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Abstract

Andness directed aggregation is about selecting aggregators from a desired andness level. In this paper we consider operators of 
the OWA and WOWA families: aggregation functions that permit us to represent some degree of compensation of the input values. 
In addition to compensation, WOWA permits us to represent importance (weights) of the input values. Selection of appropriate 
parameters given an andness level will be based on families of fuzzy quantifiers.
© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Aggregation operators [2,3,11,20] are extensively used in problems related to decision making. There are a large 
number of aggregation functions that include the arithmetic mean, the geometric and harmonic means, operators of 
the OWA family and fuzzy integrals [21].

There are different ways to characterize, study and select appropriate aggregation operators for a particular appli-
cation. One of them is based on their degree of andness and orness. These concepts were introduced by Dujmović 
in [6] (see also [5,7]). Andness (global andness) denotes the degree of simultaneity of aggregation operators, and, in 
contrast, orness (global orness) denotes the degree of substitutability or compensation. Orness is defined as the vol-
ume between the operator and the minimum. Orness and andness have been studied for operators of the OWA family. 
Yager [23] proposed an expression that corresponds to the orness in the sense of Dujmović.

Andness-directedness (orness-directedness) is about the selection of appropriate parameters for an aggregator based 
on a given andness (orness) level. MEOWA [13] was probably the first approach to deal with this problem for the 
OWA. Solutions were independently given by [14], [4], and [10]. The main difficulty of andness-directed OWA is that 
for any andness level α in (0, 1) there are infinitely many vectors (for more than two inputs). Given an andness level, 
MEOWA solves this problem selecting the OWA weights that have maximum dispersion (maximum entropy).
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As OWA weights can be inferred from fuzzy quantifiers, an alternative approach is to simplify the problem defining 
a family of fuzzy quantifiers so that for each andness level, there is only one quantifier with such andness. We have 
proposed this approach in [9]. Here we study the problem in detail for OWA, Ordered Weighted Geometric mean 
(OWG), and Generalized OWA (GOWA), and, equivalently, for their weighted versions WOWA [15,16], WOWG, and 
GWOWA.

This problem is related to the implementation of logic aggregators [8] in terms of functions of the OWA family. 
In [9] we showed that we can implement all logic aggregators using GWOWA. We introduced GWOWA as well as 
a parameterized family based on a family of fuzzy quantifiers. As our selection of fuzzy quantifiers was somehow 
arbitrary, we look here into the approach with more detail. The goal is to understand how dependent is the outcome 
of the aggregation on the selected family, and the variability of the outcome. We consider here three families of 
quantifiers that can be seen as a kind of extreme families. Nevertheless, as other families of functions would lead to 
other results, this can be seen as a first attempt to understand how the same andness level with the same operator of the 
OWA family can lead to different results. In any case, the outcomes depend on the actual inputs of the aggregation, 
and the set of possible inputs for a given problem may not be easy to find. In general possible inputs may be seen as a 
probability distribution on input values. We will discuss the limitations again in the conclusions section.

2. Preliminaries

Let I = [0, 1]. We consider aggregators A : In → I that are continuous functions, nondecreasing in all inputs and 
satisfy A(0) = 0, A(1) = 1, and that are sensitive to positive truth (i.e., if any xi �= 0 then A(x1, . . . , xn) > 0) and 
sensitive to incomplete truth (i.e., if any xi �= 1 then A(x1, . . . , xn) < 1).

Following [8], we consider graded logic aggregators from drastic conjunction to drastic disjunction, and, more 
particularly, to aggregation from full conjunction (i.e., the minimum) to full disjunction (i.e., the maximum). The 
restriction to the range between full conjunction and full disjunction is because we study the OWA family of operators 
and its range of operation.

We consider the problem of selecting the right aggregation function for a given problem based on answering the 
following three questions [8,9]:

• Selection of the desired andness level of the aggregator. That is, is the aggregator conjunctive or disjunctive? and 
in what degree (andness level α)?. This is called andness-directedness.

• Decide whether the aggregator is hard or soft. An annihilator zero is when any input equal to zero leads to a 
zero outcome. This is a hard conjunction. In contrast, if no annihilators are present, a zero in one input can be 
compensated by a non-zero input. Similarly, annihilator one means a hard disjunction.

• Settle the degrees of importance of the inputs. Each input has a relative importance degree that needs to be 
determined and used in the aggregation process. This is modeled through weights w.

As explained in detail in [8,9], high andness (α > αθ ) usually requires annihilator zero, and low andness annihi-
lator one. Unless otherwise required, high andness means α > αθ = 3/4 and low andness is α < 1/4. Under these 
requirements, an andness-directed selection of an aggregation is to find the appropriate aggregator for given α and w. 
We will consider andness-directedness for operators of the OWA family.

We start recalling the definition of the OWA operator for n inputs x1, . . . , xn and a weight vector v = (v1, . . . , vn)

such that vi ∈ [0, 1] and 
∑

vi = 1. Here, xσ(i) corresponds to the ith largest input:

OWA(X = (x1, . . . , xn);v) =
n∑

i=1

vixσ(i)

Recall that when v1 = 1 and vi = 0 for i �= 1, OWA(X) = maxxi ; and when vn = 1 and vi = 0 for i �= n, OWA(X) =
minxi .

2.1. Andness and orness

There exist several definitions of orness and andness. We will use the one introduced in [6] based on the volume of 
the aggregator. Let A be an aggregator where all arguments have the same degree of importance, then
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Fig. 1. Graphical representations of several fuzzy quantifiers of the Qa (left), Mb (middle), and Tt (right) families. We use a = 0, 1/2, 1, 2, ∞, 
b = 0, 0.5, 1 and t = 0, 0.5, 1.

VolA =
∫
In

A(X)dx1 . . . dxn (1)

is the volume of this aggregator. Andness α and orness ω of A are:

α = n − (n + 1)VolA
n − 1

, ω = (n + 1)VolA − 1

n − 1
.

Observe that α + ω = 1, and that for A = min, α = 1; for A = max, α = 0.
Yager [22,23] introduced a definition for the orness of OWA:

ωv =
n∑

i=1

(n − i)vi

n − 1
. (2)

This definition of orness is equivalent to the one in terms of volume.

2.2. Fuzzy quantifiers

A fuzzy quantifier is a function V : [0, 1] → [0, 1] that represents the fraction of elements that satisfy a property. 
For example, the quantifier there exists (or, equivalently, there is more than 0 elements) is defined as V (0) = 0 and 
V (x) = 1 for all x > 0, the quantifier for all is defined as V (1) = 1 and V (x) = 0 for all x < 1, and half as V (x) = 1
for x > 1/2 and V (x) = 0 otherwise. Fuzzy quantifiers are soft versions of them, as e.g. V (x) = x2 can be understood 
as almost all, and V (x) = √

x as a few.
We have given above a definition of OWA based on a weight vector. There is an equivalent definition based on 

fuzzy quantifiers (see Section 2.3). Because of that, it is interesting to consider families of fuzzy quantifiers that are 
parameterized in a way that the parameter permits the function to range from there exists to for all. OWA results 
into minimum with the quantifier for all and into maximum with the quantifier there exists. We define three families 
of quantifiers Qa , Mb and Tt below and Fig. 1 illustrates them. It is naturally possible to define other families of 
quantifiers with this property.

• For a > 0, quantifier Qa(x) = xa . It holds the following:
1. When a → 0, Qa tends to the quantifier there exists. So, OWAQ0(X) = maxxi and ω = 1, and α = 0.
2. When a = 1, Qa tends to the quantifier Q1(x) = x. The orness of the OWA with this quantifier is ω = 0.5 and 

α = 0.5.
3. When a → +∞, Qa tends to the quantifier for all. Therefore, OWAQ+∞(X) = minxi and ω = 0 and α = 1.

• For b ∈ [0, 1], quantifier Mb is defined by

Mb(x) =

⎧⎪⎨
⎪⎩

0 if x < b2

1
2

x−b2

b−b2 if x ∈ [b2,2b − b2]
1 if x > 2b − b2
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1. When b = 0, M0 is there exists. So, α = 0 and ω = 1.
2. When b = 0.5, M0.5 is the quantifier defined as 0 for x ∈ [0, 0.25] as 1 for x ∈ [0.75, 1] and a straight line 

between 0 and 1 when x ∈ [0.25, 0.75]. This leads to a kind of soft median and the andness and orness levels 
for the corresponding OWA are 0.5.

3. When b = 1, M1 is the quantifier for all. So, α = 1 and ω = 0.
• For t ∈ [0, 1] quantifier Tt is defined by

Tt =
⎧⎨
⎩

0 if x = 0
t if x ∈ (0,1)

1 if x = 1

With this quantifier, OWATt (X) = t · max(X) + (1 − t) · min(X).
1. When t = 0, T0 is the quantifier for all. So, α = 1 and ω = 0.
2. When t = 0.5, T0.5 is the quantifier defined as 0 for x = 0, as 1 for x = 1 and 0.5 for all other x. So, the result 

is the arithmetic mean of the largest and the smallest inputs. We have α = ω = 0.5.
3. When t = 1, T1 is the quantifier there exists. So, α = 0, β = 1.

Therefore, we have in Qa a fuzzy quantifier that is a soft transition between there exists and for all and weights 
all inputs, when possible. Then, Mb leads to a median-like OWA where weights are given to central elements, when 
possible, and Tt only weights extreme elements, when possible. Naturally, when andness equals 0 or 1, all quantifiers 
are exactly the same and only one element is selected.

These values of orness and andness apply to OWA and WOWA. Other aggregations, even of the OWA family as 
e.g. OWG, would result into different values.

We have reviewed Yager’s definition of OWA orness and andness based on weight vectors. We have stated that the 
definition coincides with the orness and andness based on volume. As we can define OWA based on quantifiers, there 
is also a definition of OWA orness and andness in terms of a fuzzy quantifier. Formally, the orness of a quantifier V is 
defined as the integral of V . That is,

ωV =
1∫

0

V (x)dx. (3)

For any quantifier V we can compute a weighted vector v for a given number of inputs n. Formally, vi = V (i/n) −
V ((i − 1)/n). It is known [20] that ωV is different to ωv , and that ωv converges to ωV when the number of inputs is 
large enough. For andness-directedness we would prefer to use the orness of the quantifier because it is dimension-
independent. Unfortunately, as we will see in detail in Section 3, when andness deviates from 0.5 the approximation 
is bad for the number of inputs in real applications (around 5 inputs).

2.3. Operators

There are two equivalent generalizations of the OWA to introduce importance weights. One uses two weight vec-
tors: the importance weights (as in the weighted mean) and the logical weights (as in the OWA). Another uses a 
weight vector (which corresponds to the importance weights) and a fuzzy quantifier (which corresponds to the logical 
weights). We introduce the second definition below as it is the easier way to implement andness-directedness. For the 
first definition, see the original papers [15,16] and [17,19] on the strategies to build the quantifier from the weights.

For any arbitrary fuzzy quantifier v̂, importance weights w and input X the Weighted OWA (WOWA) [15,16] (see 
also [20,1] on its properties) is defined as follows:

WOWA(X; v̂,w) =
n∑

i=1

pixσ(i)

where pi = v̂
(∑i

j=1 wσ(j)

)
− v̂

(∑i−1
j=1 wσ(j)

)
. When importance weights are such that w = (1/n, . . . , 1/n), 

WOWA(X; v̂, w) = OWA(X; v̂).
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For pi and v̂ as above, the Weighted Ordered Weighted Geometric mean (WOWG) is:

WOWG(X; v̂,w) =
n∏

i=1

(xσ(i))
pi

WOWA is a soft aggregator while WOWG is hard (i.e., WOWG has annihilator zero while WOWA has not). 
In order to switch from soft to hard annihilators in a smooth way, we introduced in [9] the Generalized WOWA 
(GWOWA). This operator uses an additional parameter −∞ ≤ r ≤ ∞. When r < 0 we have that GWOWA has 
annihilator zero.

Definition 1. Let v̂ be a fuzzy quantifier, let w be a weight vector, let r be a number −∞ ≤ r ≤ ∞, and X be the input 
data. Then,

GWOWA(X; r, v̂,w) =
(

n∑
i=1

pix
r
σ(i)

)1/r

where pi = v̂
(∑i

j=1 wσ(j)

)
− v̂

(∑i−1
j=1 wσ(j)

)
.

3. Andness-directed OWA and WOWA

We have seen that the orness degree of OWA and WOWA (because importance weights are irrelevant when com-
puting andness degrees, see [18]) with any quantifier V can be computed as the integral of the quantifier in the interval 
[0,1]. We have stated that this orness approximates the ones based on volume. In particular, for Qa we get

orness(Qa) =
1∫

0

Qa(x)dx =
1∫

0

xadx = 1

a + 1
.

Therefore, given andness level α, as α = 1 − 1
a+1 , we would select for andness directedness the quantifier Qa with 

a = α/(1 − α).
The use of this expression (or appropriate expressions for the other families of quantifiers) has the advantage that 

we can use the same approach for any number of inputs. Unfortunately, this approximation is not good enough for 
andness-directedness.

If we compare the andness of the quantifier Qa (through Equation (3)) and the volume-andness of the corresponding 
weights (through Equation (2)) we observe that for an andness of 0.9 (i.e., OWA with high andness and no annihilator) 
and four inputs the difference on the quantifiers to be used is significant: a = 4.689655 for volume-based andness, and 
a = 9 for quantifier-based andness. Naturally, the aggregation with Q9 is much more conjunctive and corresponds to 
a volume-based andness equal to 0.9743195. That is, about 10% of andness difference. In order to get an acceptable 
level of convergence (andness similar to 0.9 with Q9) we need more than 40 inputs. More specifically, with 40 inputs 
the quantifier Q9 has volume-andness equal to 0.91.

Similarly, for α = 3/4 and 4 inputs, volume-based andness leads to a = 2.330733 while quantifier-based andness 
leads to a = 3. Then, Q3 with 4 inputs has a volume-based andness of 0.81, and, therefore, is significantly more 
conjunctive. Again, we need at least 40 inputs to obtain an andness of 0.75625.

In contrast, when α = 0.5, the difference among the two approaches does not exist (i.e., α = 0.5 leads to a = 1
in both cases). Nevertheless, the larger the difference of the andness to 0.5, to 0 and to 1, the more difference we 
have in the parameters computed for α. As the number of parameters would be around 4 or 5 in usual applications, 
the difference is too large. Therefore, to avoid this problem, our approach is to compute numerically volume-based 
andness of OWA with the selected quantifier (e.g., Qa) for different values of its parameter (e.g., a). This is described 
in more detail in the next section.

3.1. Volume-based andness for WOWA

In the most general case, volume-based andness can be computed for OWA and WOWA using the integral in 
Equation (1) or, equivalently, using Yager’s expression (Equation (2)). Formally, for each family of fuzzy quantifiers 
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Fig. 2. Andness of OWA with quantifiers Qa (left), Mb (center), Tt (right) in terms of their corresponding parameter (for the case of 4 inputs).

Fig. 3. Aggregation of (0.8, 0.4, 1, 0.6) with importance weights (0.1, 0.2, 0.3, 0.4) and andness level in [0, 1]. Results with the WOWA (left) and 
the WOWG (right) for the families of quantifiers Qa (solid), Mb (dashed) and Tt (dotted).

Vp (where p is the parameter of the family), and number of inputs (i.e., dimension d), we can compute numerically 
its andness using Equation (1). That is, we can compute numerically the following function

α(Vp, d,p) → andness.

We have applied this approach to the families of quantifiers described in Section 2.2 considering different values of 
their parameters and using dimensions d = 2, 3, 4. Fig. 2 illustrates these computations for d = 4.

As andness is monotonic with respect to the parameter for a given family of quantifiers, we can find the appropriate 
parameter of the quantifier for a known number of inputs inverting the function α above. This inversion can be 
approximated numerically. This is a way to compute andness-directed OWA and WOWA. For example, for α = 0.60
and d = 4, we get a = 1.386782, b = 0.5759077, t = 0.4000026.

Once the parameter of the quantifier is known, we can apply WOWA for particular inputs and importance weights. 
We have used this approach to compare the outcome of WOWA with the three different quantifiers when we have 
inputs (0.8, 0.4, 1, 0.6) and importance weights (0.1, 0.2, 0.3, 0.4). We compare these quantities for different andness 
levels. Fig. 3 (left) shows how the outcome changes when andness ranges from 0 to 1, and how different families 
change the output according to this change. We can see that Qa and Tt have a smooth transition between minimum 
and maximum of the inputs. In contrast, Mb seems to have a more optimistic outcome (i.e., near to the maximum) for 
extreme andness and more pessimistic for andness near to 0.5.
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Fig. 4. Andness of WOWG with quantifiers Qa (left), Mb (center), Tt (right) in terms of their corresponding parameter (for the case of 4 inputs).

Table 1
The andness of WOWG(X; Qa) as a function of a when Qa is used.

OWG parameter 
a for xa

Andness a
(2 inputs)

Andness a
(3 inputs)

Andness a
(4 inputs)

Andness a
(5 inputs)

0 0 0 0 0
1/8 0.153 0.157 0.160 0.168
1/6 0.197 0.201 0.204 0.211
1/4 0.275 0.279 0.282 0.288
1/3 0.342 0.345 0.348 0.354
1/2 0.453 0.454 0.455 0.458
1 0.667 0.656 0.651 0.650
2 0.857 0.832 0.820 0.814
3 0.933 0.906 0.892 0.884
4 0.968 0.943 0.929 0.922
5 0.984 0.964 0.952 0.945
6 0.992 0.977 0.966 0.960
7 0.996 0.985 0.976 0.970
8 0.998 0.990 0.982 0.978
9 0.999 0.993 0.987 0.983
10 1.000 0.996 0.990 0.987

Table 2
Parameters of the approximation of a given andness.

Dimension c0 c1 c2 c3 c4 c5 c6

2 1.643314 −3.711097 12.09514 −20.19269 31.963214 −30.209251 17.884807
3 1.131593 −1.385931 6.194830 −7.570473 14.036943 −10.937355 10.241462
4 0.856849 −0.198672 3.425065 −2.354656 8.193988 −4.764077 8.726111
5 0.722306 0.276628 2.407725 −0.265827 5.761950 −1.207052 7.130647

4. Andness-directed OWG and WOWG

We have applied the approach in Section 3.1 to WOWG. Fig. 4 shows the relationship between the parameter of 
fuzzy quantifiers and andness. This figure is similar to Fig. 2 (the case of WOWA) but as WOWG is more conjunctive 
than WOWA we see that for the same parameter andness is larger. This is very clearly observed in the figures corre-
sponding to Tt . Table 1 represents the andness level for different values of the parameter a for Qa and dimensions 
d = 2, 3, 4, 5. Both Fig. 4 and Table 1 represent the functions α(Vp, p, d) that provide the required information for 
andness-directedness.
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Table 3
Values for ad

0 , bd
0 , and td0 .

Dimension ad
0 bd

0 td0

2 3.583 0.09936173 0.202736
3 2.918798 0.1732938 0.1237442
4 2.618764 0.2597381 0.0656089

Table 4
Results of the two benchmarks for the three families of fuzzy 
quantifiers.

α Qa Tt Mb

B-S 0.625 0.6487381 0.6574613 0.6225989
B-H 0.875 0.537288 0.5420654 0.535782

Approximation of the parameter from this function α can be done by linear approximation of the values computed, 
or by any other type of approximation. For the family of quantifiers Qa , the following type of approximation of a
given α can be used.

a = c0α + c1α
2 + c2α

4 + c3α
8 + c4α

16 + c5α
32 + c6α

64

where the parameters ci are given in Table 2.

5. Andness-directed GWOWA

When andness is large and near or equal to one, it is natural to have annihilator zero. This means that any zero in 
the input causes a zero in the output. On the contrary, a low andness is incompatible with mandatory requirements. 
Because of that we need a point from where annihilators apply. Following the discussion in Section 2, one expects to 
use α ≥ αθ = 3/4.

So, for α > 3/4 and α < 1/4 one expects annihilators 0 and 1, respectively, while for α ∈ [1/4, 3/4] one expects 
a soft aggregation. Because of that, we proposed in [9] to use GWOWA (see Definition 1) with a family of fuzzy 
quantifiers that are parameterized so that the operator is soft when andness is in [1/4, 3/4] and turns hard in the 
remaining part of the integral.

This is achieved using GWOWA with a fuzzy quantifier with a parameter that is a function of r . Formally, the 
parameter is a function of both r and the number of inputs d . That is, Vp(r,d). Then, with r → −∞, GWOWA turns 
into the minimum, with r → 0, GWOWA turns into a geometric-like OWA, with r = 1 GWOWA turns into WOWA 
and with r → ∞ GWOWA turns into the maximum. We can proceed in this way with each family of quantifiers 
defining appropriate functions a(r, d) for Qa , b(r, d) for Mb and t (r, d) for Tt . We use the following functions:

• a(r, d; ad
0 ) = (e−r+1)1/ad

0 ,
• b(r, d; bd

0 ) = 0.5 + 0.5 tanh(bd
0 (1 − r)), and

• t (r, d; td0 ) = 0.5 + 0.5 tanh(td0 (r − 1)).

The functions depend on parameters ad
0 , bd

0 , and td0 that are computed numerically so that GWOWA(Qa(r,d)), 
GWOWA(Mb(r,d)), GWOWA(Tt(r,d)) has andness exactly equal to αθ = 3/4 when r = 0. In this way, andness 
equal to 3/4 means to switch from a hard operator to a soft one. Table 3 gives the values of these parameters.

Using these expressions we can compute andness of GWOWA in terms of just r and a given dimension. This is 
given in Fig. 5 for d = 4. This figure is analogous to Fig. 2. Then, we can use the information in this figure to find r
from the andness level.

Table 4 gives the outcomes of the two benchmark problems presented in [9] using the three families of quantifiers 
Qa , Tt and Mb. Both benchmarks use the same four inputs x1 = 0.8, x2 = 0.4, x3 = 1 and x4 = 0.6 and importance 
weights (0.1, 0.2, 0.3, 0.4). Note that these inputs and weights were also used in Fig. 3 to compare WOWA outputs 
with the different families of quantifiers.
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Fig. 5. Andness of GOWA and GWOWA for d = 4 with quantifiers Qa (left), Mb (center), Tt (right) in terms r .

The first benchmark is a soft aggregation with α = 0.625 (row B-S in the table) and the second one a hard aggre-
gation with α = 0.875 (row B-H in the table). Table 4 shows that the minimum output is obtained for both cases with 
the family of quantifiers Mb and that the maximum value is obtained in both cases with the family of quantifiers Tt . 
Difference between outcomes is at most 0.035.

6. Conclusions and future work

In this paper we have shown how to implement andness-directed WOWA, WOWG and GWOWA. To do so, we 
have used different families of fuzzy quantifiers and have shown how they lead to slightly different outputs. As WOWA 
defined in terms of a fuzzy quantifier is equivalent to a Choquet integral with a distorted probability (see e.g. [21]), 
these results are also relevant in the field of non-additive (fuzzy) measures and integrals.

We have considered different families of quantifiers that represent extreme types of weights: Mb is a kind of soft 
median and because of that we strongly weight inputs that are in central positions after ordering (central depends on 
the andness level), in contrast Tt only weights largest and smallest inputs. Finally, Qa tends to weight all inputs in 
more or less degree. A research direction is to consider other types of quantifiers and weights, as the ones in [12].

In our examples, different quantifiers result in similar outputs for the GWOWA. So, given an andness degree, the 
influence of the selected family is minor. Output naturally depends on the inputs, so a research direction is to study 
sets of possible inputs (i.e., distributions on the input space).
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