
Big Data Research 26 (2021) 100254

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Scaling the Growing Neural Gas for Visual Cluster Analysis

Elio Ventocilla a,∗, Rafael M. Martins b, Fernando Paulovich c, Maria Riveiro d

a School of Informatics, University of Skövde, Sweden
b Department of Computer Science and Media Technology, Linnaeus University, Sweden
c Faculty of Computer Science, Dalhousie University, Canada
d School of Engineering, Jönköping University, Sweden

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 October 2020
Received in revised form 18 May 2021
Accepted 12 June 2021
Available online 12 August 2021

Keywords:
Growing neural gas
Big data
Visual analytics
Unsupervised learning
Exploratory data analysis

The growing neural gas (GNG) is an unsupervised topology learning algorithm that models a data space 
through interconnected units that stand on the most populated areas of that space. Its output is a graph 
that can be visually represented on a two-dimensional plane, disclosing cluster patterns in datasets. It is 
common, however, for GNG to result in highly connected graphs when trained on high-dimensional data, 
which in turn leads to highly cluttered 2D representations that may fail to disclose meaningful patterns. 
Moreover, its sequential learning limits its potential for faster executions on local datasets, and, more 
importantly, its potential for training on distributed datasets while leveraging from the computational 
resources of the infrastructures in which they reside.
This paper presents two methods that improve GNG for the visualization of cluster patterns in large-
scale and high-dimensional datasets. The first one focuses on providing more accurate and meaningful 
2D visual representations for cluster patterns of high-dimensional datasets, by avoiding connections that 
lead to high-dimensional graphs in the modeled topology which may, in turn, result in overplotting 
and clutter. The second method presented in this paper enables the use of GNG on big and distributed 
datasets with faster execution times, by modeling and merging separate parts of a dataset using the 
MapReduce model.
Quantitative and qualitative evaluations show that the first method leads to the creation of lower-
dimensional graph structures that provide more meaningful (and sometimes more accurate) cluster 
representations with less overplotting and clutter; and that the second method preserves the accuracy 
and meaning of the cluster representations while enabling its execution in large-scale and distributed 
settings.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A common problem in exploratory data analysis—a process that 
relies on limited preconceived assumptions [1]—is the investigation 
of cluster patterns in datasets [2], i.e., uncovering groups of in-
stances which form neighborhoods according to a given similarity 
or distance metric. One way to uncover such patterns is by model-
ing those neighborhoods and then visually encoding them. Modeling 
is often achieved by using dimensionality reduction (DR) (e.g., PCA 
[3], t-SNE [4], and UMAP [5]) or clustering (e.g., Ward [6], OP-
TICS [7], and SOM [8]) techniques; whereas visual encoding can 
be achieved by employing scatter plots, dendrograms, reachability 
plots, and U-Matrices.

* Corresponding author.
E-mail address: elio.ventocilla@his.se (E. Ventocilla).
https://doi.org/10.1016/j.bdr.2021.100254
2214-5796/© 2021 The Author(s). Published by Elsevier Inc. This is an open access artic
As datasets grow in terms of size (number of data points) and 
dimensionality (number of features), it becomes more challenging 
to uncover such cluster patterns in a human-interpretable and us-
able way. High-dimensional datasets are more difficult to model 
because data points are sparser in the multidimensional space 
(a.k.a., the curse of dimensionality [9]). This makes modeled dis-
tances less meaningful, therefore affecting the representativeness 
of the subsequent visual representations. Bigger datasets (i.e. with 
millions of data points) entail even more usability challenges, such 
as avoiding overplotting and clutter in the visual representations 
or providing system feedback from both learning processes and 
user-triggered interactions under a given time threshold (i.e., 10 
seconds for task-preserving latency) [10–12].

The DR community has made extensive progress in modeling 
high dimensional spaces, as well as in enabling faster and progres-
sive computations (see [13–15] for thorough surveys). Most tech-
niques, however, have a limit on the number of data points that 
can be modeled before producing overlapping elements and clut-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.bdr.2021.100254
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2021.100254&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:elio.ventocilla@his.se
https://doi.org/10.1016/j.bdr.2021.100254
http://creativecommons.org/licenses/by/4.0/


E. Ventocilla, R.M. Martins, F. Paulovich et al. Big Data Research 26 (2021) 100254

Fig. 1. Projections of the MNIST dataset [21] using GNG and t-SNE.
ter in the visual encoding, or before exceeding the recommended 
feedback times. This is mainly due to the nature of DR techniques, 
where all data points are either visually encoded or need to be 
accounted for during each training epoch.

Some clustering techniques, such as SOM and the GNG [16], re-
solve these issues by quantizing the data, i.e., by compressing the 
data into a set of representative units, and by working in an in-
cremental manner, i.e., modeling the space by taking subsets of 
data at a time. The former reduces the occurrence of overplotting 
and visual clutter, as well as computational burdens triggered by 
user interactions such as selecting and zooming, by only depicting 
a smaller set of representative units. The latter, on the other hand, 
allows systems to provide faster feedback from ongoing learning 
processes, while also allowing them to model streaming data. Ad-
ditionally, the output from such techniques lends itself to subse-
quent analytical tasks such as anomaly detection, e.g., [17].

Despite their similarities, some works have described advan-
tages of GNG over SOM. First, the visual encoding of SOMs (U-
Matrices [18]) was empirically shown to be less intuitive than 
GNG’s graphs [19]. Second, GNG’s models can partition data into 
independent networks which reflect the number of clusters in a 
dataset, hence providing an automated estimate of this hyper-
parameter (usually known as k) [20]. Taking these benefits into ac-
count, this paper proposes two methods to further improve GNG’s 
modeling power and efficiency when it comes to visually uncover-
ing cluster patterns in large and high dimensional datasets.

1.1. Problem description

In spite of the previously described benefits, visual representa-
tions of GNG tend to degrade as datasets grow in dimensionality 
[19]. Concretely, GNG models of high-dimensional data result in 
highly connected networks which tend to produce many overlap-
ping units and edges when projected on a two-dimensional plane, 
resembling hairball-like networks (see Fig. 1) with arguably no vis-
ible cluster patterns as compared to other techniques (e.g., t-SNE).

Moreover, GNG’s sequential implementation can create a bot-
tleneck for large and distributed datasets. In such settings, where 
data resides on different machines (nodes), a system might be re-
quired to retrieve the data from each of the nodes in order to train 
the model on a single machine. This could work well by sampling 
data points in an iterative manner (as suggested in [22]) but would 
arguably create an unnecessary burden on the system in terms of 
network traffic, thus potentially increasing feedback times beyond 
the recommended usability thresholds (especially when dealing 
with high-dimensional datasets such as images).
2

1.2. Contribution

This paper describes two sets of updates for the GNG al-
gorithm, aimed at resolving the two aforementioned problems. 
Namely, avoiding entanglement in GNG’s models to provide more 
accurate and meaningful cluster pattern representations of high-
dimensional datasets; and parallelizing the learning process (using 
the MapReduce programming model [23]) so that it may produce 
faster results in either distributed or local datasets. To assess the 
validity of these solutions, three different GNG versions were cre-
ated: u-GNG to assess entanglement prevention, parGNG to assess 
parallelization, and u-parGNG to assess both. In addition to these, 
one other version was assessed, s-GNG, which adds sampling to u-
parGNG to further decrease execution times and improve its mod-
eling by avoiding noise. The performance of these four versions, 
along with the original GNG as a baseline, were assessed quan-
titatively in terms of execution times, mean squared error (MSE), 
and three other metrics aimed at evaluating a model’s cluster sep-
aration in terms of the connections among its units. Their cluster 
pattern representations were also qualitatively assessed by com-
paring their two-dimensional visual representations (embeddings).

Results show that (a) u-GNG creates more accurate and mean-
ingful visual representations of cluster patterns within similar exe-
cution times; (b) parGNG scales to distributed datasets while pre-
serving, and at times improving, GNG’s modeling accuracy; (c) u-
parGNG also preserves u-GNG’s modeling accuracy while achieving 
faster results; and (d) s-GNG can further lower u-parGNG’s learn-
ing times while preserving, and sometimes improving, its modeling 
power.

The rest of the paper is organized as follows: the next section 
provides a brief introduction to GNG and MapReduce, while related 
work is reviewed in Section 3. The two new methods are presented 
in Sections 4 and 5, while the experimental setup and results are 
described in Sections 6 and 7. These are followed by a discussion 
of the results and a brief concluding section.

2. Background

2.1. The growing neural gas

Fritzke [16] proposed the GNG as a learning algorithm that 
finds “a topological structure which closely reflects the topology 
of the data distribution”. Unlike the Neural Gas (NG), proposed 
by Martinetz et al. [24], GNG uses Competitive Hebbian learning 
[25] to dynamically add units to the modeling network during the 
learning process—hence Growing NG. The outcome of a GNG is a 
set of units (neurons), each with an associated weight vector (pro-
totype) of the same dimensionality as the input data, and a set of 
edges connecting the units.



E. Ventocilla, R.M. Martins, F. Paulovich et al. Big Data Research 26 (2021) 100254
The learning process is composed of the following steps:

1. Start with two connected units with randomly initialized pro-
totypes.

2. Take an input signal (data point) δ from the dataset.
3. Find the two closest units μa and μb , based on the Euclidean 

distance of their prototypes to δ.
4. Linearly increment the age of all edges connected to μa .
5. Add (accumulate) the squared Euclidean distance (||μa − δ||2) 

to an error variable associated to μa .
6. Move μa , and its topological neighbors, towards δ by a factor 

εb and εn respectively.
7. Connect μa and μb if they are not already connected; set the 

age value of their connecting edge to zero if they already are.
8. Remove all edges with an age over a threshold amax , as well as 

all resulting unconnected units.
9. At every λ input signal, insert a new unit between the unit 

μq with the largest accumulated error, and its direct topolog-
ical neighbor μr with the largest accumulated error. The new 
unit’s prototype is set to stand in between, i.e., 0.5(μq − μqr). 
Reduce the errors of μq and μr by a factor α. Set the new 
unit’s error equal to μq ’s error.

10. Decrease all units’ error by d.
11. If no stopping criteria are met, go to step 2.

This process is incremental in nature, since learning is achieved 
one data point (signal) at a time. This allows GNG’s inclusion 
in progressive and interactive systems, where analysts can steer 
and explore the modeled space, as training proceeds [12,26]. Con-
cretely, a system can provide partial results at every given time 
step t , so that users may explore, assess, and steer the modeling 
process. Another inherent benefit is that it can model clusters of 
different shapes. Unlike SOM, where the topology of the network 
(number of units and connections) is predefined, GNG learns the 
topology by adding both units and connections as more informa-
tion is received. This, as later shown, can translate to one or more 
modeled networks of arbitrary shape (as given by the data dis-
tribution), where each represents different populated areas in the 
data. Counting the networks, therefore, provides an estimate of the 
number of clusters in the dataset, k [20].

Our proposed entanglement prevention seeks to create lower 
dimensional graph representations of the manifold, which in turn 
is expected to (a) foster the creation of separate networks when-
ever suggested by the density distribution of the data, and (b) 
improve its visual representation in the two-dimensional plane, 
hence facilitating the visual disclosure of cluster patterns.

2.2. MapReduce

MapReduce is a programming model proposed by Dean and 
Ghemawat [23] in order to scale computations across distributed 
infrastructures in a reliable manner. The model is composed of two 
stages: one which transforms data instances using a map function 
M; and another which aggregates the transformed values using a 
reduce function R . The output cardinality of instances from the first 
stage is usually equal to the cardinality of the input—sometimes 
lower if a filtering condition is applied—while the cardinality of 
the second stage is, as the name implies, reduced.

Fig. 2 gives an example of a MapReduce process where a 
dataset X is split into four partitions. Each partition is transformed 
from a type y to a type j using the map function M , and the re-
sulting transformations are then reduced with a function R that 
aggregates instances by key sets K and T (e.g., years or months). 
Aggregations by key are common practice, but they can also be 
done on the entire the dataset (i.e., without a key), hence produc-
ing a single result. This is the case, for example, in our proposed 
3

Fig. 2. MapReduce with four partitions.

GNG parallelization. Both stages can be performed in parallel, with 
the only condition that, in order to have consistent results, the re-
duce function is both associative and commutative.

Our proposed parallelization of GNG uses the map stage to 
model each data partition separately, and then the reduce stage 
to merge each model into a global one. Details are given in Sec-
tion 5.

3. Related work

3.1. Visualizing cluster patterns

There are different machine learning (ML) techniques for visu-
alizing cluster patterns, most of which fall under the umbrella of 
DR. Such techniques seek to project data from an N-dimensional 
to a Y -dimensional space, where Y < N , while preserving, to the 
largest possible extent, the local or global neighborhood relation-
ships of the original N-space (distance-wise, e.g., Euclidean). If 
Y ∈ {2, 3} then the projected data can be visually encoded using 
2D or 3D scatter plots. Examples of DR techniques are PCA [3], 
MDS [27], Isomap [28], t-SNE [4] and UMAP [29]. In particular, the 
latter two have proven to scale well to high-dimensional datasets 
by modeling the manifold that emerges from local neighborhoods, 
i.e., by prioritizing the preservation of smaller distances over global 
ones (see [13] for an extensive benchmark). Unlike GNG’s topology 
models, from where it is also possible to draw an estimate of the 
number of clusters, DR projected values do not lend themselves to 
the automated estimation of k.

Other methods for visualizing cluster patterns fall under the 
clustering category. Examples are Ward hierarchical clustering [6], 
which constructs a tree that can be visually encoded using a den-
drogram; OPTICS density-based clustering [7], whose output can 
be visually encoded using a reachability plot; or the aforemen-
tioned neural-based techniques SOM and GNG, which can, respec-
tively, be visually encoded using a U-Matrix [18] or force-directed 
placement (FDP) [30]. SOM and GNG are similar in the sense that 
both are topology learning techniques, both work incrementally, 
and both perform vector quantization. SOM, however, has a static 
network topology of predefined connections among units that lim-
its its learning to the movement of the prototypes. Despite their 
quantization and incremental learning benefits, both are likely to 
score poorly in terms of interpretability and accuracy, as compared 
to some DR techniques, when used to estimate the number of k
clusters in a dataset [19]. This paper intends to improve these as-
pects of the GNG algorithm, based on a previous implementation 
from the library proposed in [30] where sampling is used to col-
lect batches of the distributed data into a single machine and run 
per-batch epochs of Fritzke’s algorithm.

3.2. Scaling the growing neural gas

A type of GNG disentanglement was suggested by Costa and 
Oliveira [20], where they rank and eliminate edges after training 
using a three-step strategy. First, they duplicate the trained model, 
remove all edges, and create new ones by resubmitting the data. 



E. Ventocilla, R.M. Martins, F. Paulovich et al. Big Data Research 26 (2021) 100254

Fig. 3. Graph structures of different dimensionalities. Red dashed lines are examples of connections which could be removed in order to lower the dimensionality of a graph.
During resubmission, a utility variable is associated with each edge 
(which is linearly increased during step 7), and only the edge-
related steps—i.e., steps 2, 3, 7, and 8—are executed. The second 
step is to remove edges that are not at the intersection of both 
the first model and the duplicated model. Finally, the last step re-
moves other edges whose utility value, or length (based on the Eu-
clidean distance between the prototypes of the units they connect), 
does not meet or exceeds a certain threshold. Unlike their solu-
tion, which carries a post hoc removal of edges, the mechanism 
proposed in this paper avoids entanglement during the learning 
process itself. This has an impact on the movement of the units 
during training, which influences the accuracy of the model (in 
terms of MSE) as well as the number of created networks.

Concerning the improvement of execution times, Fliege et al. 
[31] proposed a MapReduce version of GNG following the batch 
parallelization approach suggested by [32]. Namely, their solution 
creates an initial model with two connected units (as in the orig-
inal algorithm) that is then broadcast to each of the working 
threads (or nodes in the case of a cluster infrastructure). A map
function then fits each model to a different partition of the dataset 
by executing steps 2 to 6, i.e., by moving units in the data space 
and without making changes to the graph. A reduce function then 
merges the fitted models into a global one, by averaging the move-
ment of the prototypes, the units’ errors, and the ages of the edges. 
Finally, the resulting model is updated by executing steps 7 to 10, 
i.e., by adding and removing edges, and by adding a new unit (if 
the maximum number of units has not been reached). The process 
repeats itself until a convergence criterion is met. Their experi-
ments report faster execution times, but do not report accuracy. 
The MapReduce version proposed here follows another paralleliza-
tion approach suggested by [32], where separate GNGs are fitted to 
different data partitions by executing steps 2 to 10 (hence, letting 
each grow separately) and then merging them by using the pro-
totypes in one GNG as the training data for another GNG (more 
details are given in Section 5). The advantage of this approach 
is that bigger training steps are taken, since more than one unit 
is added per epoch. We elaborate more about our approach and 
theirs in Section 8.

Orts et al. [33] proposed a CUDA version of GNG. Their solution 
parallelized the second step of the learning process, i.e., finding the 
two closest units to an input signal, as it was found to be the most 
computationally expensive part; the remaining steps still run in a 
sequential manner. This step, however, as shown in their experi-
ments, is only worth parallelizing when the number of units used 
in the modeling is greater than a given threshold (>500); GPU 
parallelization for a lower number of units would not show sig-
nificant improvement (or could even hinder) the execution times 
due to the transfer latency with the CPU. In the application area of 
3D reconstruction—to which they targeted their contribution—such 
performance improvements are helpful since it is common to have 
over 500 units. This, however, is not the case for visualizing clus-
ter patterns, where the number of units is sought to be minimized 
in order to avoid overplotting and visual cluttering, and reduce 
the computational burden of user interactions. Compared to their 
work, we propose a general solution (not GPU-specific) to paral-
lelize the entire pipeline of the learning process (not just one step), 
and our solution also deals with datasets that are geographically 
distributed. These two solutions are, nevertheless, not mutually ex-
4

clusive; it would be possible to parallelize the entire pipeline so 
that GNG is executed on different CPU threads or worker nodes, 
while also parallelizing GNG’s second step on GPU threads in each 
worker node.

Zhu et al., [34] proposed the use of random projection, a fea-
ture extraction technique, as a pre-processing step to make GNG a 
viable technique in the context of the specific challenges of data 
streaming. Random projections are used by the authors to reduce 
the dimensionality of a dataset and, hence, lower the execution 
times of GNG while “still finding a solution which is related to 
clustering in the original high-dimensional space”. This is simi-
lar to the use of PCA in [4] where t-SNE is presented, but in the 
context of streaming data and clustering with GNG. Random pro-
jections, however, have also been used as a pre-processing step for 
scaling clustering algorithms that work on static data [35], which 
suggests that they can also be used as a pre-step to the enhanced 
GNG version proposed here and, hence, further decrease its execu-
tion times.

4. Avoiding entanglement

This section describes the first proposed method, aimed at pro-
viding more meaningful and accurate cluster embeddings of GNG’s 
modeled topologies. Fig. 1 showed two projections of the MNIST 
dataset (details of the dataset are given in Section 6), one using 
force-directed placement on a GNG model (left), and the other a 
scatter plot of a 2D t-SNE projection (right). In the former, each 
node represents a GNG unit, with nodes sizes encoding density 
(i.e., the number of data points a unit represents), and the length 
of the edges encode the Euclidean distances between units’ proto-
types.

It is possible to see, in Fig. 1, that GNG created a highly con-
nected network that hardly reflects any of the cluster patterns that 
other techniques, such as t-SNE, manage to disclose. A possible ex-
planation for this behavior is that the connections created by GNG 
form high-dimensional graph structures. Fig. 3 illustrates the idea 
of how graph structures grow in complexity as they increase in 
dimensionality. In fully connected networks, the more units, the 
higher the dimensionality of the graph, and, hence, the more over-
lapping edges in the 2D plane.

The original GNG has no restrictions on the dimensionality of 
the graph structures it creates. Namely, step 7 of the GNG will 
connect the two closest units (μa and μb) to a given signal (δ), 
regardless of where they currently lie within the network. This be-
havior is not necessarily wrong, since it reflects the complexity of 
relationships in higher-dimensional spaces. Still, it might be unde-
sired for the tasks of cluster analysis and visualization.

An approach to fostering the creation of lower-dimensional 
graph structures, and avoiding overlapping edges in the embed-
ding, is to restrict the creation of connections among units. Our 
proposed solution does this by requesting five conditions to be 
met in step 7 when units μa and μb are not already connected. 
Namely, μa and μb may connect, if and only if:

1. They are second-degree neighbors, i.e., they have at least one 
neighbor in common—a bridge.

2. They have no more than two bridges.
3. There are no connections among bridges (if there are two).



E. Ventocilla, R.M. Martins, F. Paulovich et al. Big Data Research 26 (2021) 100254

Fig. 4. Examples of forbidden and allowed connections.
4. If there is only one bridge, then μa and μb should have no 
more than 1 common neighbor with it. That is, if μ′ is the 
bridge between μa and μb , then neither μa nor μb should 
have 2 or more common neighbors with μ′ .

5. The second winning unit (μb) belongs to a small network.

The first condition avoids curling the network from its cur-
rent representation of the manifold, by not allowing distant units 
(graph-wise) to connect. In Fig. 4a, for example, unit A would not 
be allowed to connect to units G and H since there are no common 
neighbors between them. According to the first condition, unit A 
may connect to units D and F since they have B, C, and E as com-
mon neighbors; the second condition, however, would not allow 
these connections to take place. Other forbidden connections of 
this rule are shown with red dashed lines.

Conditions 2 to 4 aim to avoid local graph structures from 
becoming high-dimensional, or, simply put, from creating overlap-
ping edges in the two-dimensional plane. According to condition 
3, a connection between B and E is not allowed (see Fig. 4b) 
because their common neighbors, C and A, are connected—hence 
avoiding edge BE from overlapping CA. Condition 4 (see Fig. 4c) 
also seeks to avoid overlapping edges while still being permissive, 
but in slightly more complex situations. This is the case of con-
nections between D and A, and D and B; the latter should be 
allowed (DB would not overlap any other edge), while the for-
mer should not (DA would overlap BC). The 4th condition resolves 
this by checking that their bridge C has no more than one com-
mon neighbor with either of the units in question. Connecting D 
and A is forbidden, for example, because their bridge C has two
common neighbors with A, i.e., nodes B and E. The 2nd condition 
(i.e., no more than two bridges) simply disregards more complex 
cases, which are more likely to create overlapping edges in the 
two-dimensional plane. The allowed connections so far are shown 
in Fig. 4d. It is possible to see that, despite the former restric-
tions, higher-dimensional structures can still be constructed (see, 
for example, that adding CG would overlap DF). Such connections 
could be avoided by checking not just common neighbors between 
a bridge and the connecting units, but paths which may get on 
the way. Checking if such paths exist, however, would make the 
training quite computationally expensive, which is why it is not 
suggested as part of the solution. Moreover, the results from the 
tests described in Section 7 show that these conditions alone make 
considerable improvement over the state of the art.

The final condition aims to allow small satellite networks, i.e., 
networks whose units are close to other networks in the Euclidean 
space, to reconnect to other networks. The first condition is strict
in the sense that it does not allow separate networks to recon-
nect. Several trials showed that this is the desired behavior when 
it comes to reasonably sized networks, e.g., with more than 2 or 
3 units. Smaller networks, on the other hand, may be the result 
of a split early in the training, when a significant portion of the 
population has not yet been seen. The third condition gives small 
networks the opportunity to reconnect to others while also allow-
ing them to become independent.
5

5. Parallelizing GNG

This section describes the second proposed method, which aims 
at enabling GNG’s execution over distributed infrastructures while 
leveraging their computational resources. The sequential version of 
GNG can be defined as

L(G0, X, e) → G X
e (1)

where L is GNG’s learning algorithm, which fits an initial model 
G0 to a training dataset X , and produces a trained model G X

e af-
ter e epochs. The proposed parallel version uses the MapReduce 
programming model to split the learning process into r partitions 
of X (where r > 1, ideally tailored to the computational resources 
and the size of the dataset) and then merge the results from each 
partition into a single model.

Concretely, the first step to parallelize GNG is to split the 
dataset X into r partitions Xi, i ∈ [1, ..., r], and then apply a map 
function (M) that partially fits (with a single pass) separate GNG 
models to each of the partitions Xi . Data partitioning should be 
balanced (i.e., each partition should have a similar number of data 
points) so that each parallel process takes similar time, and prefer-
ably random (i.e., data points randomly assigned to each partition) 
to avoid bias in the learning (this is, nonetheless, mitigated in the 
merging stage as later explained). Assuming that X has been split 
following these conditions, the map function is defined as follows

M(Gt, Xi) → L(Gt, Xi,1) → Gi
t+1 (2)

That is, M is a function that applies a one-pass of L to the ith

partition of X , at a given epoch t . The first epoch (t = 0) looks as 
follows:

M(G0, X0) → G0
0

M(G0, X1) → G1
0

...

M(G0, Xr) → Gr
0

This results in r partially fitted models, one per partition. These 
models are then merged using the following reduce function:

R(Gi
t, G j

t ) → L(Gi
t, P j

t ,1) (3)

where Gi
t and G j

t are the models fitted to partitions i and j, and 
P j

t are the units’ prototypes in model G j
t . The merging mecha-

nism is simple in the sense that it reuses GNG’s learning logic. 
Namely, the prototypes of model G j

t are used as a training set 
for a one-pass run of GNG, using model Gi

t as the initial state. In 
other words, Gi

t is partially fitted to G j
t ’s learned space. The merg-

ing order is preferably random to prevent bias. This analogous to 
counterbalancing in statistical experiments, where each participant 
(GNG learner) is shown different conditions (partitions) in a differ-
ent order.



E. Ventocilla, R.M. Martins, F. Paulovich et al. Big Data Research 26 (2021) 100254
Fig. 5. Parallel GNG learning example with four partitions.

The resulting model from the reduce stage is then used as the 
initial state for the mapping stage in the following epoch. Fig. 5 ex-
emplifies the overall process for a dataset split into four partitions. 
The hyper-parameters for both the map and the reduce stages can 
be the same as the ones used for the sequential GNG version.

All parallel versions assessed in this paper are based on this 
model. The only difference in s-GNG is that it samples each data 
partition during the map stage. Concretely,

M(Gt, Xi, s) → L(Gt, Sample(Xi, s),1) (4)

where Sample is a uniform sampling function, and s states the 
fraction size (in percentage) that is to be sampled from the given 
set of points. Sampling is expected to reduce training times and 
avoid noise from the data, and while it may arguably lead to a loss 
in accuracy, our empirical results show that this is not the case.

6. Experimental setup

This section describes the metrics used to assess performance, 
the independent variables (i.e., GNG versions and datasets), and 
the conditions under which the experiments were carried.

6.1. Performance metrics (dependent variables)

Five performance metrics were used, all measured on a per-
epoch basis: execution time, mean squared error (MSE), class sep-
aration error (CSE), number of created networks (CN), and the 
number of redundant networks (RN).

MSE measures the average squared difference from each data 
point to its closest unit:

M S E = 1

N

N∑

i=1

MinS E(G X , xi) (5)

where N is the size of the dataset, and MinS E a function that re-
turns the minimum squared error between data point xi and each 
of the units’ prototypes of model G X . This metric measures the 
quality of the model in terms of how well the units represent the 
distribution of the data in the multidimensional space. The lower 
the number, the better.

CSE, on the other hand, measures the goodness of the connec-
tions among units with respect to the class they represent. This is 
quantified in terms of the percentage of edges that are connecting 
units that represent two different classes, i.e.

C S E = �/E (6)

where E is the total number of edges, and � the number of edges 
connecting units of a different class. Class representation, in this 
case, is given by a majority vote from the data points a unit repre-
sents. That is, the most frequent label in the subset of X , which is 
closest to a given unit (in terms of Euclidean distance). As in MSE, 
the lower the value the better.

The last two metrics are CN and RN. The former is a simple 
count on the number of independent networks in the model, while 
6

Table 1
Datasets.

Dataset Size Features Labels

S Dermatology 366 34 6
BreastCancer 569 9 2
Abalone 4K 7 29

M Isolet 6.2K 617 26
MNIST 60K 784 10
FashionMNIST 60K 784 10

L E-MTAB-6169 787K 50 –
Glove 400K 200 –
GoogleNews 3G 300 –

the latter is a count of networks that are redundant in terms of the 
class they represent (i.e., the number of networks representing the 
same class). Similar to the class of a unit, the class of a network is 
given by a majority vote from its units. Greater CN values, together 
with lower RN values, mean a closer representation of the true 
number of classes in a dataset, i.e., closer to the ground truth.

6.2. GNG versions and datasets (independent variables)

Five versions of GNG were used to assess the validity of the 
three proposed changes, i.e., entanglement avoidance, paralleliza-
tion, and parallelization with sampling. Namely:

• GNG: Sequential GNG (i.e., original version used as a baseline).
• u-GNG: Sequential and untangled GNG.
• parGNG: Parallel GNG.
• u-parGNG: Untangled and parallel GNG.
• s-GNG: u-parGNG with sampling.

Six datasets were used in the evaluation (see Table 1): 3 smaller
(S) datasets, with less than 5K data points, used only for testing 
the sequential versions (i.e., GNG and u-GNG); 3 medium (M) sized 
datasets, between 6K and 100K data points, used to test all five 
versions; and 3 larger (L) datasets, with over 400K datapoints, as-
sessed using parGNG and s-GNG projections. These latter datasets 
do not have labels, and thus, their performance is measured only 
in terms of MSE and CN.

The S datasets are Dermatology, comprised of skin sample mea-
surements associated with erythemato-squamous diseases; Breast-
Cancer [36], comprised of benign and malignant cell nuclei mea-
surements; and Abalone [37], comprised of measures of mollusks 
of different ages. These were all taken from the UCI machine 
learning repository [38]. The M datasets are Isolet [39], comprised 
of spoken letters of the English alphabet (also taken from UCI); 
MNIST [21], comprised of 28 × 28 pixel images of handwritten 
digits; and FashionMNIST [40], comprised of 28 × 28 pixel images 
of clothing articles. Finally, the L datasets are E-MTAB-6169 [41], 
comprised of chicken transcriptomic profiles; Glove [42], com-
prised of word embeddings from Wikipedia pages; and Google-
News [43], comprised of word embeddings from news articles.

6.3. Implementation and parameters

All GNG versions, as well as metric functions, were imple-
mented using the Scala programming language. The Apache Spark 
library was used to implement the parallel versions, thus leverag-
ing from its abstraction of the MapReduce model. A public imple-
mentation of these versions is provided as an off-the-shelf Visual 
Analytics library [44] here: https://github .com /eliovr /visualgng.

The environment where the sequential versions were tested 
was a 64 bit Ubuntu 18.04 computer, with 62.4Gb of RAM and 
Intel Xeon E5/Core i7. The environment for the parallelized ver-
sions, on the other hand, was a three-node cluster (two workers 

https://github.com/eliovr/visualgng


E. Ventocilla, R.M. Martins, F. Paulovich et al. Big Data Research 26 (2021) 100254

Fig. 6. Embeddings of the S datasets. Training for these was carried over 50 epochs with a maximum of 50 units. Colors and text represent classes in the data. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
Table 2
Experimental settings. *8 partitions were used with the 
parallel GNG versions, and 1 for the sequential. **24 parti-
tions were used for the GoogleNews dataset.

S M L

Max. units 50 120 200
Epochs 50 100 100
Partitions 1 1, 8* 8, 24**
Scaling Yes No No

and a driver), each using Ubuntu 18.04, 4 VCPUs, and 4Gb of RAM. 
The aim of this setup is to test and showcase the parallel ver-
sions of GNG in a real distributed environment. Here, datasets were 
distributed using Hadoop HDFS. For the GoogleNews dataset, how-
ever, the first environment was used since it provided 24 cores for 
parallel executions—the distributed environment provided only up 
to 8 effective threads (2 workers × 4 VCPUs).

The original GNG hyper-parameters were, in all cases, the same 
as those suggested by Fritzke [16] (as in [45]). Concretely: εb = .2
(adaptation step of the closest unit), εn = .006 (adaption step of 
the neighbors), λ = 100 (frequency with which units are added), 
amax = 50 (maximum edge age), α = .5 (error reduction rate of 
the neighbors of a new unit), d = .995 (error reduction rate of all 
units). Other parameters, such as the maximum number of units 
and the number of epochs, were set based on the size of the 
datasets (see Table 2).

The two proposed methods, along with the proposed sampling, 
include three additional parameters: the size of small networks in 
entanglement prevention (condition 5); the number of partitions r
in parallel learning; and the sampling factor s in parallel learning 
with sampling. The former was set to 3 (i.e., networks of 3 units 
may reconnect), the sampling factor was set to 0.5 (i.e., sample 
fifty percent from each partition), and the number of partitions r
was set to 8. In the case of GoogleNews, r was set to 24 in order to 
7

leverage from all computational threads—as previously mentioned 
in the environment settings.

S datasets were scaled to a one-unit variance since their origi-
nal features had different scales. Finally, 10 test trials were carried 
in all cases. This allows assessing the variance in the measure-
ments that would result from the instantiation of the initial models 
(G0), the merging order during the reduce phase, as well as the 
sampling used in s-GNG.

7. Results

The results are described in two parts: first, in terms of ex-
ample embeddings (2D visual representations) of the S, M, and L 
datasets using different GNG versions; and second, in terms of the 
performance metrics.

7.1. Embeddings

Examples of the embeddings resulting from the different GNG 
versions are shown in Fig. 6 (for the S datasets), Fig. 7 (for the M 
datasets), and Fig. 8 (for the L datasets). For the M datasets, only 
embeddings from GNG and s-GNG are shown; the others (u-GNG, 
parGNG, and u-parGNG) are provided in the supplementary mate-
rial. Figs. 6 and 7 use color encodings and tags to identify different 
classes given by the majority votes (as explained in Section 6).

In Fig. 6, not much difference can be seen between the GNG 
and u-GNG embeddings of the S datasets, except for Dermatology 
dataset. In this latter case, GNG created 2 networks, one represent-
ing the 3s and the other the rest, while u-GNG created 4 networks, 
three of which present purity (i.e., all units in a network represent 
the same class) and a fourth one with a mixture of the remaining 
three classes.

Embeddings of M datasets, on the other hand, show larger dif-
ferences between the results of GNG and s-GNG (see Fig. 7). Here, 
GNG created a single network for all datasets, with particularly 



E. Ventocilla, R.M. Martins, F. Paulovich et al. Big Data Research 26 (2021) 100254

Fig. 7. Embeddings of the M datasets. Training for these was carried over 100 epochs with a maximum of 120 units. Colors and text represent classes in the data.
cluttered results on the image datasets (i.e., MNIST and Fashion-
MNIST). s-GNG, on the other hand, created different separations 
(independent networks) for each dataset: 17 networks (12 being 
pure) out of 28 classes for Isolet; 8 networks out of 10 classes 
for MNIST (of which 6 are pure, and one with a biased major-
ity towards 3s); and 2 networks out of 10 classes for FashionM-
NIST (with mixed class representations, but arguably with much 
less overlapping elements and visual clutter). Other GNG versions 
(provided in the supplementary material) show slightly different 
results. parGNG had similar outcomes compared to GNG on the 
images datasets (i.e., a single clutter network), but produce differ-
ent independent networks for Isolet (10 networks, 5 of which are 
pure). u-GNG and u-parGNG, on the other hand, produced models 
with a few differences when compared to s-GNG, i.e., the former 
did not make a clear separation between 5s and 3s, while the lat-
8

ter did not make a clear distinction of the 8s. These differences, 
however, as previously mentioned, can vary slightly from one run 
to another.

Finally, Fig. 8 shows the differences in the performance be-
tween parGNG and s-GNG on L datasets. In the case of E-MTAB, 
both versions produced similar results: a single, elongated net-
work, with thinner extremes and a wider set of interconnected 
units in between. Units in s-GNG, however, are more spread and, 
therefore, less cluttered due to a lower number of connections. For 
the word embedding datasets (Glove and GoogleNews), parGNG 
produced a single and highly connected network (similar to the 
image datasets) which resulted in highly cluttered representations. 
s-GNG, on the other hand, produced several independent networks, 
of which many have low dimensionality.



E. Ventocilla, R.M. Martins, F. Paulovich et al. Big Data Research 26 (2021) 100254

Fig. 8. Embeddings of the L datasets. Training for these was carried over 100 epochs with a maximum of 200 units.
7.2. Performance metrics

Fig. 9 shows the execution times per epoch, for all GNG versions 
on the M and L datasets. Execution times on the S datasets are 
provided in the supplementary material. The table is divided into 
M and L datasets, and into sequential and parallel versions.

It is possible to see that, for the M datasets, parallel versions 
had lower training times per epoch than the sequential versions. It 
is also possible to see that, in most cases, the untangled versions 
(u-GNG and u-parGGN) achieved lower execution times than the 
original GNG (i.e., GNG and parGNG), with the exception of Isolet 
(in both sequential and parallel versions) and FashionMNIST (in the 
parallel version), where the difference is not as clear. In the case 
of the S datasets, the untangled and original GNG versions (both 
sequential) had similar performances.
9

Table 3
Execution time ratios, i.e., how many times faster (in average) is one version (e.g., 
parGNG) compared to another (e.g., GNG).

Isolet MNIST F-MNIST E-MTAB Glove G-News

GNG vs. 
parGNG

9.5 13.6 13.4 – – –

u-GNG vs. 
u-parGNG

8.8 7 6.2 – – –

u-parGNG 
vs. s-GNG

2.4 1.9 1.9 2 1.9 2

Table 3 shows the average execution time ratios (i.e., how many 
times faster is one version compared to another). The first two 
rows represent a sequential GNG version versus its analog parallel 
version. The last row, on the other hand, compares a parallel ex-



E. Ventocilla, R.M. Martins, F. Paulovich et al. Big Data Research 26 (2021) 100254

Fig. 9. Execution times on the M and L datasets. Colors correspond to GNG, u-GNG, parGNG, u-parGNG, and s-GNG. G-News stands for GoogleNews.

Fig. 10. MSE and CSE performance results on the M datasets. Series represent GNG, u-GNG, parGNG, u-parGNG, and s-GNG. Solid lines depict the mean values 
per epoch from the ten trials, while lighter areas the minimum and maximum values.
ecution to a parallel execution with sampling. It can be seen that 
parallel versions performed up to 13 times faster than sequen-
tial ones, and that the performance gain from the sampling version 
seems to be correlated to the sampling factor (i.e., 0.5).

Results for the other metrics are shown in Figs. 10, 11 and 12. 
The former two provide the results on the M datasets in terms of 
MSE and CSE, and in terms of CN and RN, respectively. The lat-
ter, on the other hand, shows the MSE and CN results on the L 
datasets (these do not have CSE, CN, nor RN metrics since they 
do not have classes). Results on the S datasets are provided in the 
supplementary material, since there are no large differences be-
tween the performances of GNG and u-GNG. For all these figures, 
each column represents a metric, each row a dataset, and each se-
ries within each plot a GNG version. The solid lines in each plot 
10
depict the mean value of each metric per epoch, while the light 
areas show their minimum and maximum values. The horizontal 
red lines in the CN plots represent the ground truth, i.e., the num-
ber of labels in each dataset.

In terms of MSE, u-GNG performed similarly to GNG on both 
the S and the M datasets. Interestingly, parGNG performed bet-
ter than GNG and u-GNG on both of the image datasets (this is 
discussed in Section 8), while u-parGNG and s-GNG had the best 
performance. In the case of the L datasets, both untangled ver-
sions (u-parGNG and s-GNG) performed better than parGNG, with 
the exception of GoogleNews where there is no clear difference in 
performance concerning MSE.

CSE (class separation error) results, on the other hand, show 
that GNG and u-GNG had similar performance on the S datasets 



E. Ventocilla, R.M. Martins, F. Paulovich et al. Big Data Research 26 (2021) 100254

Fig. 11. CN and RN performance results on the M datasets. Series represent GNG, u-GNG, parGNG, u-parGNG, and s-GNG. The horizontal red lines in the CN 
column represent the ground truth, i.e., the number of labels in the corresponding dataset.

Fig. 12. MSE and CSE performance results on the L datasets. Series represent parGNG, u-parGNG, and s-GNG.
11



E. Ventocilla, R.M. Martins, F. Paulovich et al. Big Data Research 26 (2021) 100254

Fig. 13. s-GNG projections of the image datasets, with images rendered from each unit’s prototype.
and that u-GNG outperformed, i.e., had lower values than GNG, on 
the M datasets, with the most significant improvements seen again 
on the image datasets. Isolet shows to be a particular case where 
the parallel versions took a longer time to achieve lower CSE values 
than the sequential versions. This is further discussed in Section 8.

Concerning CN, all untangled versions (u-GNG, u-parGNG, and 
s-GNG), for most datasets (with the exceptions of BreastCancer and 
Abalone) modeled a higher number of networks than GNG. It is 
possible to see that the number of created networks varied from 
one run to another, and that such variance differs from one dataset 
to another. s-GNG, for example, had the highest mean variance 
when applied on the MNIST dataset, but had similar values on Iso-
let and FashionMNIST.

Finally, RN shows that between 0 and 2 redundant networks 
were created during training, particularly in the cases of the M 
datasets. In those cases, the metric serves more as a benchmark 
between untangled versions, since the original GNG only created 
one network (with the exception of Isolet where parGNG created 
between 10 and 15 networks).

Overall, untangled versions performed equal or better than the 
original GNG in terms of MSE, while modeling a higher number 
of networks (CN), with some redundancy (RN), but still achieving 
better cluster separations (CSE)—specially in the image datasets. 
And parallel versions performed equal or better than sequential 
versions in terms of MSE and CSE, but with lower execution times.

8. Discussion

8.1. Avoiding entanglement

As seen in the results, both in the projections and the CN 
plots, entanglement prevention is better perceived in larger and 
high-dimensional datasets, as in the cases of the image and word 
embedding datasets. There, the connectivity restrictions fostered 
the creation of both independent networks as well as lower-
dimensional graph structures. The latter is particularly well rep-
resented by the networks of Qs and Us in Isolet (Fig. 7b), by the 
networks of 5s and 6s in MNIST (Fig. 7d), by the region of 8s (bags) 
in FashionMNIST (Fig. 7f), and by the small networks in Glove and 
GoogleNews (Figs. 8d and 8f). These show triangular connections 
with few overlapping edges.

The quantitative results show that, in general, MSE accuracy 
was preserved in the obtained GNG models, even when simplified 
12
and lower-dimensional networks were enforced. Since the main 
goal of entanglement prevention is not to improve accuracy in 
terms of MSE, but to foster the creation of 2D graph structures so 
that more accurate and meaningful cluster representations can be 
constructed, the results were promising.

The obtained graph structures, however, were not always 2D, as 
is reflected by the overlapping edges in some parts of the embed-
dings (in the same figures). This is exemplified by the network of 
4s, 7s and 9s in MNIST, the region of 2s (pullovers) and 4s (coats) 
in FashionMNIST, the larger networks in Glove, and in the whole 
E-MTAB network (see Fig. 8b). Such results might reflect the com-
plexity of neighborhood relations in some data spaces as compared 
to others. For example, the space covered by units representing 
1s (in MNIST) can be regarded as a simple one, since fewer units 
and edges were required to represent it. This is better perceived in 
Fig. 13, where the units’ prototypes have been rendered into im-
ages. There, it is possible to see an almost linear change in values 
that goes from fully standing 1s (on the upper end of the network), 
to the most tilted 1s (on the lower side), with almost no forking 
paths (i.e., other variations of one) in between. A complex space, 
on the other hand, can be exemplified by that of handwritten 4s, 
7s, and 9s, where more units and edges were needed to model the 
distinct ways in which these have been written. In such a case, the 
gradual shift in values happened both within and between classes, 
with several forking paths and no clear gaps between classes.

The differences between such simple vs. complex relations are 
further exemplified by s-GNG’s representation of FashionMNIST. In 
Fig. 13b, the network of ‘Trousers’, at the uppermost part, may be 
regarded as a simple space, since it required fewer units and con-
nections to represent it. An example of a more complex space, on
the other hand, is that of ‘Sneakers’, ‘Sandals’, and ‘Ankle boots’ 
(the left-most network), where more units and edges were re-
quired to represent it. Such space, however, is arguably not as 
complex, since the achieved graph structure is largely two dimen-
sional.

Surprisingly, preventing entanglement improved MSE accuracy 
in some cases. This is probably explained by the fact that more 
connections mean that each unit has more neighbors and, hence, 
has a larger influence during training (i.e., by pulling more units 
during step 6 of the algorithm). Such behavior will not let different 
parts of the network settle in their local minima.

It is worth noting that MSE and CSE are not necessarily corre-
lated. The reason is that MSE measures the quality of the modeling 



E. Ventocilla, R.M. Martins, F. Paulovich et al. Big Data Research 26 (2021) 100254
in terms of how well units are standing in the multidimensional 
space, while CSE measures the quality of the connections among 
units. This means that GNG and u-GNG could have equivalent per-
formance in terms of MSE (i.e., their units are standing in similar 
places of the space), but their CSE performance could be very dif-
ferent (i.e., the connection among units is different). This is the 
case of MNIST and FashionMNIST, as shown in Fig. 10, where MSE 
results are very similar, but CSE results are different.

Another relevant observation is that entanglement prevention 
did not seek to create separate networks. This was the particular 
reason for having chosen the Abalone and the E-MTAB datasets, for 
example. As it is shown by other DR projections [19], instances of 
both datasets reflect a gradual change from lower to higher feature 
values—which is to be expected, at least in Abalone, since instances 
represent the dimensions of mollusks measured at different ages. 
Such gradual changes are preserved by the untangled versions, de-
spite constraints placed on the creation of edges.

A limitation shown by these results is the variance in the pro-
duced models, particularly in terms of the number of created net-
works. In some cases, such as s-GNG on FashionMNIST, the number 
of created networks show an uncertainty of only ±1 networks 
around a mean of 2 (on the last epoch), which means that at 
times s-GNG would produce 1 network, and at times 3. This is ar-
guably a low margin of uncertainty, but it is not always the case. A 
more sensitive example is that of s-GNG on Glove and GoogleNews. 
There, the uncertainty on the last epoch is ±4 around a mean of 
15, which translates to a wider range of results that can be pro-
duced. A possible explanation for such a variance in the number of 
created networks is that the strictness of the rules, combined with 
the stochastic initialization of GNG, result in the creation of inde-
pendent networks at the beginning of the learning process, which 
are then not allowed to consolidate (merge) with others, even if 
they represent different regions of the same cluster. An approach 
to reducing such variance is to set a higher value (e.g., 100) for 
amax (the maximum edge age) at the beginning of the training, and 
reduce it to a given minimum value (e.g., 50) as the learning pro-
gresses. In this way, GNG would start by modeling the space using 
a single network, and then split into separate ones as the tolerance 
on the age of the edges is lowered.

8.2. Parallel training

In regards to parallelism, results consistently show equal or im-
proved performance both in terms of MSE and CSE, even when 
using sampling. This points to the possibility of implementing sys-
tems that can potentially provide feedback to the users under 10 
seconds, even in very large and distributed datasets. This is, of 
course, always dependant on the resources at hand.

Interestingly, in some cases the parallel versions helped to im-
prove performance in terms of MSE, as shown in the M datasets. 
This is possibly due to having different learners modeling differ-
ent spaces, which avoids bias towards the order in which the data 
points are laid out in the dataset. That is, units might shift from 
one end of the space to another, depending on the order in which 
data points are given to the learner. If, for example, data points are 
ordered in an ascending manner by their L-norm, then GNG will 
tend to retain a better representation of the spaces with higher 
values, thus neglecting the spaces with the lower values.

Another interesting case is that of Isolet, where parallel versions 
of GNG took longer to reach lower MSE and CSE values. The reason 
for this is the size of the dataset which, in spite of being placed 
within the M category, is still small compared to the others. The 
speed with which a model grows is given by λ, the parameter that 
states the frequency with which units are created. In the case of 
the parallel versions, this frequency is the same for each learner 
in the mapping stage, but the number of data points seen by each 
13
is fewer, which means that the number of created units per epoch 
depends on both λ and the number of seen data points. In the case 
of Isolet, each learner trained on less than 800 data points, which 
means that, for each epoch, each model in each partition would 
grow only by 7 units, hence taking roughly 18 epochs to reach the 
maximum number of units (120). This, however, would be the case 
if no units are lost in the process, which is the case when units 
become orphans (i.e., with no neighbors) when connections are 
removed. Based on this observation, approaches such as the one 
by Fliege et al. [31], where units are added on a per-epoch basis, 
would arguably lead to longer execution times when compared to 
our solution. In terms of accuracy, however, it is unclear at this 
point which approach is superior. One could, nevertheless, envision 
a mixed approach, where the initial training epochs are performed 
by our proposed method until the maximum number of units is 
reached, and then apply their approach for the subsequent epochs. 
This may help increase the speed, accuracy and stability of the 
modeling. An empirical evaluation concerning this is planned for 
future work.

9. Conclusions

This paper proposed two methods for scaling GNG in the 
context of visual cluster analysis of large, distributed, and high-
dimensional datasets. The first method improves the modeling per-
formance and the meaningfulness of the cluster pattern represen-
tations generated by GNG by restricting the created connections 
during training and, as a result, by creating lower-dimensional 
graph structures that reduce overplotting and cluttering in the 
two-dimensional plane. The second method parallelizes GNG’s 
learning process, leveraging from the computing power of dis-
tributed infrastructures—or local components—for parallel comput-
ing, thus lowering the execution times of the learning process. 
Improvements such as this facilitate the development of interactive 
applications that comply with usability principles, such as provid-
ing visual feedback under 10 seconds.

The proposed methods were assessed on 9 different datasets, 
in terms of four quantitative metrics (MSE, CSE, CN and RN), as 
well as qualitatively through examples of their visual representa-
tions. The results show that the first method, regarded as entan-
glement prevention, improves GNG’s accuracy on high-dimensional 
datasets, as well as the meaningfulness of its cluster pattern rep-
resentations. In turn, the second method enables the use of GNG 
in distributed settings, while preserving (or sometimes improving) 
the accuracy and meaning of the first one.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .bdr.2021.100254.

References

[1] M. Goebel, L. Gruenwald, A survey of data mining and knowledge discovery 
software tools, SIGKDD Explor. Newsl. 1 (1) (1999) 20–33, https://doi .org /10 .
1145 /846170 .846172.

[2] J.W. Sammon, A nonlinear mapping for data structure analysis, IEEE Trans. 
Comput. C-18 (5) (1969) 401–409, https://doi .org /10 .1109 /T-C .1969 .222678.

[3] H. Hotelling, Analysis of a complex of statistical variables into principal com-
ponents, J. Educ. Psychol. 24 (6) (1933) 417.

[4] L. van der Maaten, G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res. 
9 (Nov) (2008) 2579–2605.

https://doi.org/10.1016/j.bdr.2021.100254
https://doi.org/10.1145/846170.846172
https://doi.org/10.1145/846170.846172
https://doi.org/10.1109/T-C.1969.222678
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib030E833118CDC9029173C492A07FAC16s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib030E833118CDC9029173C492A07FAC16s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib266C30A08B08AE7500FCF4DC724DC014s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib266C30A08B08AE7500FCF4DC724DC014s1


E. Ventocilla, R.M. Martins, F. Paulovich et al. Big Data Research 26 (2021) 100254
[5] E. Becht, L. McInnes, J. Healy, C.-A. Dutertre, I.W.H. Kwok, L.G. Ng, F. Ginhoux, 
E.W. Newell, Dimensionality reduction for visualizing single-cell data using 
UMAP, Nat. Biotechnol. 37 (1) (2019) 38–44, https://doi .org /10 .1038 /nbt .4314.

[6] J.H. Ward, Hierarchical grouping to optimize an objective function, J. Am. 
Stat. Assoc. 58 (301) (1963) 236–244, https://doi .org /10 .1080 /01621459 .1963 .
10500845.

[7] M. Ankerst, M.M. Breunig, H.-P. Kriegel, J. Sander, OPTICS: ordering points to 
identify the clustering structure, in: Proceedings of the 1999 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD ’99, ACM, New York, 
NY, USA, 1999, pp. 49–60.

[8] T. Kohonen, The self-organizing map, Proc. IEEE 78 (9) (1990) 1464–1480, 
https://doi .org /10 .1109 /5 .58325.

[9] C.C. Aggarwal, A. Hinneburg, D.A. Keim, On the surprising behavior of dis-
tance metrics in high dimensional space, in: J. Van den Bussche, V. Vianu 
(Eds.), Database Theory — ICDT 2001: 8th International Conference London, UK, 
January 4–6, 2001 Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 
2001, pp. 420–434.

[10] S.K. Card, G.G. Robertson, J.D. Mackinlay, The information visualizer, an infor-
mation workspace, in: Proceedings of the SIGCHI Conference on Human Factors 
in Computing Systems Reaching Through Technology - CHI ’91, ACM Press, New 
Orleans, Louisiana, United States, 1991, pp. 181–186.

[11] A. Newell, Unified Theories of Cognition, Harvard University Press, 1994.
[12] J.-D. Fekete, R. Primet, Progressive analytics: a computation paradigm for ex-

ploratory data analysis, CoRR, arXiv:1607.05162 [abs].
[13] M. Espadoto, R.M. Martins, A. Kerren, N.S.T. Hirata, A.C. Telea, Towards a quan-

titative survey of dimension reduction techniques, IEEE Trans. Vis. Comput. 
Graph. 27 (3) (2021) 2153–2173, https://doi .org /10 .1109 /TVCG .2019 .2944182.

[14] L.G. Nonato, M. Aupetit, Multidimensional projection for visual analytics: link-
ing techniques with distortions, tasks, and layout enrichment, IEEE Trans. Vis. 
Comput. Graph. 25 (8) (2019) 2650–2673, https://doi .org /10 .1109 /TVCG .2018 .
2846735.

[15] D. Sacha, L. Zhang, M. Sedlmair, J.A. Lee, J. Peltonen, D. Weiskopf, S.C. North, 
D.A. Keim, Visual interaction with dimensionality reduction: a structured liter-
ature analysis, IEEE Trans. Vis. Comput. Graph. 23 (1) (2017) 241–250, https://
doi .org /10 .1109 /TVCG .2016 .2598495.

[16] B. Fritzke, A growing neural gas network learns topologies, in: G. Tesauro, D.S. 
Touretzky, T.K. Leen (Eds.), Advances in Neural Information Processing Systems, 
Vol. 7, MIT Press, 1995, pp. 625–632.

[17] M. Riveiro, F. Johansson, G. Falkman, T. Ziemke, Supporting maritime situation 
awareness using self organizing maps and Gaussian mixture models, in: SCAI, 
2008.

[18] A. Ultsch, Kohonen’s self organizing feature maps for exploratory data analysis, 
in: Proc. INNC90, 1990, pp. 305–308.

[19] E. Ventocilla, M. Riveiro, A comparative user study of visualization techniques 
for cluster analysis of multidimensional data sets, Inf. Vis. 19 (4) (2020) 
318–338, https://doi .org /10 .1177 /1473871620922166.

[20] J.A.F. Costa, R.S. Oliveira, Cluster analysis using growing neural gas and graph 
partitioning, in: 2007 International Joint Conference on Neural Networks, 2007, 
pp. 3051–3056.

[21] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to 
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[22] E.A. Ventocilla, R.M. Martins, F.V. Paulovich, M. Riveiro, Progressive multidi-
mensional projections: a process model based on vector quantization, in: Ma-
chine Learning Methods in Visualisation for Big Data, 2020.

[23] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clus-
ters, Commun. ACM 51 (1) (2008) 107–113, https://doi .org /10 .1145 /1327452 .
1327492.

[24] T. Martinetz, K. Schulten, A “neural-gas” network learns topologies, in: T. Ko-
honen, K. Mäkisara, O. Simula, J. Kangas (Eds.), Artificial Neural Networks, El-
sevier, North Holland, 1991, pp. 397–402.

[25] T. Martinetz, Competitive Hebbian learning rule forms perfectly topology pre-
serving maps, in: S. Gielen, B. Kappen (Eds.), ICANN ’93, Springer London, 
London, 1993, pp. 427–434.

[26] T. Mühlbacher, H. Piringer, S. Gratzl, M. Sedlmair, M. Streit, Opening the black 
box: strategies for increased user involvement in existing algorithm implemen-
tations, IEEE Trans. Vis. Comput. Graph. 20 (12) (2014) 1643–1652, https://
doi .org /10 .1109 /TVCG .2014 .2346578.

[27] J. Kruskal, M. Wish, Multidimensional Scaling, SAGE Publications, Inc., 2455 
Teller Road, Thousand Oaks California 91320, United States of America, 1978.

[28] J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for 
nonlinear dimensionality reduction, Science 290 (5500) (2000) 2319–2323, 
https://doi .org /10 .1126 /science .290 .5500 .2319.

[29] L. McInnes, J. Healy, J. Melville, UMAP: uniform manifold approximation and 
projection for dimension reduction, arXiv:1802 .03426.

[30] E. Ventocilla, M. Riveiro, Visual growing neural gas for exploratory data analy-
sis, in: 10th International Conference on Information Visualization Theory and 
Applications, 2019, pp. 58–71.

[31] J. Fliege, W. Benn, MapReduce-based growing neural gas for scalable cluster 
environments, in: P. Perner (Ed.), Machine Learning and Data Mining in Pat-
tern Recognition, in: Lecture Notes in Computer Science, Springer International 
Publishing, Cham, 2016, pp. 545–559.

[32] A. Adam, S. Leuoth, S. Dienelt, W. Benn, Performance gain for clustering with 
growing neural gas using parallelization methods, in: 12th International Con-
ference on Enterprise Information Systems, SciTePress, 2010, pp. 264–269.

[33] S. Orts, J. Garcia-Rodriguez, D. Viejo, M. Cazorla, V. Morell, GPGPU implemen-
tation of growing neural gas: application to 3D scene reconstruction, J. Parallel 
Distrib. Comput. 72 (10) (2012) 1361–1372, https://doi .org /10 .1016 /j .jpdc .2012 .
05 .008.

[34] Y. Zhu, S. Chen, Growing neural gas with random projection method for high-
dimensional data stream clustering, Soft Comput. 24 (13) (2020) 9789–9807, 
https://doi .org /10 .1007 /s00500 -019 -04492 -4.

[35] J. Schneider, M. Vlachos, On randomly projected hierarchical clustering with 
guarantees, in: Proceedings of the 2014 SIAM International Conference on Data 
Mining, SIAM, 2014, pp. 407–415.

[36] W.N. Street, W.H. Wolberg, O.L. Mangasarian, Nuclear feature extraction for 
breast tumor diagnosis, in: Biomedical Image Processing and Biomedical Vi-
sualization, Vol. 1905, International Society for Optics and Photonics, 1993, 
pp. 861–870.

[37] W.J. Nash, T.L. Sellers, S.R. Talbot, A.J. Cawthorn, W.B. Ford, The population bi-
ology of abalone (haliotis species) in Tasmania. I. Blacklip abalone (H. rubra) 
from the north coast and islands of Bass Strait, Technical Report 48, Sea Fish-
eries Division, 1994, p. 411.

[38] D. Dua, C. Graff, UCI machine learning repository, http://archive .ics .uci .edu /ml, 
2017.

[39] M. Fanty, R. Cole, Spoken letter recognition, in: Advances in Neural Information 
Processing Systems, 1991, pp. 220–226.

[40] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms, arXiv preprint, arXiv:1708 .07747.

[41] H. Reyer, B.U. Metzler-Zebeli, N. Trakooljul, M. Oster, E. Muráni, S. Ponsuksili, 
F. Hadlich, K. Wimmers, Transcriptional shifts account for divergent resource 
allocation in feed efficient broiler chickens, Sci. Rep. 8 (1) (2018) 1–9.

[42] J. Pennington, R. Socher, C.D. Manning, Glove: global vectors for word represen-
tation, https://nlp .stanford .edu /projects /glove/. (Accessed 30 September 2020).

[43] Google code archive - long-term storage for Google code project hosting, 
https://code .google .com /archive /p /word2vec/. (Accessed 30 September 2020).

[44] E. Ventocilla, M. Riveiro, Visual analytics solutions as ‘off-the-shelf’ libraries, in: 
Information Visualisation (IV), 2017 21st International Conference, IEEE, 2017, 
pp. 281–287.

[45] E.J. Palomo, E. López-Rubio, The growing hierarchical neural gas self-organizing 
neural network, IEEE Trans. Neural Netw. Learn. Syst. 28 (9) (2017) 2000–2009, 
https://doi .org /10 .1109 /TNNLS .2016 .2570124.
14

https://doi.org/10.1038/nbt.4314
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1080/01621459.1963.10500845
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib0D6A97D78995D442EB9FAAA1369085BCs1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib0D6A97D78995D442EB9FAAA1369085BCs1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib0D6A97D78995D442EB9FAAA1369085BCs1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib0D6A97D78995D442EB9FAAA1369085BCs1
https://doi.org/10.1109/5.58325
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib4A10609724AD3D988EAC303C6DCB11A6s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib4A10609724AD3D988EAC303C6DCB11A6s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib4A10609724AD3D988EAC303C6DCB11A6s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib4A10609724AD3D988EAC303C6DCB11A6s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib4A10609724AD3D988EAC303C6DCB11A6s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib074991465040DB2E68379EF28113A394s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib074991465040DB2E68379EF28113A394s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib074991465040DB2E68379EF28113A394s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib074991465040DB2E68379EF28113A394s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib5DB9E2BA4DEA8148A0D44E4D62A080CBs1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibF657BBE4613EEF82A9408E3C43F743F4s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibF657BBE4613EEF82A9408E3C43F743F4s1
https://doi.org/10.1109/TVCG.2019.2944182
https://doi.org/10.1109/TVCG.2018.2846735
https://doi.org/10.1109/TVCG.2018.2846735
https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1109/TVCG.2016.2598495
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib582F789C819389B68ED45435358FFE71s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib582F789C819389B68ED45435358FFE71s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib582F789C819389B68ED45435358FFE71s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib2E68A3157A5D5103A5B24CB74C836472s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib2E68A3157A5D5103A5B24CB74C836472s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib2E68A3157A5D5103A5B24CB74C836472s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib2C202017CF8141168A568E9DDD71408Ds1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib2C202017CF8141168A568E9DDD71408Ds1
https://doi.org/10.1177/1473871620922166
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib9DB40D25D41B6C1091D4846AE56F6CE6s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib9DB40D25D41B6C1091D4846AE56F6CE6s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib9DB40D25D41B6C1091D4846AE56F6CE6s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibD6D9B6E5417096B051EE07E53CB2B934s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibD6D9B6E5417096B051EE07E53CB2B934s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibE4922E72DECB362CB8AC9DC73FAE6DF9s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibE4922E72DECB362CB8AC9DC73FAE6DF9s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibE4922E72DECB362CB8AC9DC73FAE6DF9s1
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib6A9F9CBB04398F8DD045DFF23DC4DA7As1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib6A9F9CBB04398F8DD045DFF23DC4DA7As1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib6A9F9CBB04398F8DD045DFF23DC4DA7As1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib0EBFB08F7B7766242C64AE1AC7816695s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib0EBFB08F7B7766242C64AE1AC7816695s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib0EBFB08F7B7766242C64AE1AC7816695s1
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1109/TVCG.2014.2346578
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibAB257A1B10F4C5AE38BCABDC919265EEs1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibAB257A1B10F4C5AE38BCABDC919265EEs1
https://doi.org/10.1126/science.290.5500.2319
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibEDD71107EBDE35838A0C65A5363D3E42s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibEDD71107EBDE35838A0C65A5363D3E42s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibB87A7B9674B21D3C8CBE908F41F465AFs1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibB87A7B9674B21D3C8CBE908F41F465AFs1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibB87A7B9674B21D3C8CBE908F41F465AFs1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib951DD9DAB092DD91BC69D4946C79ED46s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib951DD9DAB092DD91BC69D4946C79ED46s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib951DD9DAB092DD91BC69D4946C79ED46s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib951DD9DAB092DD91BC69D4946C79ED46s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibB3DDAFE3A4A02342F69D58387858AFC9s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibB3DDAFE3A4A02342F69D58387858AFC9s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibB3DDAFE3A4A02342F69D58387858AFC9s1
https://doi.org/10.1016/j.jpdc.2012.05.008
https://doi.org/10.1016/j.jpdc.2012.05.008
https://doi.org/10.1007/s00500-019-04492-4
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibB66F3E0584F5D311E238D38AAD7B444Ds1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibB66F3E0584F5D311E238D38AAD7B444Ds1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibB66F3E0584F5D311E238D38AAD7B444Ds1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibEEEF6BD458B9A1E7B3583FFD7D0517E0s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibEEEF6BD458B9A1E7B3583FFD7D0517E0s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibEEEF6BD458B9A1E7B3583FFD7D0517E0s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bibEEEF6BD458B9A1E7B3583FFD7D0517E0s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib908EE6246ABA3833FEE9849D6A48E4B3s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib908EE6246ABA3833FEE9849D6A48E4B3s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib908EE6246ABA3833FEE9849D6A48E4B3s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib908EE6246ABA3833FEE9849D6A48E4B3s1
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib0E971F71EBD059F21FFD20AD30C50A23s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib0E971F71EBD059F21FFD20AD30C50A23s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib68C5727AE2540EAAE57A93D48FC03B31s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib68C5727AE2540EAAE57A93D48FC03B31s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib125F732E76F20AECA10C95AB4017473As1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib125F732E76F20AECA10C95AB4017473As1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib125F732E76F20AECA10C95AB4017473As1
https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib76CFC5475C317FC21803FCDFDDF71D25s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib76CFC5475C317FC21803FCDFDDF71D25s1
http://refhub.elsevier.com/S2214-5796(21)00071-X/bib76CFC5475C317FC21803FCDFDDF71D25s1
https://doi.org/10.1109/TNNLS.2016.2570124

	Scaling the Growing Neural Gas for Visual Cluster Analysis
	1 Introduction
	1.1 Problem description
	1.2 Contribution

	2 Background
	2.1 The growing neural gas
	2.2 MapReduce

	3 Related work
	3.1 Visualizing cluster patterns
	3.2 Scaling the growing neural gas

	4 Avoiding entanglement
	5 Parallelizing GNG
	6 Experimental setup
	6.1 Performance metrics (dependent variables)
	6.2 GNG versions and datasets (independent variables)
	6.3 Implementation and parameters

	7 Results
	7.1 Embeddings
	7.2 Performance metrics

	8 Discussion
	8.1 Avoiding entanglement
	8.2 Parallel training

	9 Conclusions
	Declaration of competing interest
	Appendix A Supplementary material
	References


