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A B S T R A C T   

A common approach for analyzing large-scale molecular data is to cluster objects sharing similar characteristics. 
This assumes that genes with highly similar expression profiles are likely participating in a common molecular 
process. Biological systems are extremely complex and challenging to understand, with proteins having multiple 
functions that sometimes need to be activated or expressed in a time-dependent manner. Thus, the strategies 
applied for clustering of these molecules into groups are of key importance for translation of data to biologically 
interpretable findings. Here we implemented a multi-assignment clustering (MAsC) approach that allows mol-
ecules to be assigned to multiple clusters, rather than single ones as in commonly used clustering techniques. 
When applied to high-throughput transcriptomics data, MAsC increased power of the downstream pathway 
analysis and allowed identification of pathways with high biological relevance to the experimental setting and 
the biological systems studied. Multi-assignment clustering also reduced noise in the clustering partition by 
excluding genes with a low correlation to all of the resulting clusters. Together, these findings suggest that our 
methodology facilitates translation of large-scale molecular data into biological knowledge. The method is made 
available as an R package on GitLab (https://gitlab.com/wolftower/masc).   

1. Introduction 

Over the last two decades, the amount of available molecular data 
has increased dramatically. State-of-the-art techniques such as 
sequencing, mass spectrometry and other high-throughput ’omics’ 
technologies enable efficient generation of extensive experimental 
datasets that provide unique resources for advanced data mining. These 
datasets provide unprecedented insights into molecular pathways in 
cells and their role in various diseases (Meng et al., 2016). However, 
many challenges remain on how to best perform the analysis of this 
large-scale molecular data (Li and Chen, 2014; Sulakhe et al., 2014). 

One of the most common strategies for analyzing high-dimensional 
data is to find clusters of objects that share similar characteristics. 
Many clustering algorithms are based on machine learning techniques 

designed to discover hidden structures in the data (Xu and Wunsch, 
2010). Unlabeled data objects are grouped into clusters so that objects in 
the same cluster are more similar to each other than to objects assigned 
to other clusters. A cluster is inherently a subjective structure that does 
not have a precise and formal definition. In theory, data points that are 
in the same group should have similar properties and/or features, while 
data points in separate groups should have different properties and/or 
features (Gan et al., 2007). 

Along with the large number of clustering algorithms available, a 
rich literature on cluster analysis has developed over the years and 
several reviews account for the variety of algorithms, application fields, 
types, weaknesses, and strengths (Aggarwal, 2014; Jain, 2010; Wen-
skovitch et al., 2017). Examples of clustering algorithms commonly used 
in biomedical research are presented in the review by Xu and Wunsch 
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(Xu and Wunsch, 2010). Conventional clustering algorithms have been 
used or adapted to gene expression data, and algorithms have also been 
developed specifically for gene expression data analysis (Si et al., 2014). 
K-means (Hartigan and Wong, 1979) is one of the most well-known 
clustering algorithms and frequently used in biomedical data analysis 
(Jain, 2010). The main advantages of K-means are that it is transparent, 
relatively fast, and has low memory requirement since it only computes 
the distances between the data point and the centroid (group center) of 
the clusters until convergence. 

In most clustering analyses of large-scale molecular data that are 
performed today, the objects are restricted to be assigned to a single 
cluster, potentially disregarding high similarity to several other clusters. 
The cluster with the highest similarity based on a selected similarity 
measure is the one that the object will be assigned to. From a modeling 
perspective, this treats the clusters as being mutually exclusive, which is 
a poor description of the underlying biological context where genes or 
proteins may be involved in several processes and signaling pathways 
simultaneously (Fallah et al., 2019; Nikolaou et al., 2013). These path-
ways control much of the functions that take place in cells and tissues 
where gene transcripts, enzymes, proteins, and other molecules serve as 
key components (Devkota and Wuchty, 2020). 

One of the basic assumptions when using clustering techniques in the 
analysis of molecular data is that genes with highly similar expression 
profiles may be involved in the same molecular processes. Thus, when 
interpreting clustering results, it is relevant to explore over-
representation of genes in known pathways, or enrichment for specific 
functional annotations. However, since the majority of clustering ana-
lyses today do not consider multiple assignment of objects, the down-
stream analysis may become less informative, since genes of a specific 
pathway can be split into several clusters. Many clusters lack objects that 
participate in similar biological processes, as the other members in these 
processes may have been assigned and locked to other clusters. This 
results in lower statistical power in subsequent enrichment analyses and 
affects the correct mapping of clusters to their true biological functions. 

The problem that genes need to be part of multiple clusters may be 
handled through different types of fuzzy clustering techniques, e.g. 
Ferraro & Giordani (Ferraro and Giordani, 2015), which allow objects to 
belong to more than one cluster with a certain degree (Bandyopadhyay 
et al., 2007; Fu and Medico, 2007; Wu et al., 2011; Zhang et al., 2011). 
There are also other approaches for imprecise clustering based on the 
assignment of meta clusters (Liu et al., 2015; Wu et al., 2011), and 
model-based approaches using mixture models (Mitchell, 1999), where 
one can obtain probabilistic membership information to the different 
clusters. These approaches provide alternative perspectives on the 
clustering, but do not assign objects into multiple clusters 
simultaneously. 

In contrast to previous research and given that a substantial portion 
of gene expression profiling analyses are performed under the assump-
tion of mutually exclusive assignment to clusters, our aim was to 
investigate the effects of multi-assignment clustering on the downstream 
analysis. We hypothesized that annotation enrichment analysis of clus-
ters could be rendered more sensitive and biologically meaningful by 
performing it on non-mutually exclusive clustering, i.e. when genes are 
allowed to belong to more than one cluster. In this work, we imple-
mented and compared the results for both single- and multi-assignment 
clustering using K-means with Pearson correlation distance measure on 
two independent datasets of different sizes. A threshold on the correla-
tion was used to assign the genes to none or several clusters. 

2. Material and methods 

2.1. Description of omics datasets 

In order to test the hypothesis that assignment of genes to multiple 
clusters supports the biological interpretation of clusters, two tran-
scriptomics datasets from previous gene expression studies performed in 

our group have been re-analyzed and the efficiency of the proposed 
multi-assignment clustering approach evaluated. The datasets are pub-
licly available in ArrayExpress with accession numbers E-MTAB-5219 
and E-MTAB-5367. E-MTAB-5219 (referred to as the Mesoderm dataset) 
represents a time series transcriptomics dataset from human embryonic 
stem cells during differentiation towards an early cardiac phenotype. 
The dataset consists of eleven time points, representing cells sampled 
daily from day 0 to day 10 during the differentiation process, as 
described in detail previously (Ulfenborg et al., 2017). E-MTAB-5367 
(referred to as the Hepatocyte dataset) represents time series data from 
six different human pluripotent stem cell lines during differentiation 
towards hepatocytes. This dataset has five time points with two bio-
logical replicates for each time point and cell line. The experimental 
setup and technical details of this dataset have been described previ-
ously (Ghosheh et al., 2017). 

2.2. Data analysis 

2.2.1. Preprocessing of data 
Raw gene expression signals were background-corrected and 

normalized with the Robust Multichip Average (RMA) function in the 
oligo package (Carvalho and Irizarry, 2010) with version 1.48.0 (R 
version 3.6.0). For both datasets, gene expression was calculated by 
taking the mean of the biological replicates at each time point. Probes 
were mapped to Entrez gene IDs with NetAffx annotation from Affy-
metrix (ThermoFisher Scientific, https://www.thermofisher.com). For 
the Mesoderm dataset, the HuGene 1.0 ST V1 NA36 annotation against 
the hg19 reference genome was used. For the Hepatocyte dataset, the 
HTA 2.0 R3 NA36 annotation against the hg19 reference genome was 
used. When multiple probes mapped to the same Entrez gene ID, only 
the probe with the highest expression value was retained. The datasets 
were filtered to remove probes without Entrez gene IDs, probes with a 
log2 expression below 5 in all time points and probes with a coefficient 
of variation below 10 %. Following this preprocessing, the Mesoderm 
dataset contained 1224 genes and 11 time points, and the Hepatocyte 
dataset contained 3219 genes and 5 time points. Fold changes used for 
downstream pathway analysis were calculated by taking the gene 
expression of the last time point divided by the expression in the first 
time point. 

2.2.2. Multi-assignment clustering scheme 
We utilized a simple similarity-clustering schema based on thresh-

olding. The basic idea is to let a data point x belong to more than one 
cluster if that point is sufficiently similar, given by the threshold δ, to 
several clusters. More formally, we propose a clustering schema based 
on the centroids c1, …, cK as the result from K-means clustering by: 

C(x) = {ci : Γx(ci) ≥ δ, i ∈ {1, …, K} }

where δ ∈ [0,1] is a threshold and Γx(ci) is defined as: 

Γx(ci) = 0, if α(x, ci) ≤ 0  

Γx(ci) = α(x, ci), otherwise  

where α(x, ci) denotes the Pearson correlation coefficient. Hence, 
instead of assigning each point to a single cluster, we utilize a threshold 
in order to determine several cluster assignments as illustrated in Fig. 1. 

2.2.3. Clustering analysis 
K-means clustering was carried out in R with the amap package 

(Caussinus et al., 2003), version 0.8.17. We chose K-means as a basis for 
our multi-assignment clustering technique, primarily due to its ease of 
interpretation and that it is one of the most commonly used clustering 
algorithms within bioinformatics research (Rodriguez et al., 2019; Xu 
and Wunsch, 2010). The number of clusters was set to maximize the 
intracluster correlations while maintaining low intercluster correlations 
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as described previously (Ulfenborg et al., 2017). This resulted in 10 
cluster centroids for each dataset, here referred to as the standard 
clustering results. The distance measure for the clustering was set to 
Pearson. The centroids from the standard clustering results were used in 
the next step to calculate correlations α(x, ci) between gene expression 
profiles and the clusters. 

2.2.4. Defining threshold for multi-cluster assignment 
To enable downstream enrichment analysis, we wanted to achieve 

sufficiently large clusters after applying the δ threshold. A mean cluster 
size of 200 genes was considered as a minimum as this size is suggested 
to be required for follow-up enrichment analysis (Huang et al., 2009). 
Higher thresholds result in fewer genes assigned to the clusters, since the 
gene correlation to the cluster centroid must be higher than δ for the 
gene to belong to that cluster. To find a suitable threshold, a step-wise 
parameter search with δ from 0.5 to 1.0 was performed for the data-
sets investigated (Fig. 2). For both datasets we found that δ ≥ 0.9 
resulted in sufficient cluster sizes for downstream pathway enrichment 
analysis. Applying this threshold for correlation, the mean cluster size 
was 220 for the Mesoderm dataset and 446 for the Hepatocyte dataset. 
The approach that allows genes to be assigned to multiple clusters is 
referred to as Multi-Assignment Clustering (MAsC). 

2.2.5. Pathway analysis 
For each of the centroids extracted from the standard K-means 

clustering results, the genes were assigned to zero, one or multiple 
clusters based on the similarity to each of the ten centroids, i.e. when 
Pearson correlation ≥ δ. Genes in the resulting clusters were then 
assessed with respect to their enrichment of KEGG molecular pathway 
annotations. Significantly enriched pathways among the genes in each 
cluster were identified with the SPIA package in R (Tarca et al., 2009). 
The number of significantly enriched pathways detected in the clusters 
from MAsC was calculated and compared to the results from the stan-
dard K-means clustering. The pathways reported as significant were also 
investigated and compared between the clustering approaches. 

3. Results 

3.1. Descriptive comparison of cluster properties between clustering 
approaches 

The MAsC approach generated on average larger cluster sizes 
compared to the standard K-means algorithm as shown in Figs. 3 and 4 
for the Mesoderm and the Hepatocyte datasets, respectively. As ex-
pected, the cluster sizes increased when MAsC was used, and a larger 

Fig. 1. Schematic illustration of the multi- 
assignment clustering approach. 
The idea behind multi-assignment clustering is 
to allow each gene in the dataset to be assigned 
to more than one cluster simultaneously. In the 
standard clustering analysis (Panel A), clusters 
are treated as mutually exclusive and genes 
(black) can never appear in more than one 
cluster. With multi-assignment clustering 
(Panel B), genes that are sufficiently similar to 
several cluster centroids (yellow) will be 
assigned to each of them. This makes the clus-
ters partially overlapping and drops the 
assumption of exclusive cluster assignment.   

Fig. 2. Exploring different thresholds for multi-assignment clustering. 
By varying the threshold δ from 0.5 to 1 different cluster sizes are obtained. Genes are assigned to all clusters where the correlation between the gene and cluster 
centroid is ≥ δ. Apart from allowing genes to be assigned to multiple clusters, this also results in removal of certain genes from all clusters, when correlation to all 
centroids is below δ. Panel A represents the Mesoderm dataset and panel B represents the Hepatocyte dataset. 
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number of pathways were identified as significantly enriched for both 
the investigated datasets (Fig. 5A and B). 

3.1.1. The mesoderm dataset 
The mean cluster size increased from 122 (standard K-means) to 220 

genes (MAsC). Three clusters (2, 6 and 9) became smaller with a MAsC 
cluster sizes of 33, 18 and 10 genes, respectively. The remaining clusters 
became larger, with the largest increase observed for cluster 7 and 10, 
changing from 59 to 436 genes and from 170 to 437 genes, respectively. 
This concurrent increase is attributed to the high correlation (0.98) 
between the standard K-means centroids of these two clusters, resulting 
in a gene overlap of 85 % between these MAsC clusters. Out of the 1224 
genes in the Mesoderm dataset, 287 (23 %) were not assigned to any 
clusters, since their correlation to all K-means centroids was below 0.9. 
In total, 219 (18 %), 246 (20 %), 402 (33 %) and 70 (6 %) genes were 
assigned to one, two, three or four clusters, respectively. No gene was 
assigned to more than four clusters. 

3.1.2. The hepatocyte dataset 
The mean cluster size increased from 322 to 446 genes when MAsC 

was applied, compared to the standard K-means clustering. Also, for this 
dataset, three clusters (1, 4 and 9) became smaller when using MAsC, 
with cluster sizes 258, 96 and 94 genes respectively. The other seven 
clusters increased in size and some of them considerably, e.g. cluster 6 
that increased from 240 genes to 812 genes. As for the Mesoderm 
dataset, concurrent increase in cluster size can be attributed to the high 
correlation between the standard K-means centroids. For clusters 6 and 
10 the correlation was 0.99, resulting in a gene overlap of 85 % between 
the corresponding MAsC clusters. The Hepatocyte dataset contained 
3219 genes in total and of these 745 (23 %) were not assigned to any 
clusters, due to low correlations to all K-means centroids. As for the 
Mesoderm dataset, genes were assigned to between one and four 

clusters. Here, 758 (24 %), 1500 (47 %), 158 (5 %) and 58 (2 %) genes 
were assigned to one, two, three or four clusters, respectively. This 
shows that MAsC maintains an informative clustering partition, and 
avoids a situation where the majority of genes are assigned to the ma-
jority of clusters. 

3.2. Comparison of biological relevance between clustering approaches 

To evaluate whether higher biological relevance can be achieved by 
allowing genes to participate in multiple clusters, pathway enrichment 
analysis was performed on each of the ten clusters from the standard K- 
means clustering and MAsC, respectively, and the results compared. In 
this work, higher biological relevance was defined as an increase in the 
number of enriched pathways directly involved in the differentiation 
process behind the Mesoderm and Hepatocyte datasets. 

3.2.1. The mesoderm dataset 
As shown in Fig. 6 and 7, MAsC increased the number of significant 

pathways identified in four of the five clusters, for which enriched 
pathways were identified in the standard K-means results. Moreover, 
several pathways were also found with MAsC in two clusters (3 and 4) 
for which no any significant pathways were identified using the standard 
K-means. In total, eight pathways were identified as enriched in the K- 
means clusters. The corresponding number when using the MAsC was 30 
(Fig. 5A). One reason for the higher sensitivity of the pathway analysis 
for MAsC clusters is the larger cluster sizes achieved using this approach. 
The elimination of genes with low correlation to all cluster centroids 
may also contribute, as these genes have different expression profiles 
from the other genes and may not be involved in the same processes. 
Consequently, the MAsC clusters have higher intracorrelations, and 
likely a larger fraction of genes involved in the same pathways. 

In addition to the higher sensitivity in the pathway enrichment 

Fig. 3. Mesoderm cluster profiles. 
The mean expression profile for the standard (solid line) and multi-assignment clustering (δ = 0.9, dashed line) for the Mesoderm dataset. For each cluster, the 
number of genes assigned to that expression profile is shown above the profiles for the cluster. 
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Fig. 4. Hepatocyte cluster profiles. 
The mean expression profile for the standard (solid line) and multi-assignment clustering (δ = 0.9, dashed line) for the Hepatocyte dataset. For each cluster, the 
number of genes assigned to that expression profile is shown in the graphs for the cluster. 

Fig. 5. Number of significant pathways for different thresholds. δ. 
Heatmaps showing the number of significant pathways identified for different values of δ. Panel A represents the Mesoderm dataset and panel B represents the 
Hepatocyte dataset. 
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analysis, the identified pathways also showed a higher biological rele-
vance to the investigated differentiation process when MAsC was 
applied. This was particularly prominent for Mesoderm dataset cluster 
3, 4, 7 and 10 (Figs. 6 and 7). Fig. 6 shows all pathways identified as 
significantly enriched using the standard K-means clustering and Fig. 7 
shows the corresponding results based on MAsC. For cluster 3, no 
pathway was identified as enriched with standard K-means clustering, 
while with MAsC three relevant pathways were identified. Among these 
are ‘TGF-beta signaling pathway’ (Gordeeva, 2019) and the ‘MAPK 
signaling pathway’ (Zhang and Liu, 2002), which are highly involved in 
cell proliferation and cardiac differentiation. Similarly, for cluster 4 no 
significant pathways were identified using standard K-means. When 

MAsC was applied, five pathways were identified as significantly 
enriched and two of those; ‘Dilated cardiomyopathy’ and ‘Arrythmo-
genic right ventricular cardiomyopathy’ are directly connected to car-
diac disease (Cojan-Minzat et al., 2020; Paul and Schulze-Bahr, 2020). 
‘Vascular smooth muscle contraction’, ‘Calcium signaling pathway’ and 
‘Tight junction’ are all coupled to cardiac functionality (Adesse et al., 
2011; Winslow et al., 2016). Cluster 7 showed interesting results and 
three pathways were identified using the standard K-means clustering, 
two of which are tightly coupled to cardiac functionality, disease 
development and progression. Interestingly, when MAsC was applied, 
the number of enriched pathways increased from three to six, and the 
‘Leukocyte transendothelial migration’ pathway (found with standard 

Fig. 6. Significantly enriched pathways for the Mesoderm dataset using K-means. 
The top ten significant pathways for the Mesoderm dataset are shown for the standard K-means clustering. Only clusters with at least one significant pathway in one 
of the clustering analyses are shown. 

Fig. 7. Significantly enriched pathways for the Mesoderm dataset using MAsC. 
The top ten significant pathways for the Mesoderm dataset are shown for the MAsC (δ = 0.9). Only clusters with at least one significant pathway in one of the 
clustering analyses are shown. 
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K-means) was no longer significant. This pathway has no obvious as-
sociation to mesoderm or cardiac tissue. Furthermore, all of the other six 
pathways identified using MAsC had high cardiac relevance. Finally, for 
cluster 10 there were two significantly enriched and highly relevant 
pathways identified using the standard K-means. With MAsC, four 
additional biologically relevant pathways for mesoderm and cardiac 
development were detected. Among these is the ‘ECM-receptor inter-
action’, which was not identified as enriched in any of the other clusters. 
It has a direct or indirect control of cellular activities such as adhesion, 
migration, differentiation, proliferation, and apoptosis, which are 
important during mesoderm and cardiac differentiation (Bosman and 
Stamenkovic, 2003). 

3.2.2. The hepatocyte dataset 
This dataset represents five different time points during differentia-

tion of human pluripotent stem cells towards the hepatic lineage. 
Clustering results showed higher biological relevance when MAsC was 
applied compared to the standard K-means clustering (see Fig. 8 and 9). 
The Hepatocyte dataset is more than twice as large as the Mesoderm 
dataset and produces larger clusters; therefore, the number of enriched 
pathways is higher. In total, 46 pathways were identified as significant 
with the standard K-means, compared to 60 with MAsC (Fig. 5B). The 
results revealed that MAsC in general contributed to identify a larger 
number of pathways relevant to hepatocyte development than the 
standard K-means. With MAsC, three pairs of clusters show high overlap 
in terms of significant pathways: cluster 2 and 7, cluster 3 and 8, and 
cluster 6 and 10. This is explained by the high pairwise correlations 
between the cluster centroids (Fig. 4), resulting in a large gene overlap. 
For clusters 2 and 7, the number of identified pathways increased with 
two and one, respectively, when using MAsC. Of these, PPAR signaling 
pathway is of high importance for hepatocyte functionality and linked to 
metabolic disorders and non-alcoholic fatty liver disease (NAFLD) 
(Gomaraschi et al., 2019). The Lysosome pathway was also identified 

and, interestingly, lysosomes were in a recent report highlighted as so-
phisticated signaling centers that govern cell growth, division and dif-
ferentiation, which are important for hepatocyte differentiation 
(Lawrence and Zoncu, 2019). Both PPAR and Lysosome were identified 
in standard K-means clusters 7 and 2, respectively, but appeared in both 
clusters with the MAsC. This highlights that the cluster profiles have 
actually captured the same underlying biological mechanisms, and that 
they could be interpreted jointly. This reduces the number of unique 
clusters to interpret, thus simplifying biological analysis. 

For clusters 3 and 8, the number of identified pathways increased 
from 6 to 17 and 6–15 with MAsC, respectively. Here the standard K- 
means clusters had non-overlapping pathways, whereas the MAsC 
clusters had considerable overlap. These include several immune 
response and disease-related pathways, but of specific interest for he-
patocytes is the Bile secretion pathway, as bile secretion is an important 
function in this cell type (Boyer, 2013). For clusters 6 and 10, the 
number of identified pathways changed from 9 to 8 and 6–9 with MAsC, 
respectively. The overlap between the pathways is stronger with MAsC, 
though the biological relevance of the result requires further investi-
gation. One pathway of interest is Alcoholism (also identified with MAsC 
in cluster 5), which is of high importance in alcohol-induced liver dis-
ease (ALD), including liver cirrhosis severe steatohepatitis (Tilg et al., 
2011). 

For two clusters, 4 and 9, no pathways were identified as significant 
with MAsC, whereas several pathways were found with standard K- 
means. However, the pathways identified by K-means have no obvious 
association with hepatocyte development or liver functionality, sug-
gesting that they were identified as a consequence that some genes may 
have been forced into clusters 4 and 9, as all genes are assigned to a 
cluster in standard K-means. With MAsC, the pathways were not found 
because these genes had lower correlations to the cluster centroids and 
were dropped from the analysis. Indeed, the cluster sizes for cluster 4 
and 9 dropped from 279 and 192 genes to 96 and 92 genes, respectively. 

Fig. 8. Significantly enriched pathways for the Hepatocyte dataset using K-means. 
The top ten significant pathways for the Hepatocyte dataset are shown for the standard K-means clustering. Only clusters with at least one significant pathway in one 
of the clustering analyses are shown. 
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Since this results in elimination of irrelevant pathways, it clearly dem-
onstrates that MAsC also has a noise reduction effect on the clustering 
analysis. 

4. Discussion 

Most genes are involved in a large number of functions and generally 
participate in many biological processes and different molecular path-
ways. Notably, this phenomenon is generally not reflected in commonly 
used clustering approaches. The MAsC algorithm has been developed to 
address this limitation, and the study presented here demonstrates how 
multi-assignment clustering produces partitions that better capture the 
processes of the underlying biological system. The allowance of multiple 
assignments of genes to more than one cluster produced larger cluster 
sizes, result of higher relevance to the studied system and contributed to 
improved biological interpretation of clustering. Related methods with 
multiple class membership have been elaborated on in previous 
research, but their solution included a two-step clustering, which did not 
allow assignment of genes to multiple groups (Bandyopadhyay et al., 
2007). Cluster results can be evaluated in multiple ways with quanti-
tative measurements, using visualization tools and various statistical 
tests. However, when it comes to the assessment of the utility of the 
results and the biological interpretation of the clustering partitions, a 
qualitative evaluation of the biological relevance is more informative. 
We argue that our multi-assignment clustering approach generates 
partitions of higher biological relevance and should be considered a 
powerful complement to standard K-means clustering for 
high-throughput transcriptomics data. A direction for future research is 
to evaluate this approach on other modalities of omics data, such as 
proteomics and epigenomics. 

A strength of MAsC is the increased power of the downstream 
functional annotation analysis that is commonly the basis for biological 
interpretation. Since enrichment analysis generally requires around 200 

genes (Huang et al., 2009), the benefits from MAsC will be greater when 
applied to initially smaller clustering partitions. We also observed im-
provements for larger partitions, but the effects were not as pronounced. 
Another advantage with MAsC is that it performs noise reduction on the 
clustering partition. In the standard K-means clustering, all genes in the 
dataset are forced into a cluster even when they have low similarity to all 
the centroids. With MAsC, genes are only assigned to a cluster if the 
correlation to the centroid is ≥ δ, otherwise the gene is excluded from 
the clustering analysis. This property may be greater when working with 
larger datasets, and provides an easy way to increase the signal-to-noise 
ratio, which contributes to generating biologically meaningful 
partitions. 

A limitation with enrichment analysis is its dependency on infor-
mation stored in annotation databases, and there is a risk that incom-
pleteness of information negatively impacts the results. For example, 
well-studied processes and pathways that have many annotated genes 
will be overrepresented, and analyses may become biased to report these 
as significant. Other biologically important processes are missed due to 
lack of annotations. It is therefore challenging to apply this kind of 
analysis to systems that are less studied. A shortcoming with MAsC, 
inherited from K-means, is the random initialization of centroids, which 
means that the final clustering partitions will differ slightly between 
repeated analyses of the same data. This renders interpretation more 
difficult and there is a risk that biologically important genes are 
removed in the analysis if they have low correlation to all centroids. 
Selection of an appropriate correlation threshold δ is challenging and 
has a large impact on the resulting partitioning. One way to address this 
is to use a step-wise parameter search and set a threshold that gives 
satisfactory cluster sizes. The choice will depend on the properties of the 
data, and we therefore recommend a parameter search for each dataset. 
Another consequence of the random initialization of centroids is a risk 
that two or more of them have a high correlation, which will result in 
high overlap of genes between the clusters. These clusters may be 

Fig. 9. Significantly enriched pathways for the Hepatocyte dataset using MAsC. 
The top ten significant pathways for the Hepatocyte dataset are shown for MAsC (δ = 0.9). Only clusters with at least one significant pathway in one of the clustering 
analyses are shown. 

B. Ulfenborg et al.                                                                                                                                                                                                                              



Journal of Biotechnology 326 (2021) 1–10

9

considered redundant and could be merged into a single cluster to 
facilitate interpretation. However, this was not considered in the present 
work since it would limit the possibility to compare the results from 
standard K-means with MAsC. Merging redundant clusters represents an 
avenue for future development of this method. 

5. Conclusions 

Here we present a multi-assignment extension to the K-means clus-
tering method that allows genes to be assigned into more than one 
cluster. MAsC produced clustering partitions with higher biological 
relevance compared to the original K-means clusters, as evident from the 
larger number of statistically significant pathways related to the cellular 
systems studied. The improved sensitivity in the analysis can be attrib-
uted to larger cluster sizes and that all genes highly correlated to a 
cluster centroid will be assigned to that cluster. The noise reduction 
property of MAsC further improves the resulting partitions, by removal 
of genes with low similarity to all of the clusters, rather than forcing 
them into the closest cluster. We believe MAsC is a powerful comple-
ment to existing clustering methods and can support data interpretation 
in future high-throughput profiling studies. 
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