTP Server Project
and hundreds of others). These and
other foundations have played impor-
tant roles in the governance, nursing,
and promotion of a large set of well-
known OSS projects in conjunction
with associated communities.

In addition, there are numerous
other foundations and charities that
support and govern a few (or even

a single) OSS projects that provide
widely used products. For example, the
MariaDB foundation supports Mari-
aDB Server, the Legion of the Bouncy
Castle supports Bouncy Castle, and
the Document Foundation supports
LibreOffice (and some other OSS proj-
ects, such as Document Liberation). It
should be noted that there are inde-
pendently governed OSS projects (e.g.,
Curl) that are (and have been) used by
many companies for decades.12

Based on findings from a four-
year research project,6 this article
presents seven practically grounded
strategies that have evolved from col-
laborative research studies involving
researchers and practitioners repre-
senting large and small companies in
the primary and secondary software
sectors. Specifically, the overarching
goal is to understand how companies
seeking to engage with OSS projects
can establish strategies for the devel-
opment, procurement, and deploy-
ment of software systems that can
achieve long-term strategic benefits
through open standards and their
implementations.

The Strategic Use
of OSS Projects
Today, OSS is widely used in the private
and public sectors. An increasing num-
ber of individuals and organizations
engage with OSS projects for a variety
of reasons. Several countries, govern-
ments, companies, and public sector
organizations have undertaken strate-
gic initiatives and established policies
that detail recommendations for how
to engage with OSS.12 For example,
in 2019, the Swedish Agency for Digi-
tal Government (DIGG) introduced a
strategy for the use and development
of software, detailing recommenda-
tions for different OSS licenses. On 20
May 2020, DIGG presented an inde-
pendent review (provided by the first

86 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: PROMOTING DIGITAL SOVEREIGNTY

author of this article) of its recommen-
dations,12 one of which, applying to all
private and public sector organizations
seeking to establish OSS projects, is
to use copyleft licenses from the Gen-
eral Public License (GPL) family [e.g.,
the Lesser GPL (LGPL)]. In particular,
research shows that when a new OSS
project needs to implement standards
that are important for promoting in-
teroperability and avoiding lock-in, it
is often very sensible to use a license
from the GPL family.5

Depending on the business models
they use, some companies may be un-
easy with establishing a project that
will provide OSS under a license with
a strong copyleft effect, such as GPL
3.0 and the Affero GPL (AGPL) 3.0,
whereas licenses that have a weak
copyleft effect (e.g., LGPL 2.1 and
LGPL 3.0) would be fine for almost
all relevant scenarios. We find that
using a license with a copyleft effect
protects continued OSS project open-
ness, something some companies con-
sider a prerequisite for contributing
to an existing project.10 Further, in
a scenario where a company consid-
ers a project to be nondifferentiating,
a strong copyleft license (e.g., GPL
2.0, GPL 3.0, and AGPL 3.0) may be
preferable in the event that the orga-
nization that controls the source code
relicenses the project and instead
provide future releases of the soft-
ware under a closed source software

licence. One very successful example
of a project that provides OSS under
the GPL 2.0 license is the Linux ker-
nel, which has established a vibrant
community and attracted contribu-
tions from individuals representing
many different companies.

Business models in assorted com-
panies, domains, and scenarios may
result in varying preferences and at-
titudes toward open collaboration. It
is clear that many professionals rep-
resenting numerous companies have
contributed to OSS projects through
the years.2 For a variety of reasons,
individuals may have strong prefer-
ences for different governance mod-
els and wish to engage only with OSS
initiatives that fulfill their aims. OSS
licenses are often categorized along a
copyleft dimension (i.e., licenses that
have a copyleft effect and those that
lack such an effect, often referred to
as permissive licenses). Further, OSS
licenses can be categorized into a di-
mension related to patent clauses (i.e.,
licenses that have an explicit pat-
ent clause and those that lack such a
clause). See Figure 1 for a presentation
of commonly used licenses in each cat-
egory that are also recommended in a
review of a Swedish policy for OSS.12

Studies show that many profes-
sionals have contributed to and are
engaged with projects that provide
OSS under different versions of GPL
licenses.1,2,7,10,11 Among projects that

provide OSS under GPL version 2,
we find well-known products, such
as VLC Media Player (LGPL 2.1)
and the Linux kernel (GPL 2.0). Fur-
ther, projects that provide OSS under
GPL version 3 include PeaZip (LGPL
3.0), a file and archiving application;
the GNU Compiler Collection (GPL
3.0); and Nextcloud (AGPL 3.0) for
file sharing and collaboration. Proj-
ects that provide widely deployed
OSS under permissive licenses that
lack explicit patent clauses include
the Nginx (the BSD-2-Clause license)
web server project, the Contiki-NG
(the BSD-3-Clause license) operat-
ing system project for the Internet of
Things, the Bouncy Castle (the MIT
license) cryptographic library project,
and the X-Road (MIT License) proj-
ect for interorganizational interoper-
ability. Further, among projects that
provide widely deployed OSS under
a permissive license that contains ex-
plicit license clauses, we find Apache
CloudStack (Apache License 2.0) and
OpenStack (Apache License 2.0),
both for cloud computing.

Based on interviews with 22 ex-
perts that have more than 10 years of
experience in leading roles in widely
deployed OSS projects, we identified
a number of key factors that contrib-
ute to successful OSS project gover-
nance. Among the respondents, we
find stark support for transparency
and clear rules concerning what to
expect when engaging with an OSS
project. For example, as stated by one
respondent, “One key factor is that the
contributors understand what they’re
getting into.” Several respondents em-
phasized that most successful gover-
nance “seems to be controlled by the
inbound and outbound licenses.” We
note that “inbound licenses” refer to
those granted by project contribu-
tors, whereas “outbound licenses”
are granted by a project (e.g., rights for FIGURE 1. Different types of OSS licenses (see https://opensource.org/licenses).

Copyleft License

Permissive License

Explicit
Patent License Clause

Does Not Exist

Explicit
Patent License Clause
Exists

LGPL 2.1
GPL 2.0

LGPL 3.0
GPL 3.0

AGPL 3.0

Apache 2.0MIT

JANUARY/FEBRUARY 2022 | IEEE SOFTWARE 87

code users and other recipients, includ-
ing contributors who make use of a
project as a whole). Under the concept
of “inbound equals outbound,” there is
a legal assumption concerning licenses
that are “fully symmetric,” something
used by many OSS projects that have a
copyleft license. Further, we note that
some experts express “great qualms
about contributing to a project with an
asymmetric agreement.”

These findings confirm previous
research results from the embed-
ded systems area, where consultants
have expressed clear preferences for
OSS provided under the GPL co-
pyleft license,10 which is commonly
used in projects that promote “fully
symmetric” rights among contribu-
tors (the most prominent of which
being the Linux kernel). On the
other hand, if a company contributes
to OSS that includes asymmetric li-
censes and rights grants, it follows
that it (or any other contributor) will
convey rights to the project (for ex-
ample, under the Apache Contribu-
tor License Agreement) that are
broader and less restrictive than the
license it may receive from the proj-
ect. This means that a contributor
who assumes that a project respects
software freedom (because, for ex-
ample, it has an outbound GPL li-
cense) could find that the software is
later made available under a non-free
proprietary license (in the sense of
respecting the four freedoms of soft-
ware; see www.fsf.org) if all contri-
butions are made under a permissive
agreement. This is not to say that
there is anything wrong with per-
missive contribution agreements per
se, but it may be perceived as unfair
if a project owner sets expectations
that one form of outbound licens-
ing model will be followed and then
changes to another model without
involving contributors.

We find that recognizing individ-
ual contributors is more important
than identifying organizations. One
expert stressed that successful gov-
ernance “happens when you concen-
trate on the technical reasons [and]
the technicalities of the contribution
and maintainability.” As stated by an-
other respondent, “The Golden Rule
is the key: don’t do to others what
you wouldn’t have done to yourself.”
As the most important aspect of suc-
cessful OSS project governance and
management, one expert emphasized
“human factors” and basic human
kindness. Similarly, another stressed
that leadership with “a little too much
rock star” can do a lot of damage.

Strategies for Company
Engagement With OSS
Projects
Bridging the gap between industrial
and OSS development practices has
been an issue for many companies for
more than a decade,11 and it imposes
challenges for enterprises in the pri-
mary and secondary software sectors.
Individuals, companies, and other
types of organizations may benefit
from and engage with OSS projects in
a variety of ways. Figure 2 presents a
conceptual model for how companies
(blue) can benefit from and contribute
to OSS projects (yellow) through five
principle strategies.6

Adopting OSS project work prac-
tices within closed contexts (strat-
egy 1), sometimes referred to as
innersource development,11 is seen
as beneficial by many companies for
improving procedures in intra- and
intercompany development scenarios.
Further, using OSS products and OSS
development tools (strategy 2) is com-
mon in numerous organizations. In-
corporating OSS components from
external projects (strategy 3) provides
opportunities to reuse and integrate

valuable modules. In particular, com-
panies may benefit from engaging
with developments in relevant ex-
ternal OSS projects. They may gain
from integrating OSS in collabora-
tion with partner enterprises that
have established credibility, saving
time and leveraging expertise. Exter-
nally developed OSS may need adap-
tation and technical and legal reviews
before it can be integrated with code
being written internally.

For companies that have incorpo-
rated OSS from external initiatives,
it is advantageous, for a number of
reasons, to establish a presence in as-
sociated project communities and to
provide contributions in return. Con-
tributions can take the form of bug
fixes, code, and participation in dis-
cussions about improvements [strat-
egy 4(a)]. Companies may also provide
direct (or indirect) financial contribu-
tions, something which may be seen
as a form of outsourcing the long-term
maintenance of strategically important
OSS components.11 If, on the other
hand, enterprises do not contribute bug
fixes, they will face additional costs to
modify the internal code base for each
new project release, which may be very
expensive.2,6 Further, in some scenar-
ios, it may be advantageous to open
internally developed (closed source)
applications and release them as OSS
on collaborative platforms to establish
a community [strategy 4(b)]. If an ap-
plication has become a commodity, it
may be advantageous to share devel-
opment and maintenance costs while
seeking business opportunities (e.g.,
support and related services) related to
the software.15

For companies that seek to benefit
from leveraging nondifferentiating
external OSS, it is essential to engage
with and build credibility in selected
projects and their associated commu-
nities (strategy 5). To be successful,

88 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: PROMOTING DIGITAL SOVEREIGNTY

this requires long-term engagement
and strategic considerations.2 Further,
we note that it is far from uncommon
that competing firms engage in non-
differentiating software development
activities through open collaboration
via OSS projects.10,11 Figure 2 illumi-
nates complex (many-to-many) rela-
tionships between internal software
(in blue) and OSS projects (in yellow).
For example, an initiative may pro-
vide OSS that is used internally by
hundreds of companies (strategy 3).
Similarly, a company may, through its
paid developers, provide code [strat-
egy 4(a)] to hundreds of OSS projects.

Based on findings from collab-
orative research and practical expe-
rience, we have evolved a set of tips
for companies to leverage opportu-
nities through engagement with OSS
projects and participation in asso-
ciated communities. The seven tips

specifically relate to three of the five
principle strategies (strategies 3–5) in
Figure 2. In relation, we elaborate on
experiences in primary and second-
ary software sector contexts. Compa-
nies’ ability to innovate and address
future challenges can be promoted
through initiatives for ensuring long-
term competence and skills develop-
ment among its developers. They
should consider investing time for
employees to participate in OSS proj-
ects that will have long-term impor-
tance and thereby build a presence in
initiatives and communities. Based on
this, we recommend that organiza-
tions consider practical tip 1:

• Practical tip 1: An enter-
prise’s interests may be pro-
tected by giving developers
time to contribute their exper-
tise to OSS standards-based

implementations on which the
business depends. Contributions
may take the form of partici-
pating in discussions about the
direction of development and
adherence to a standard as
well as donating code to improve
a product.

When developers participate in
OSS projects, there are opportuni-
ties for companies to influence future
decisions. Strategic involvement pro-
motes insights into the future direc-
tion of an important project. This,
in turn, may significantly improve
opportunities for congruence with
a company’s internal goals. Further,
contributions to external OSS proj-
ects may reduce an organization’s
maintenance burden. Participation
should be seen as a long-term invest-
ment (see practical tip 2), and various

FIGURE 2. Leveraging opportunities with OSS projects.6 (a) OSS projects undertaken in open collaborative contexts. (b) Software

projects executed in closed company contexts.

Process Repository
(Projects) Product

1) Practices 2) OSS Tools

3) Using OSS

4(a) Contribute 4(b) Opening Up

5) Symbiotic
 Relationship

Process
Repository
(Projects) Product

(a)

(b)

JANUARY/FEBRUARY 2022 | IEEE SOFTWARE 89

activities need to be considered across
a long horizon to better understand
potentially different goals and priori-
ties (see practical tip 3). Hence, com-
panies must be selective and carefully
consider their involvement with OSS
projects. Based on this, we recom-
mend that they consider practical tips
2 and 3:

• Practical tip 2: OSS project
structures can provide opportu-
nities for organizations to par-
ticipate in governance processes
to support their business aims.
Organizations should ensure
that their involvement is seen as
a cost or investment for which
there is a return.

• Practical tip 3: OSS projects are
not obliged to deliver new func-
tionality and bug fixes to match
businesses’ time requirements, and
they will not always share enter-
prises’ priorities. When resolving
OSS bugs or adding functionality,
consider the time frame within
which a matter must be resolved.
If a solution is required more
quickly than a project can deliver,
you should resolve the problem
yourself and try to minimize the
long-term consequences by report-
ing the problem and solution to
the OSS project.

For companies and their representa-
tives to fully appreciate the evolution
of OSS projects, it is essential to par-
ticipate in associated communities to
gain a deeper understanding of the
code being developed. Governance
and work practices differ among OSS
initiatives, and there is a need to en-
gage with members of communities,
as important information may be
discussed at various meetings (see
practical tip 4). Company representa-
tives need to build trust among other

community members to facilitate ef-
fective interaction and gain a deeper
knowledge of the code (see practical
tip 5). Based on this, we recommend
practical tips 4 and 5:

• Practical tip 4: Although much
development planning takes
place openly in OSS projects,
some plans may not be clearly
documented. To avoid unnec-
essary work when considering
feature requests, search project
documentation, issue trackers,
and mailing lists for similar
proposals. If necessary, reevalu-
ate and revise suggestions ac-
cordingly. Ask core developers
whether a proposed feature is al-
ready being developed or would
be accepted, and learn their pref-
erences for how a feature should
be delivered.

• Practical tip 5: Core OSS de-
velopers often request specific
forms of evidence so that they
are able to investigate reported
behaviors. Learning to create
this results in a deeper under-
standing of the software and
leads to more efficient problem
resolution.

Companies that seek to pro -
mote interoperability and the long-
term maintenance of digital assets
while avoiding lock-in must engage
with OSS projects that implement
open information and communica-
tions technology (ICT) standards
(see practical tip 6). However, using
closed file formats and data is of-
ten unavoidable. Just because a file
format adheres to a particular stan-
dard does not mean the standard is
freely available to use or will remain
free. The specifications of some stan-
dards are provided under conditions
that, for legal and technical reasons,

may inhibit implementation in OSS
projects. Before companies can in-
clude data and documents in closed-
format files, they must procure all
necessary rights (including all pat-
ent licenses) to enable implementa-
tion in sustainable OSS projects (see
practical tip 7). Based on this, we
recommend that companies consider
practical tips 6 and 7:

• Practical tip 6: ICT standards
and their implementation in OSS
are of strategic importance to any
organization wishing to address
challenges related to lock-in,
interoperability, and long-term
maintenance. Organizations de-
veloping and providing standards-
based technologies with an aim to
implement an OSS strategy need
to engage with OSS projects that
implement standards.

• Practical tip 7: To manage
data and documents in closed
formats, acquire before pro-
curement all necessary rights
(including all patent licenses) so
files can be implemented in soft-
ware that can be used and dis-
tributed under different licenses
(including all licenses for OSS).

I t is widely recognized that open
standards, especially when im-
plemented in OSS, contribute to

interoperability by ensuring that data
and systems can be interpreted inde-
pendently of the tools that generated
them. Such standards are also impor-
tant for avoiding problematic lock-in
effects in many scenarios for private
and public sector organizations. The
guidelines (in the form of seven prac-
tical tips) presented in this article pro-
vide a potentially valuable resource for
any organization that needs to develop,
use, and deploy software in different

90 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: PROMOTING DIGITAL SOVEREIGNTY
A

B
O

U
T
 T

H
E

 A
U

T
H

O
R

S

BJÖRN LUNDELL in a professor at the

University of Skövde, 541 28, Skövde,

Sweden, where he leads the Software

Systems Research Group. His research in-

terests include fundamental sociotechnical

challenges concerning software systems,

focusing on different aspects of lock-in,

interoperability, and longevity of systems.

Lundell received his Ph.D. from the Univer-

sity of Exeter. He is a Member of IEEE and

the Association for Computing Machinery.

Contact him at bjorn.lundell@his.se.

CHRISTOFFER BRAX is a consultant at

Combitech, Linköping, 583 30, Linköping,

Sweden, working in systems engineering,

requirements management, systems design

and architecture, and IT security. Brax received

his Ph.D. from Örebro University. Contact him

at christoffer.brax@combitech.com.

SIMON BUTLER is a researcher in the

Software Systems Research Group, Univer-

sity of Skövde, 541 28, Skövde, Sweden. His

research interests include software engineer-

ing, open source software, and program

comprehension. Butler received his Ph.D. in

computing from the Open University. He is a

Member of IEEE, the Association for Comput-

ing Machinery, and the British Computer

Society. Contact him at simon.butler@his.se.

JONAS FEIST is a cofounder of RedBridge,

111 20, Stockholm, Sweden. His research

interests include business models related to

OSS, and in cloud computing, particularly

the development and application of con-

tainer technologies. Feist received his M.Sc.

in computer science from the Institute of

Technology, Linköping University. Contact

him at jonas.feist@redbridge.se.

THOMAS FISCHER is a senior lecturer at the

University of Skövde, 541 28, Skövde, Sweden,

where he is a member of the Software Sys-

tems Research Group. His research interests

include open source software and open

standards, in particular, file formats, lock-in,

and interoperability. Fischer received his Ph.D.

from the Technical University of Kaiserslautern.

He is a member of a number of open source

and open data communities. Contact him at

thomas.fischer@his.se.

TOMAS GUSTAVSSON is a cofounder and the

chief technology officer of PrimeKey Solutions,

171 73, Solna, Sweden. Gustavsson received

his M.Sc. in electrical and computer engineer-

ing from KTH Royal Institute of Technology. The

founder of the open source enterprise public key

infrastructure project EJBCA, he contributes to

numerous open source projects and is an Open

Source Sweden board member. Contact him at

https://www.linkedin.com/in/tgustavsson/ or

tomas.gustavsson@primekey.com.

JONAS GAMALIELSSON is a senior lec-

turer at the University of Skövde, 541 28,

Skövde, Sweden, where he is a member of

the Software Systems Research Group. His

research interests include free and open

source software. Gamalielsson received

his Ph.D. from Heriot Watt University. Con-

tact him at jonas.gamalielsson@his.se.

ANDREW KATZ is a visiting researcher

in the Software Systems Research Group, Uni-

versity of Skövde, 541 28, Skövde, Sweden,

and a partner at the law firm Moorcrofts,

Marlow SL7 1PB, U.K. His research focuses

on technology law with a particular interest in

open design (including hardware), develop-

ment, and licensing. Katz received his M.A.

in law from Cambridge University, U.K. and

is qualified as a barrister at the Inns of Court

School of Law in London, U.K. (nonpracticing).

Contact him at https://moorcrofts.com/team/

andrew-katz/ or andrew.katz@moorcrofts.com.

JANUARY/FEBRUARY 2022 | IEEE SOFTWARE 91

contexts. This article proposed and
elaborated on effective organizational
strategies and guidelines for using OSS
and open standards, based on experi-
ence from individuals and organiza-
tions in the primary and secondary
software sectors. The strategies and
guidelines highlight how enterprises
can leverage opportunities through en-
gagement with OSS projects and asso-
ciated communities.

References
1. B. M. Brosgoi, “How to succeed in

the software business while giving

away the source code: The AdaCore

experience,” IEEE Softw., vol. 36,

no. 6, pp. 17–22, 2019. doi: 10.1109/

MS.2019.2934044.

2. S. Butler et al., “On company contri-

butions to community open source

software projects,” IEEE Trans.

Softw. Eng., 2019. doi: 10.1109/

TSE.2019.2919305.

3. J. Gamalielsson and B. Lundell, “On

influences between ICT standards

and their implementation in open

source software projects: The case

of H.264,” in The Past, 20/20 and

FUTURE of ICT Standardisation,

Booklet of Papers of the 11th Inter-

national Conference on Standardisa-

tion and Innovation in Information

Technology (SIIT 2020), EURAS

Contributions to Standardisation

Research, K. Jakobs, Ed. Aachen:

Mainz Publishers, 2020, vol. 16,

pp. 1–12.

4. J. Linåker and B. Regnell, “What to

share, when, and where: Balancing

the objectives and complexities of

open source software contributions,”

Empirical Softw. Eng., vol. 25, no. 5,

pp. 3799–3840, 2020. doi: 10.1007/

s10664-020-09855-2.

5. B. Lundell, J. Gamalielsson, and

A. Katz, “Implementing IT stan-

dards in software: Challenges and

recommendations for organisations

planning software development

covering IT standards,” European

J. Law Technol., vol. 10, no. 2,

2019. [Online]. Available: https://

ejlt.org/index.php/ejlt/article/

view/709/

6. B. Lundell et al., “Addressing lock-

in, interoperability, and long-term

maintenance challenges through

Open Source: How can companies

strategically use Open Source?” in

Proc. 13th Int. Conf. Open Source

Syst. (OSS 2017), IFIP AICT 496,

2017, pp. 80–88.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

BENGT KVARNSTRÖM is a senior

systems engineer at Saab Aeronautics,

581 88, Linköping, Sweden, where he

leads the group responsible for software

development processes, methodology,

and tools. His research interests include

systems and software development, with

a specific focus on strategies for adop-

tion and use of third party components

provided under different conditions.

Kvarnström received his M.Sc. in applied

physics and electrical engineering from the

Institute of Technology, Linköping Univer-

sity. Contact him at bengt.kvarnstrom@

saabgroup.com.

ANDERS MATTSSON is the lead

architect for Internet of Things systems at

Husqvarna, 561 82, Huskvarna, Sweden.

His research interests include strengthening

software engineering practices in organiza-

tions, software architecture, and model-

driven development of embedded real-time

systems. Mattsson received his Ph.D. in

software engineering from the University of

Limerick. He is a Member of IEEE. Contact

him at https://www.linkedin

.com/in/andersmattsson/ or anders.mattsson@

husqvarnagroup.com.

ERIK LÖNROTH leads supercomputing

technical initiatives at Scania CV, 151 32,

Södertälje, Sweden. His research interests

include the development of supercomputer

environments for industry, open source

software governance, and high-perfor-

mance computing. Lönroth received his

M.Sc. in computer science from Linköping

University. Contact him at erik.lonroth@

scania.com.

92 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: PROMOTING DIGITAL SOVEREIGNTY

7. H. Mäenpää, S. Mäkinen, T. Kilamo,

T. Mikkonen, T. Männistö, and P.

Ritala, “Organizing for openness:

Six models for developer involve-

ment in hybrid OSS projects,” J.

Internet Services Appl., vol. 9, no. 1,

2018, Art. no. 17. doi: 10.1186/

s13174-018-0088-1.

8. D. Mueller and D. Izquierdo- Cortazar,

“From art to science: The evolution

of community development,” IEEE

Softw., vol. 36, no. 6, pp. 23–28,

2019. doi: 10.1109/MS.2019

.2936177.

9. Y. Zhang, M. Zhou, A. Mockus, and

Z. Jin, “Companies’ Participation

in OSS development–An empirical

study of OpenStack,” IEEE Trans.

Softw. Eng., 2019. doi: 10.1109/

TSE.2019.2946156.

10. B. Lundell, B. Lings, and A. Syber-

feldt, “The practitioner perceptions

of open source software in the em-

bedded systems area,” J. Syst. Softw.,

vol. 84, no. 9, pp. 1540–1549, 2011.

doi: 10.1016/j.jss.2011.03.020.

11. F. van der Linden, B. Lundell, and P.

Marttiin, “Commodification of indus-

trial software: A case for open source,”

IEEE Softw., vol. 26, no. 4, pp. 77–83,

2009. doi: 10.1109/MS.2009.88.

12. B. Lundell, “Analys av DIGG:s policy

för utveckling av programvara, version

1.0, 20 May,” Skövde University Studies

in Informatics 2020:1, Univ. of Skövde,

Skövde, Sweden, 2020. [Online]. Avail-

able: http://urn.kb.se/resolve? urn=urn:

nbn:se:his:diva-18895

13. K. Blind and M. Böhm, “The re-

lationship between open source

software and standard setting,” in

EUR 29867 EN, JRC (Joint Re-

search Centre) Science for Policy

Report, N. Thumm, Ed.

Luxembourg: Publications Office

of the European Union, 2019. doi:

10.2760/163594.

14. S. Butler et al., “Maintaining interop-

erability in open source software:

A case study of the Apache PDFBox

project,” J. Syst. Softw., vol. 159,

p. 1,1045, Jan. 2020. doi: 10.1016/

j.jss.2019.110452.

15. P. S. Kochhar, E. Kalliamvakou, N.

Nagappan, T. Zimmermann, and

C. Bird, “Moving from closed to

open source: Observations from six

transitioned projects to GitHub,”

IEEE Trans. Softw. Eng., 2019. doi:

10.1109/TSE.2019.2937025.

Publish your work in the IEEE Computer
Society’s flagship journal, IEEE Transactions
on Computers. The journal seeks papers on
everything from computer architecture and
software systems to machine learning and
quantum computing.

Learn about calls for papers
and submission details at
www.computer.org/tc.

Call for Papers:
IEEE Transactions
on Computers

Digital Object Identifier 10.1109/MS.2021.3130452

