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Abstract
As large datasets become more common, so becomes the necessity for exploratory approaches that allow iterative, trial-and-
error analysis. Without such solutions, hypothesis testing and exploratory data analysis may become cumbersome due to long
waiting times for feedback from computationally-intensive algorithms. This work presents a process model for progressive mul-
tidimensional projections (P-MDPs) that enables early feedback and user involvement in the process, complementing previous
work by providing a lower level of abstraction and describing the specific elements that can be used to provide early system
feedback, and those which can be enabled for user interaction. Additionally, we outline a set of design constraints that must
be taken into account to ensure the usability of a solution regarding feedback time, visual cluttering, and the interactivity of
the view. To address these constraints, we propose the use of incremental vector quantization (iVQ) as a core step within the
process. To illustrate the feasibility of the model, and the usefulness of the proposed iVQ-based solution, we present a prototype
that demonstrates how the different usability constraints can be accounted for, regardless of the size of a dataset.

CCS Concepts
• Human-centered computing → Visual analytics;

1. Introduction

A common approach in exploratory data analysis is to construct an
overview of a dataset’s structure, i.e., a visualization of neighbor-
hood relationships among data points, to identify emerging clus-
ter patterns [Sam69, VR19]. When dealing with high-dimensional
data, multidimensional projections (MDPs) can be used to con-
struct 2 or 3-dimensional visualizations of data structure. Exam-
ples of these are dimensionality reduction (DR) techniques such as
t-SNE [vdMH08] and PCA [Hot33] (visually encoded using scat-
terplot), and clustering techniques such as SOM [Koh90] and Ward
hierarchical clustering (visually encoded with U-Matrices [Ult90]
and dendrograms respectively).

Different challenges arise in this exploratory process as data
grows in size (number of data points) and dimensionality (num-
ber of attributes) [EMK∗19]. High-dimensional data, on the one
hand, may lead to sparsely populated spaces, which in turn leads to
less meaningful values when it comes to computing neighborhood
similarities (the so-called curse of dimensionality) [AHK01]—
hence affecting the representativeness of the outcomes of MDPs.
Extensive work has been done to address this challenge, e.g.,
[PM08, vdMH08, JCC∗11, MHM18].

The size of data, on the other hand, even though it appears to
have a low correlation to the quality of a projection [EMK∗19],
can entail challenges for visual analytics systems that aim to
comply with different usability constraints, such as, feedback

times (i.e., waiting times before displaying results from an algo-
rithm) [MPG∗14, SPG14], visual cluttering (i.e., overlapping ele-
ments in the view) [PWR04], and view interactiveness (i.e., direct
interactive capabilities of the visualization such as brushing and
linking). The larger the dataset, the more time it will take to create
a projection, the more likely for there to be visual cluttering, and
the more likely for the view to have limited interactive capabilities
with fast visual feedback.

This work addresses mainly these three usability constraints.
Phrased as a question, how can a visual analytics system enable
progressive MDPs (P-MDPs) while complying with the outlined
usability constraints, regardless of the size of a dataset? Previous
work, to the best of our knowledge, has only addressed at most
two of the outlined usability constraints, and has only done so tai-
lored to a specific MDP. We propose a process model as an an-
swer, based on incremental vector quantization (iVQ) techniques,
i.e., techniques which model the data space through a set of vector
representatives, and whose modeling power is improved over time
using partial sets of the whole data. Through a prototype implemen-
tation of the proposed model, we show that it is possible to comply
with the above mentioned usability constraints, even when display-
ing more than one perspective a dataset’s structure (i.e., more than
one MDP), despite the size of a dataset. Concretely, our contribu-
tions are:
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1. An extended list of design requirements for P-MDP that ad-
dresses the outlined usability constraints.

2. A process model that enables P-MDPs for large datasets through
iVQ, and outlines the relation of its elements to (a) the different
types of user involvements, and (b) the design requirements.

3. A progressive analytics prototype, scalable to large datasets
(even if distributed in clusters), that illustrates the flexibility of
the model, and its validity in terms of the design requirements.

2. Related work

Different solutions have been proposed to avoid long waiting times
before providing visual feedback of an MDP to a user. Some
have focused on increasing the performance of existing algorithms
[VDM14, CRHC19, PTM∗20], while others have enabled progres-
sive training in order to provide fast feedback based on partial re-
sults [PM08, MPG∗14, SPG14, SASS16, PLvdM∗17, KCL∗17]. In
most cases, if not all, the work has focused on dimensionality re-
duction (DR) techniques. See Sacha et al. [SZS∗17], Nonato et
al., [NA18] and Espadoto et al., [EMK∗19] for thorough surveys
on these techniques.

Progressive training and analysis have gained particular interest
in the research community, and different authors have sought to for-
malize its constructs and implications. Stolper et al., [SPG14] laid
out a set of design goals, such as, showing partial results, allowing
users to steer the algorithm to areas of interest, avoiding excessive
updates that may lead to distractions, among others. Mühlbacher
et al., [MPG∗14], on the other hand, proposed different types of
user involvement (TUI), during progressive training. They charac-
terized TUIs in terms of direction (system feedback and user con-
trol), and entities of interest (execution and result), and outlined
the different TUIs at the intersection of each, i.e.,: execution feed-
back, result feedback, execution control, and result control. Schulz
et al., [SASS16] proposed a set of building blocks—as extensions
to the Data State Reference Model [Chi00]—with which incremen-
tal visualizations can be developed. The building blocks account for
different types of elements such as views, data flows, operators, and
mechanisms for sequencing and buffering. Fekete et al., [FP16] de-
fined a Progressive Analytics paradigm in terms of a subsequent
set of calls to a learning function Fp, which takes a “growing sub-
set of D”, an evolving state S, and a time constraint q. Additionally,
they gathered and extended the features that a progressive analytics
library should have. We build on these as described in Section 3.

To address visual cluttering, some solutions have relied on
different visual cues and metaphors, such as opacity and con-
tours [PLvdM∗17], edge bundling [LSL∗17, ZYQ∗08], and sur-
faces [PEPM12]. Others have done so through the use of tech-
niques that compress (i.e., vector quantize) data into a set of repre-
sentative units, e.g., SOM [RFZ08], GNG [VR19], CCA [DH97],
HiPP [PM08], and HSNE [HVP∗19]. Through these, only a limited
amount of elements needs to be visually encoded.

View interactiveness has not received as much attention as the
previous two challenges. We regard it as the capabilities that a sys-
tem provides on the visible MDP, that is, interactive features over
a plot such as linking, brushing, dragging, etc. These do not neces-
sarily entail steering the computation, but provide means to explore

the partial or final results. As data grows, such interactive features
become more challenging to maintain, especially if the system is to
account for continuity-preserving latency, where visual feedback is
given under 0.1 seconds [FP16].

3. Design Requirements

The rationale of the proposed model was mainly driven by Fekete
et al.’s [FP16] design requirements. According to them, progressive
analytics libraries should: (F1) provide increasingly meaningful
partial results; (F2) provide feedback about the state of the compu-
tation (e.g., aliveness, absolute and relative progress); (F3) provide
control over the process (e.g., canceling, resuming, prioritizing);
(F4) guarantee feedback time constraints (mainly to attention pre-
serving latency, i.e., < 10s); (F5) allow manipulation of progressive
values; (F6) allow steering through parameters or other computa-
tion components; and (F7) allow performing exploratory, analytical
computations. For P-MDPs, we add three more requirements which
were drawn from the solutions given by [PM08] and [HVP∗19].
Concretely, a P-MDP should also: (F8) provide an overview of the
data structure, while avoiding visual clutter; (F9) maintain view in-
teractiveness at a continuity preserving latency (< .1s); and (F10)
allow users to navigate across different levels of detail. To address
these requirements, our proposed P-MDP process model leverages
from incremental VQ.

4. Vector Quantization

Originally, VQ techniques are intended for reducing the size of
digital information that is to be sent through some communica-
tion channel, in a manner that can be later reconstructed [Gra84].
Compression is done utilizing a set of representative units or proto-
types, i.e., vectors that have the same dimensionality as the original
dataset and stand in dense regions of the data space [Say17]. These
prototypes are then used as a codebook from which data can be
reconstructed.

Not all VQ techniques, however, can be used for constructing
P-MDPs; VQ techniques for P-MDP should: (1) work in an incre-
mental manner; and (2), retain, to the largest possible extent, the
distance relations of the original data, while minimizing the number
of required prototypes to do so. These criteria seek to address re-
quirements F8 and F9, which translates to a balance between com-
pression and representation, i.e., too few prototypes will have little
representative power for visual assessment, and too many will hin-
der the usability of the system. Examples that fulfill these require-
ments are neural-based techniques, such as the Self-organizing
Maps (SOM) [Koh90] and the Growing Neural Gas (GNG) [Fri95];
partition-based techniques such as Mini batch K-Means [Scu10];
hierarchy-based techniques such as BIRCH [ZRL96]; and density-
based techniques such as D-Stream [CT07].

5. The Process Model

Figure 1 shows the core process model. It is divided into four hori-
zontal groups of elements (delimited by dashed lines): Parameters,
Functions, Objects, and States. Objects represent data structures,
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such as tables, graphs, or vectors; Functions are processes that per-
form some sort of transformation on an object; Parameters deter-
mine the behavior of functions; and States keep a record of the
current state of the system. The shaded areas represent the domains
of the iVQ and the MDP transformations.
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Figure 1: The VQ-MDP Process Model. User icons (on the right)
show which types of elements (Parameters, Functions, Objects,
States) can be enabled for user iteraction.

The process starts by sampling a dataset X , using a sampling
function S (i.e., a sequencer [SASS16]), with parameters Ps (e.g.,
sample size, replacement, or frequency). The sampling function
can be seen as a faucet that pushes data into the process pipe. It
is through its parameters that a user can filter data points and ad-
just the speed of the overall training process. The state Es can hold
information about, e.g., the number of samples drawn so far.

A sample xt , produced by S at a time t, is taken into the iVQ do-
main which is in charge of modeling the original (non-projected)
data space X , by reducing it to a set of representative prototypes.
Concretely, the sample is taken as an input by an Optimization
function O, which uses it to fit (i.e., improve the representative
power of) a model Mt−1 and produce an improved model Mt (when
t = 0, an initialization strategy for Mt−1 is used). The behavior
of O, in this case, is determined by parameters Po (e.g., number
of units, learning step, or cooling factor). The process within VQ
is represented by an internal loop through which progressive op-
timization is achieved: the improved model Mt becomes the base
model for the next optimization. M is, therefore, one of the objects
that define the learning state Eo, along with other information such
as the number of iterations and goodness of the model.

The optimized model Mt enters the MDP domain, where it is (a)
transformed into a visual abstraction At , through a function U ; and
(b) made into a visual element Vt , through a function R. These two
functions are, correspondingly, analogous to Chi’s [Chi00] Visual-
ization Transformation and Visual Mapping Transformation oper-
ators. U can be any MDP technique producing an abstraction ob-
ject At , which can be visualized, e.g., PCA, t-SNE, force-directed
placement, Ward HC, or OPTICS [ABKS99]. The outcome of these
can be visualized using some function R that produces its corre-
sponding visual element Vt , e.g., scatterplots or graphs in the case
of DR techniques, dendrograms in the case of hierarchical cluster-
ing, or reachability plots for OPTICS. Another loop (depicted in
light gray) shows the possibility to use the previous visual abstrac-
tion At−1, as a baseline object for the next visual transformation.
Doing so avoids drastic changes in Vt when using non-deterministic

MDPs such as t-SNE. The behaviors of U and R, as with previous
functions, are defined by parameters Pu, (e.g., number of iterations
per sample, distance metric, perplexity, etc), and Pr (e.g., plot size,
color map, etc). Through Pu, users can test different parameter set-
tings, and see their influence on the projection with fast visual feed-
back. Through Pu users can test different parameter and see their
influence on the projection with fast visual feedback.

The user icons on the right of the process model (Figure 1) in-
dicate the groups of elements with which a user can interact, either
through control or visual feedback. The asterisk at the objects level
indicates that user interaction is mainly towards Vt . Direct inter-
action with other objects is, if not impossible, less intuitive. We
illustrate user involvement through a prototype, and by referring to
Mühlbacher et al.’s [MPG∗14] TUIs.

6. Prototype

To illustrate one possible implementation of our proposed model,
we developed a prototype (see Figure 2) using technologies such
as Plotly Dash for the visualization, and PySpark, Scikit-Learn and
NumPy as data processing libraries. We used a dataset of methy-
lation array profiles [emt19], which has 787939 data points and 51
features.

Process elements. The prototype uses Spark DataFrame’s ran-
dom sampler S (the sample method); Mini Batch K-Means as
iVQ, with the partial_fit method as optimizer (O); MDS and
OPTICS as visual transformations (U); and scatterplot, reachabil-
ity plot, and parallel coordinates as visual mappers (R)—the latter
only requires a transposed xt as an input, which is why we disregard
its U function. The sampler takes a dataset as a Spark DataFrame
(X), and three parameters (Ps): number of data points, sample fre-
quency, replacement, and seed. The latter two were left with their
default values and not shown to the user.

As an output, the sampler produces samples (xt ) as vector sets.
Samples are passed to Mini Batch K-Means (Scikit-learn’s imple-
mentation) for modeling, which takes several parameters (Po), e.g.,
number of clusters, initialization method, maximum number of iter-
ations, etc. Our prototype allows users to set the number of clusters
(i.e., prototypes), and the reassignment ratio. By default, the num-
ber of prototypes is set to 200. When partial_fit is called, it
implicitly uses the latest fitted prototypes (Mt−1), and produces a
new prototype set (Mt ). For t = 0, Mini Batch K-Means uses ‘k-
means++’ as initialization strategy.

Depending on the wanted visual encoding, fitted prototypes (Mt )
need to be preprocessed by a visual transformation U . For the
scatterplot view we used MDS, which projects the data to a two-
dimensional plane, and for the reachability plot we used OPTICS,
which calculates and sorts point distances to core points. Each takes
its own set of parameters (Pu): For MDS, the number of initializa-
tions and the number of iterations; and for OPTICS, the distance
metric (Euclidean, Manhattan, or Cosine), the minimum number
of samples, and the Chi value. Parallel coordinates, as previously
mentioned, only requires transposing the data matrix.

User involvement. Execution control is enabled through the
‘Reset’ and ‘Run’ buttons. The latter executes the entire chain of
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Figure 2: Prototype of the process model. In the upper part are the control elements: the ‘Reset’ and ‘Run’ buttons enable execution control.
Sampler, Quantizer, MDS and OPTICS are toggle buttons (in yellow) that provide access to their corresponding parameters. Next to each
are their respective state. Below the controls are the visual encodings: an MDS projection in the scatterplot, OPTICS in the bar chart (i.e.,
reachability plot), and feature values in the parallel coordinates. Each provides a different perspective of the prototypes, i.e., groups of genes
with similar behavior in different patients. Color represents the variance of each prototype.

transformations of the process model until the user decides to stop
(using the same button). The former cleans the model so that a new
set of prototypes is used. Result control can be done through the
parameters in iVQ and MDP, which can be updated at any point
in time through the dropdown boxes for each component (as an
example, Figure 2 shows the Sampler parameters). Users can also
zoom in into regions of the data space—as compliance with the F10
requirement—using the scatterplot. This translates to three process-
ing steps: (1) predicting to which prototype each data point belongs
to (as in clustering), (2) instantiating a new DataFrame Xl (where l
represents the zooming level) that filters out those data points that
do not belong to the zoomed prototypes, and (3) instantiating a
new set of prototypes Ml that will model the zoomed data space.
The original prototypes Ml−1, and data space Xl−1, are kept for
zooming out. After zooming in, the transformations of the process
model remain the same. The zooming process can be repeated to
look deeper into different levels.

Execution feedback is given through continuous updates of state
values (E) for each component. These are shown next to each com-
ponent’s toggle button, e.g., ‘Avg time’, ‘samples’, ‘inertia’. Result
feedback, on the other hand, is provided by continuous updates of
the visual elements. Finally, brushing and linking are enabled as
view interactions—i.e., brushing over one view highlights the cor-
responding elements on the others.

7. Discussion

Visual feedback, within the attention preserving latency threshold
(< 10s), is possible through a balance between sample sizes, and
the number of VQ and MDP iterations per sample. Tests with our
prototype show that the attention latency can be (comfortably) sus-
tained, even when applying the three different MDPs for every Mt .
For the case of samples of 500 data points, with 10 VQ iterations,

and a 100 MDS iterations per sample (OPTICS does not take an
iterations parameter), the average execution time for a 100 samples
for all computations was of 1.25 seconds. The most expensive oper-
ation was sampling, with an average execution time of .78 seconds.

Visual clutter, on the other hand, has been largely avoided by
plotting 200 representative data points, instead of the 787K from
the original dataset; while achieving sensible and consistent visual
patterns. Sensible given the nature of the dataset, where a large
number of data points have low variance with high and low values
(i.e., the yellow clusters), while others lay in between with higher
variance (i.e., purple data points). Consistency, on the other hand,
comes from our visual assessment of the similarity between the
cluster patterns that resulted from different runs.

Finally, view interactiveness was partially achieved. Concretely,
hovering and brushing did achieve visual feedback at a continuity
preserving latency (< 0.1s), but took longer time (close to 1s) to
provide visual feedback on linking. This was due, however, to how
Dash handles interactions that trigger updates between views.

8. Conclusion

This work presented a process model based on iVQ, through which
P-MDPs can be developed, while accounting for different usabil-
ity constraints. Through the given level of abstraction, the model
makes it easy to discern which are the elements with which dif-
ferent types of user involvement can be enabled. To illustrate the
model, a prototype was developed and described. The prototype
shows that it is possible to provide different perspectives of the
structure of a dataset, with incremental and timely results, with low
visual cluttering, and with fast view interactiveness, despite the size
of the dataset. Future work will address the requirements that arise
from streaming data.
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