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Abstract
We propose a taxonomy for classifying and de-
scribing papers which contribute to making Ma-
chine Learning (ML) techniques interactive and in-
terpretable for users. The taxonomy is composed of
six elements – Dataset, Optimizer, Model, Predic-
tions, Evaluator and Goodness – where each can be
made available for user interpretation and interac-
tion. We give definitions to the terms interpretable
and interactive in the context of user-oriented Ma-
chine Learning, describe the role of each of the ele-
ments in the taxonomy, and describe papers as seen
through the lens of the proposed taxonomy.

1 Introduction
Due to the availability of large datasets, we enter a new era of
augmented intelligence, where machines support humans to
increase their cognitive capabilities. Indeed, when problems
are complex and ill-defined, user-ML cooperation is needed.
This approach to problem-solving is appealing for many rea-
sons, for instance, to integrate valuable expert knowledge that
may be hard to encode directly into computational models,
to help resolve existing uncertainties as a result of error that
may arise from automatic ML, or to build trust by making
humans involved in the modeling or learning ML processes
[Boukhelifa et al., 2018]. A human and a machine collab-
orate to achieve a task, whether this is to classify objects,
to find interesting data projections or patterns, or to design
creative artworks [Boukhelifa et al., 2018]. To date, several
researchers have recently started to work at the intersection
of human-computer interaction (HCI) and ML where the in-
teraction with humans is seen as a central part of developing
ML-systems.

The rapid increase of works related to interpretable and in-
teractive machine learning (iiML) calls for an overview of this
interdisciplinary subject, in order to structure the current lit-
erature and to develop a research agenda. One recent example
of this type of study is presented in [Abdul et al., 2018], fo-
cusing on providing an HCI agenda for explainable, account-
able and intelligible systems. Another recent study [Lipton,
2016] focuses on interpretability in supervised learning and

conducts a critical analysis of the literature to improve the
specification of the task of interpretation. Interactive learning
is explicitly put as out of scope in the paper.

In this paper, we unify the interactive and interpretable per-
spectives as we view them linked and in many cases interde-
pendent. We tackle the challenge of classifying these works
from an ML-component perspective, where we look at the
components themselves and try to organize the studies found
in the literature regarding the components that are being made
interpretable or interactive, and how.

Thus, the main contribution of this paper is to present a tax-
onomy for categorizing the literature in the area of iiML. This
taxonomy can be used to (1) provide a structured overview of
the research work in the area of iiML, (2) identify research
trends and opportunities for research in the future and (3) sug-
gest a standard terminology for iiML.

The paper describes, first, relevant background and termi-
nology in the context of iiML (see section 2). The method
followed for outlining the taxonomy is summarized in section
3. The taxonomy and its components are described thereafter
in section 4. We discuss implications in section 5 and con-
clude the paper with some conclusions and final remarks in
section 6.

2 Background concepts
The use of ML-based support systems has shown great po-
tential in multiple areas such as education, healthcare, man-
ufacturing, retail, etc. To fully exploit the benefits of such
systems in our daily activities, we need to make these tech-
nologies more accessible to all. Nevertheless, many conven-
tional applications of ML are mostly agnostic to the fact that
their inputs and outputs are directed at humans [Amershi et
al., 2013]. To resolve this, researchers from the areas of HCI
and AI now collaborate, trying to make these systems more
transparent and understandable, providing explanations, visu-
alizing the inner workings of these complex ML systems or
supporting human interaction with the core elements of ML.

Several concepts and terms have arisen in this quest,
for instance, interpretability, interactivity, understandabil-
ity, explainability, comprehensibility, intelligibility and trans-
parency. This section gives a very brief summary of some
definitions found in the literature for these terms, in order to



provide an introduction of the rich terminology used by re-
searchers within the iiML area.

Interpretation in relation to ML techniques is defined by
Chuang et al. [2012] as the “facility with which an analyst
makes inferences about the underlying data”. The term trans-
parent, on the other hand, is related to ML techniques that, (1)
produce models that a typical real-world user can read and un-
derstand; (2) use algorithms that a typical real-world user can
understand, and (3) allow a real-world user to adapt models
to new domains [Chiticariu et al., 2015].

Comprehensibility, understandability and interpretability
are regarded as synonyms in [Piltaver et al., 2016]. Com-
prehensibility is defined by Zhou [2005] as a property of ML
algorithms that “produce patterns understandable to human
beings”. In the same paper the author refers to a postulate
made by Michalski [1983], which states that the resulting ele-
ments of a computer induction “should be comprehensible as
single ‘chunks’ of information, directly interpretable in nat-
ural language”. Moreover, the term explainable is found to
be used in conjunction with the terms intelligibility [Abdul et
al., 2018], understandable [Stumpf et al., 2009] and transpar-
ent [Lim et al., 2009].

Most often the terms above are used to describe ML com-
ponents that readily lend themselves, or are presented in a
way, which is understandable to humans. For a closer discus-
sion of the terms, please refer to [Bibal and Frénay, 2016].

The term interactive is, in this context, referred by Fails
and Olsen [2003] as a property of models which allow
users to “train, classify/view and correct the classifications”.
Holzinger et al. [2016] expand the interaction boundaries
from users to agents, where agents can also be other systems.
Fiebrink et al. [2011] highlight the importance of model eval-
uation for effective user interaction in model improvement.
A term related to interactive ML often found in the literature
is that of human-in-the-loop (e.g. [Holzinger et al., 2016;
Bohanec et al., 2017; Lee et al., 2017]), and is used to de-
scribe a role played by users in improving the “goodness”
of a model by giving feedback to the ML algorithm, and/or
“steering” its computation.

In our work, we use interpretable and interactive ML as an
overall term that comprises all of the above concepts, where
focus is put on placing the human user in the center of the ML
processes. As we see it, interpretability is enabled through an
ML system’s explainability, transparency, intelligibility and
understandability, and is often realized through the user in-
teracting with the ML system, enabling the user to obtain a
better understanding of the system’s inner workings as well
as to improve its output.

3 Method
The taxonomy has been developed through the following
process: (1) keyword and query definition, i.e., establish-
ing search keywords with which papers were queried in the
databases; (2) paper ranking, i.e., sorting and choosing pa-
pers based on a given criteria; (3) paper survey, i.e., individ-
ually surveying the contents of the papers based on their rela-
tion to ML interaction and interpretation; (4) and discussion,
i.e., coming to an agreement between all authors about com-

mon elements found in step (3). The last two steps, paper
survey and discussion, were iterated as often as needed for
all authors to come to a consensus on the common elements
found and their relations.

Figure 1: Trend over the past 20 years of ML journal and confer-
ence publications matching our queries on interpretable and interac-
tive ML. These represent results from (a) ACM Digital Library, (b)
Science Direct, and (c) all queried databases, i.e., ACM Digital Li-
brary, Science Direct, IEEE Xplore, Scopus, Web of Science, NIPS
and MLR. The y-axis depicts percentage, that is, the number of pa-
pers related to interpretable or interactive ML divided by the total
amount of ML papers for the given year.

Two queries were used in step (2), one for interpretable ML
and another for interactive ML. The query for interpretable
ML was as follows:
TAK=(‘‘machine learning’’ AND

(interpretable OR understandable OR
comprehensible OR explainable OR
intelligible OR transparent))

Where TAK stands for paper Title, Abstract or Keywords.
The query for interactive ML was the following:
TAK=(‘‘machine learning’’ AND

(interactive OR ‘‘human-in-the-loop’’))
The query keywords were agreed upon by all authors and



were then used in the following databases: the ACM Digi-
tal Library, IEEE Xplore, Scopus, Science Direct and Web of
Science. Figure 1 shows the results to these queries. Journals
and conference papers from each database were sorted by rel-
evance (as given by each database) and only the first 200 pa-
pers of each database were taken. Additionally, we crawled
two web pages, NIPS1 and PMLR2, and ran the queries on the
retrieved titles and abstracts – these web pages do not pro-
vide paper keywords. The resulting papers were ranked by
their average number of citations per year and then reduced
to only those with two or more average citations. Figure 2
shows a distribution of papers following this restriction: a to-
tal of 357 papers with 208 matching interpretable ML and
149 interactive.

From the total set of ranked papers, twenty six papers were
surveyed by all authors in an individual manner, as an exer-
cise for the development of the taxonomy. These papers were
picked subjectively within the ranked list.

Figure 2: Number of papers per database, matching the queries for
interpretable and interactive ML, with average citations per year
equal or higher than two.

4 Taxonomy
The proposed taxonomy (Figure 3) is composed of six ele-
ments: Dataset, Optimizer, Model, Predictions, Evaluator and
Goodness. Three of the elements – Optimizer, Model, and
Evaluator – are based on Domingos’s [2012] components of
ML, whereas the other three – Dataset, Predictions and Good-
ness – have been added based on our observations from the
surveyed papers. These observations are in line with the re-
sults reported in [Glauner et al., 2017], where it is noted that a
broader view on machine learning is needed, which includes
not only the model but also the data, optimization techniques
and evaluation metrics, a view that has, so far, been largely
ignored in the literature. In Figure 3, white arrows represent
inputs and black arrows outputs. Black boxes represent el-
ements which produce an output given one or more inputs.
The optimizer component (O), for example, has two inputs, a
training dataset (X) and a model (M), and one output which
is a new optimized model (M).

Each of the components in the taxonomy can potentially be
enabled for user interpretation and/or interaction, as shown in

1https://papers.nips.cc/ [Accessed 2018-05-15]
2http://proceedings.mlr.press/ [Accessed 2018-05-15]

the following subsections. The papers selected are not exclu-
sive in the sense that they can only be used as illustrations for
one of all the components shown in Figure 3, but can indeed
showcase interpretability and interactivity within several of
the components. Thus, the purpose of the examples is to de-
scribe in more details our view upon the taxonomy and its
classifications.

4.1 Dataset
Dataset (X) regards training data, test data, validation data
and/or input data for prediction or classification. It is ex-
pected to interpret and interact with the selection of param-
eters/features, its predictive probabilities, and the quality of
the classified/predicted outcomes. It ultimately needs to sup-
port the users to make the next decision.

A solution which contributes to user interpretation of a
dataset is performed by step by step user changes to the origi-
nal feature values and allowing the users to compare/rank the
models or classification/prediction results. The user needs
to have the overview of the parameters selected as well as
the corresponding results since following up the incremen-
tal effects is crucial. In fact, interpretation of a dataset is
very closely connected to user interaction. A solution which
contributes to user interaction with a dataset is one that lets
the user have control of the penalizing/rewarding activities or
which enables the user to simply change a value (e.g., fea-
ture weight) to see the corresponding classification results or
predictions, mostly in real time. It is very related to user inter-
pretation which guides the user in the model creation/update
by interacting with the input data.

Two examples of research papers that contribute to the in-
teraction with interpretation of predictions or classifications
are [Krause et al., 2016] and [Krause et al., 2014].

In [Krause et al., 2016], a tool is presented which detects
diabetes and makes risk predictions by testing the patients’
glucose measures. By tweaking features, they find the most
impacting feature that brings a high-risk level of diabetes.
The tool allows users to interpret how features affect the pre-
diction with the help of visual representations to interact and
compare. The interaction with the tool helps the user to diag-
nose the dependencies of features and to find the feature with
the most impact.

[Krause et al., 2014] bring insights to clinical researchers
predicting patient outcomes by manipulating factors that af-
fect a disease e.g., diabetes. They developed a visual analytics
tool that enables interactive feature selection on high dimen-
sional data with the ranking results of multiple feature selec-
tions, cross-validation folds, and classifiers. The predictive
power is evaluated by ranking features (feature selection al-
gorithms: information gain, Fisher score, odds ratio, relative
risk) across multiple classification algorithms (tree, logistic
regression, naive Bayesian, k-nearest neighbors) for the users
to see the relevant features and compare the results.

4.2 Optimizer
The optimizer (O) – or optimization algorithm – is in charge
of improving a model depending on the ML problem (e.g.,
classification, regression, clustering). To do so, it takes two
inputs, a training data set X and a model M, and constructs an



Figure 3: A taxonomy for interpretable and interactive Machine Learning. ‘O’ stands for optimizer, ‘M’ for model, ‘E’ for evaluator, ‘P’ for
prediction, ‘X’ represents a dataset and ‘G’ the goodness of the model. Arrows depict inputs (white arrows) and outputs (black arrows). Each
component can be potentially “opened” for user interpretation and interaction.

improved instance of M that better describes or generalizes
X. Examples of optimizers are Linear Regression and Quasi-
Newton methods such as DFP and BFGS.

Note that our definition is that of a component and not of
a process. In that sense, an optimizer is not an optimization
or a learning process. An optimizer is, however, an element
of such a process. The distinction is important because ele-
ments of a process, and the interactions they can provide, are
different. These processes are relevant to iiML but are out-
side of the scope of this paper. We dedicate, nevertheless,
some space to the topic in Section 5.

A solution which contributes to user interpretation of an
optimizer is one which discloses, in a simple human-readable
manner, optimizer parameters (e.g., the learning rate or a dis-
tance function) and their impact to the output (i.e., the op-
timized model). A solution which contributes to optimizer
interaction is one which allows users to change views of the
optimizer, zoom in into its details, tune its parameters (e.g.,
change the learning rate or the distance function), or even
change the optimizer itself.

Two examples of research papers that contribute to the
interaction with, and interpretation of, an optimizer are
[Holzinger et al., 2016] and [Schreck et al., 2009]. The for-
mer describes how a user can see and influence the behavior
of the Ant Colony Optimization algorithm in the context of
the Traveling Salesman Problem. Interpretation is facilitated
through visual cues in a graph, with edges representing paths
and their width the level of pheromones; interaction, on the
other hand, is provided by allowing the user to manipulate
pheromone levels. Schreck et al. [2009] describe a system
which allows users to change the learning rate, as well as the
neighborhood kernel, of a Self-Organizing Map for cluster-
ing trajectories. Such updates are then reflected on the new
optimized versions of the model in the forthcoming iterations
of the learning process.

4.3 Model
Learning algorithms are used to create a mathematical ab-
straction or generalization of data. This abstraction is called

a model – or representation [Domingos, 2012] – and is repre-
sented by the ‘M’ box in Figure 3. Models are often imple-
mented in a way that, given a new observation X, produces a
classification or prediction P, e.g., given the profile of a client
X, compute the risk of, e.g., giving him/her a bank credit (a
classification P in the form of low risk - high risk).

A solution which contributes to user interpretation of a
model is one which produces or wraps the mathematical ab-
straction – i.e., parameters, expressions, structure – in a for-
mat which facilitates human inspection and a human-readable
explanation of its logic. Moreover, a solution which con-
tributes to model interaction is one which allows users to
change views of the model, get details on demand, and/or
manipulate its inner elements (e.g., change parameters or its
structure). Such solutions should support transparent inter-
action with humans without requiring that a user has expert
knowledge of the ML techniques used. For example, a solu-
tion which computes and communicates ML results in ways
that are compatible with the human decision-making pro-
cess, and that can readily incorporate human experts’ domain
knowledge can be said to be interpretable and interactive.

Two examples of research papers that contribute to the in-
teraction with, and interpretation of, a model are [Letham
et al., 2015] and [Hu et al., 2014]. Letham et al. [2015]
present a generative model called Bayesian Rule List which
produces models in the form of small sets of if... then rules.
Their contribution claims a balance between interpretability,
accuracy and computational demand. Hu et al. [2014] devel-
oped a framework and a system for integrating user feedback
into topic models in an interactive manner. After modeling
a given number of topics ‘M’, their system allows users to
modify them by adding, removing or increasing the relevance
of words.

4.4 Prediction
The prediction component (P) of the taxonomy proposed re-
gards the explanation of a prediction or classification pro-
duced by a model (M) to the human user as well as the possi-
bility for the user refine it.



A solution which contributes to user interpretation of pre-
dictions or classifications is one which explains these result
to the human user, i.e., why has X been classified as Y (and
not Z)? As the actual features of the model can be difficult
for a non-ML expert to interpret, the explanations generated
need sometimes include other features than those used by the
model for ensuring efficient human interpretation. A solu-
tion which contributes to user interaction with predictions
or classifications is one which enables the user to investigate
and tune how different parameter settings affect the resulting
prediction/classification output, thus setting a foundation for
increased knowledge of the workings of the model.

Two examples of research papers that contribute to the in-
teraction with, and interpretation of, predictions or classifi-
cations are [Ribeiro et al., 2016] and [Kulesza et al., 2015].
In [Ribeiro et al., 2016] an explanation technique is presented
which explains the prediction of a classifier in an interpretable
manner. For example, if applied in a medical scenario, the
user is presented with a classification of the patient’s ill-
ness/status together with the evidence for/against this clas-
sification. By inspecting these evidence, the users can use
their expert knowledge of the domain to determine whether
to trust the classification or not. [Ribeiro et al., 2016] fur-
ther argue that the explanations also can be used to select the
most appropriate model for the problem at hand, by compar-
ing the predictions of several models with the user’s expert
knowledge.

In [Kulesza et al., 2015], an approach towards explainable
ML is suggested, where the users are presented with expla-
nations for the system’s predictions to enable them to build
mental models of the learning system as well as to interac-
tively personalize it. The features of the classifier that are
used to make the prediction are presented to the user, together
with how each feature contributed to the prediction. Font size
and color is used to convey this information, together with
percentages of the likelihood of the prediction being correct.
To correct the predictions made, the user is allowed to input
or remove features from the explanation, which in turn will
add or remove those features from the ML model’s feature
set. The users are also enabled to adjust the importance of
the features in the explanation by increasing/decreasing the
size of the feature in the interface, resulting in a higher/lower
weight of the feature in the learning model.

4.5 Evaluator and Goodness
The evaluator (E) carries out the assessment of the perfor-
mance of a model (M). Typically, traditional objective met-
rics from ML and Data Mining are used for this purpose, for
instance, accuracy, precision, recall, squared error, f-score,
information gain, etc. Such metrics are typically specialized
to the type of machine learning problem and method used,
i.e., clustering, classification, regression, etc. The input of
the evaluator is usually the model itself and a test set, in order
to assess the performance or “goodness” (G, output) of the
model.

The evaluation of the model might be different from the
overall performance of the ML-based system. Since we are
considering interpretable and interactive ML solutions, the
overall evaluation, and also the internal one, might include

subjective metrics as well, commonly used in HCI, for ex-
ample, usability evaluations (how long did users take to carry
out certain tasks, were they successful, how many errors did
they make, how many commands/features did they use, etc.).
An example of model evaluation that includes subjective as-
sessments is, for instance, presented in Amershi et al. [2010].
General challenges related to model evaluation are discussed
in Fiebrink et al. [2011], where the authors conclude, among
other issues, that exploratory evaluations of models can com-
plement objective metrics in allowing users to evaluate mod-
els against a wide range of criteria.

A solution which contributes to user interpretation of an
evaluator is one which allows the user to understand the eval-
uation, for example, showing the results of the performance
of the predictions through visualizing the accuracy, error rate,
etc. A solution which contributes to user interaction with an
evaluator is one which supports user understanding and tun-
ing of the evaluation process.

Two examples of research papers that contribute to the in-
teraction with, and interpretation of an evaluator are [Bo-
hanec et al., 2017] and [Kapoor et al., 2010], respectively.
Bohanec et al. [2017] present a framework for explaining the
results of classification models. According to our taxonomy,
the evaluation carried out by Bohanec et al. is interpretable,
since the explanations provided are claimed to support a bet-
ter understanding of the classification accuracy of the mod-
els. Kapoor et al. [2010] present ManiMatrix, a system that
support users in classification tasks using ML. The visualiza-
tion of intermediate steps of the process supports and enhance
the classification process, in some cases outperforming the
highest automatic accuracy ever published for the problems
in question. The evaluation presented in [Kapoor et al., 2010]
uses an interactive confusion matrix, which represents classi-
fication results by aggregating instances within a grid; each
row in the matrix represents an instance’s true class and each
column an instance’s predicted class. The users can specify
interactively an increase or decrease in the tolerance for num-
bers of cases classified into each cell.

5 Discussion
The proposed taxonomy gives a detailed view of ML compo-
nents and works as a reference for structuring how users can
interpret and interact with each of them. The examples given
illustrate some of the different ways of how the research com-
munity has contributed to iiML.

The taxonomy represents low-level components of ML. It
is low-level for it does not explicitly depict higher processes
such as, e.g., the machine learning process or – at an even
higher level – the decision-making process. Such a fine-
grained taxonomy can be challenging to use, for it requires a
deeper understanding of how ML systems are implemented.
Some system implementations have layers in between the
user and the ML components, as means to map and transform
input from one end to the other. Additionally, a user interac-
tion can, in cases, trigger chains of transformations across all
ML components. Telling where the impact of the user feed-
back will take effect is not always straightforward.

The research community has contributed to user involve-



ment in higher level processes such as the algorithmic learn-
ing process. Such a process can be found implicitly in the
Optimizer-Model loop. Human interpretation at this level can
involve process-wise elements such as [Mühlbacher et al.,
2014]: aliveness, i.e., status of the learning process (e.g.,
“learning in progress” or “has failed”); and progress, e.g.,
estimated remaining time. Human interaction, on the other
hand, may translate to user control over the process, e.g.,
cancel execution, prioritize work [Mühlbacher et al., 2014].
Contributions on this level, and others, are relevant to iiML
but are not in the scope of this paper.

We envision research challenges at the current stage of our
work. Challenges with the dataset component (X) may be
given by the complexity of the data itself. Even relatively
small datasets can be very complex to understand and handle.
Interacting and interpreting graph or image data will prob-
ably prove more difficult than tabular numeric data. A chal-
lenge with optimizers (O) is their disassociation to the knowl-
edge domain of the task, that is, they reside in a mathematical
realm to which users might not relate to. The same might
be said about models (M), although in their case certain for-
mats have proved to be more interpretable than others (e.g.
decision trees in contrast to neural networks). A recurrent
challenge with models is the trade-off between interpretabil-
ity and accuracy.

Papers reviewed in this domain that present evaluations
(E) use either traditional objective performance methods and
metrics from ML/DM or subjective assessments from HCI.
Few present a combination of both strategies. We think that
there is a lack of methods and metrics that can assess the over-
all performance of human-machine collaboration, which go
beyond the evaluation of specific components of the whole
system. Therefore, evaluation and metrics that combine both
strategies are needed in the future.

6 Conclusions and Future Work
This paper presented a taxonomy for classifying and describ-
ing papers in the area of iiML. The aim of such taxonomy is
to structure the literature found in this interdisciplinary area
up to now and investigate through examples how ML can be-
come more interpretable and interactive. The proposed tax-
onomy has six components, Dataset, Optimizer, Model, Pre-
diction, Evaluator, and Goodness. We provided a description
of each along with relevant papers to illustrate their role in
iiML.

We provided brief descriptions of the different terminolo-
gies used under the scope of iiML, but believe there is a need
for an agreed upon terminology to be used by HCI and ML
practitioners, in order to better structure future work within
the area. By exemplifying how the human user can be in-
corporated into the various ML components, we hope that
our work can inspire practitioners within the field to develop
highly functioning iiML systems where the strengths of the
humans and the machines are efficiently exploited.

Through our work, we have identified an increasing inter-
est of iiML as a research field, yet also the lack of examples
of ML systems where the user is incorporated in all of the ML
components outlined. With this paper, where we have identi-

fied low-level components on iiML, we hope to highlight this
challenge and the need for addressing it in future work within
the field.

As future work, we intend to investigate and describe
higher-level processes of iiML, such as the learning process.
A better understanding of how these processes are imple-
mented, and how they are tailored for user interpretation and
interaction, can prove useful for better structuring current re-
search and for outlining feature research. We expect the find-
ings to be helpful for building a complete taxonomy for iiML.
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at the Univeristy of Skövde for fruitful discussions regarding
the proposed taxonomy.

References
[Abdul et al., 2018] Ashraf Abdul, Jo Vermeulen, Danding

Wang, Brian Y Lim, and Mohan Kankanhalli. Trends and
trajectories for explainable, accountable and intelligible
systems: An hci research agenda. In Proceedings of the
2018 CHI Conference on Human Factors in Computing
Systems, page 582. ACM, 2018.

[Amershi et al., 2010] Saleema Amershi, James Fogarty,
Ashish Kapoor, and Desney Tan. Examining multiple po-
tential models in end-user interactive concept learning. In
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 1357–1360. ACM, 2010.

[Amershi et al., 2013] Saleema Amershi, Maya Cakmak,
W Bradley Knox, Todd Kulesza, and Tessa Lau. IUI work-
shop on interactive machine learning. In Proceedings of
the Companion Publication of the International Confer-
ence on Intelligent User Interfaces, pages 121–124. ACM,
2013.

[Bibal and Frénay, 2016] Adrien Bibal and Benoı̂t Frénay.
Interpretability of machine learning models and represen-
tations: An introduction. In Proceedings on ESANN, pages
77–82, 2016.

[Bohanec et al., 2017] Marko Bohanec, Marko Robnik-
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