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Abstract. During concept design of new vehicles, work places, and other complex
artifacts, it is critical to assess positioning of instruments and regulators from the
perspective of the end user. One common way to do these kinds of assessments dur-
ing early product development is by the use of Digital Human Modelling (DHM).
DHM tools are able to produce detailed simulations, including vision. Many of
these tools comprise evaluations of direct vision and some tools are also able to
assess other perceptual features. However, to our knowledge, all DHM tools avail-
able today require manual selection of manikin viewpoint. This can be both cum-
bersome and difficult, and requires that the DHM user possesses detailed knowl-
edge about visual behavior of the workers in the task being modelled. In the present
study, we take the first steps towards an automatic selection of viewpoint through
a computational model of eye-hand coordination. We here report descriptive statis-
tics on visual behavior in a pick-and-place task executed in virtual reality. During
reaching actions, results reveal a very high degree of eye-gaze towards the target
object. Participants look at the target object at least once during basically every
trial, even during a repetitive action. The object remains focused during large pro-
portions of the reaching action, even when participants are forced to move in order
to reach the object. These results are in line with previous research on eye-hand
coordination and suggest that DHM tools should, by default, set the viewpoint to
match the manikin’s grasping location.
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1. Introduction

With the shift towards Industry 4.0 and an increased use of simulation and visualization
software in all design phases, Digital Human Modelling (DHM) has become an important
asset allowing engineers to evaluate ergonomics of new products and workplaces early in
the design phase, long before the first physical prototype is built. While most DHM tools
were primarily developed to evaluate aspects of physical ergonomics, there has recently
been increased interest in modelling various aspects of human cognition [1]. Many DHM
tools today allow modelling of view cones or volumetric projections. These tools are
commonly used to evaluate driver environments by identifying blind spots around the
vehicle [e.g. 2].
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While these tools can effectively determine what is visible, a realistic estimate of
what a DHM manikin sees also requires simulation of where they are looking [3]. Cur-
rently, a manikin’s viewpoint is either manually specified by the designer or the simple
result of other task related movements, e.g. the viewpoint moves forward and down as
the manikin leans forward to reach for an object. However, from research on visual atten-
tion, it is well known that human beings display specific eye-gaze behaviors during daily
activities [4], including reaching actions [5]. As a result, accurate manual specification
of viewpoints for individual tasks is a challenging and potentially impossible process,
but one that can be supported by both designer training and automated software features
grounded in vision research.

In the present work, we take the first steps towards automating selection of view-
point, with the goal of improving the quality of DHM simulation while also reducing the
time and effort needed to create these simulations. Since object manipulation in the form
of reaching and grasping are very common elements of tasks simulated using DHM soft-
ware, the present study investigates eye-gaze behavior in a pick-and-place (PAP) task.
This is done by recording eye-gaze of 10 participants executing a PAP task in a virtual
reality (VR) environment. Collected data is analyzed and validated against existing liter-
ature. Based on these findings we present 4 principles for automatic selection of realistic
viewpoints in DHM software.

The rest of this paper is organized as follows. Previous research on visual attention,
eye-hand coordination, and modelling is presented in Section 2. The procedure for the
experimental study is presented in Section 3, followed by analysis and presentation of
results in Section 4. Finally, the paper concludes with a discussion in Section 5.

2. Background

Our selection of where to look is tightly linked to motions of the rest of our body and
highly consistent between individuals [6, 7]. Visual attention is typically discussed in
terms of overt attention, referring to the act of selecting fixation points, and covert at-
tention, which refers to a psychological shift of focus without moving the eyes. In a
DHM context, we are primarily interested in the former, often not only in eye-motion,
but also in head motion and relevant shifts in posture [7, 8]. Thus, realistic simulation of
overt attention is not only relevant from a cognitive perspective, but may also improve
ergonomic simulations.

Overt visual attention is mostly studied as a response to stimuli in the form of an
image. In this context, bottom-up control of eye-gaze refers to the effect that the image
has on eye motion, while top-down control refers to cognitive influences and task context
[e.g. 9]. In these studies, participants are typically seated in a relatively static position,
though recent advances in eye-tracking allow for more naturalistic participant activity.

Extensive experimental research on eye-hand coordination over the last 40 years has
established a high correlation between eye-gaze and hand position [e.g. 5, 7, 10, 11].
This correlation is proactive in the sense that the eyes specify the target for the upcoming
action. When reaching for an object, we will typically first fixate on that object, and then
the hand follows executing the reach. The eye-gaze will remain fixated on the target until
the reaching action is completed. As soon as the action is finished, the gaze will shift
to the next goal in a highly coordinated fashion [10]. A similar pattern emerges during
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transportation of objects. People first look at the object being grasped, then shift their
gaze towards the goal of the action. During object transport, the gaze typically remains
fixated on the goal location until the release of the object occurs [5]. This proactive re-
lationship between eye-gaze and body motion is likely to stem from simultaneous neu-
ral activity connecting both eye and body, while the temporal relationship is primarily
resulting from differences in inertial properties between eye and body [10].

While this basic proactive eye-gaze pattern appears very stable between individuals,
it is affected by several factors. Johansson et al. [5] demonstrate that participants con-
sistently fixate on obstacles during object manipulation, shifting gaze towards the goal
only after the hand has passed the obstacle. In cases involving sub-tasks or usage of both
hands, earlier gaze transitions may occur in order to visually guide other pending tasks
[12, 13].

The dominant approach to modelling visual attention is Koch and Ullman’s [14]
saliency map method. Models of visual attention is also a big research field in computer
vision, see Borji et al. [15] for a review of 65 different models. The vast majority of these
are bottom-up models, but there are also mixed models that incorporate both bottom-up
and top-down aspects.

Although there is a growing body of literature describing visual attention in more
ecological task related terms (see Hayhoe & Ballard [16] for a review), this approach
to modelling eye-gaze is less developed. Moreover, careful consideration of eye-gaze
in relation to the rest of the body is rare also in this area. One recent initiative was
taken by Abboott et al. [11] who proposed a linear autocorrelation model of eye-body
coordination. While this model is highly relevant for the present work, it requires training
data from real participants executing the task and is thus difficult to apply in a DHM
setting.

3. Method

The present study investigates a PAP task in VR where participants pick up objects lying
on a table and place them in a bin (see Figure 1). Each participant performed 150 trials, in
which a single object appeared on the left side of the table at a random distance between
0.2 and 1.4. meters from the participant’s starting location. The aim of this layout was to
ensure that in some trials the participant was able to pick up the object from the initial
starting position, i.e. direct reach (DR), while other trials required the participant to walk
before reaching for the object, i.e. relocate and reach (RAR).

During the experiment, participants were wearing a HTC Vive Pro Eye VR headset
and two motion trackers (HTC Vive Trackers) placed on the right shoulder and left an-
kle. Participants also held an HTC Vive controller in their right hand. The virtual envi-
ronment and task interactions were developed and run using Unity3D 2019.4 LTS. The
virtual environment was comprised of a sparse office room (see Figure 1) that contained
a table, a bin, and the object to be moved. A physical table of 95x160cm standing at
87cm height was placed in the middle of the lab space and configured to precisely match
the position of its virtual counterpart, allowing participants to touch and lean on the (vir-
tual) table. The bin and objects were solely virtual with the bin located 120cm from the
table. Participants were allowed to move around freely within the open physical space.
The exact position of headset, hand controller, and motion sensors were tracked using
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Figure 1. Example image of the experimental setting in VR and the physical room (overlay). Second author
demonstrating. When participants moved into the red region on the floor, their action was classified as RAR,
otherwise the action was classified as DR, (for analysis only, not visible to participants).

the SteamVR 2.0 tracking system. In order to avoid accidents, the limits of the physical
space were indicated in the virtual environment using the VR system’s built-in boundary
system. The task object was a dark yellow box of size 10x10x20cm and the participant
could see their hand position represented by a virtual version of the hand controller.

3.1. Procedure

A detailed script had been constructed and was followed for each participant in order
to ensure similar treatment. First, written and verbal consent was obtained from each
participant after a brief description of the task expectations. After the consent process a
more detailed explanation of what their task entailed was provided. This included verbal
and visual instructions regarding the use of VR equipment in order to complete the task.
Participants were reminded that they could take breaks or withdraw consent and cease
their participation at any time without having to explain themselves and without losing
any compensation.

An identification number was assigned to ensure data de-identification prior to eye
tracking calibration and the beginning of the task. Upon entering the virtual lab room,
participants were given the instruction “You will be picking up boxes and placing them
into the bin. Some of the boxes might be too far to reach and so you may move around the
table to grasp them”. After all the trials were finished, participants would sit next to the
experimenter and verbally answer a questionnaire regarding the task, demographics, and

E. Billing et al. / Automatic Selection of Viewpoint for Digital Human Modelling64



previous VR experience. Physical measurements of height, arm and leg length were also
recorded. Participants then received a cinema ticket as compensation and were provided
the opportunity to ask study-related questions during the debriefing. The complete pro-
cedure took about 35 minutes out of which approximately 16 minutes were spent within
the virtual environment.

3.2. Participants and Data collection

Data was collected from 12 healthy right handed individuals of age (19 - 29) with full vi-
sion or corrected to full vision. Two participants were excluded as a result of not follow-
ing task instructions and problems with the data collection. The final sample comprised
10 participants with a mean age of 22 years. Four identified as female, 5 as male, and 1
as non binary. All of them were students and all but one had minimal exposure to VR in
daily life.

The position and orientation of headset, hand controller, motion trackers and the ob-
ject were recorded with a temporal resolution of 90 Hz. In addition, eye-gaze vectors,
viewpoint in the virtual environment, and fixated object were recorded with a temporal
resolution of 120 Hz. Eye gaze data was pulled from the the headset through HTC’s
SRanipal plugin2. An eye gaze vector and origin were used along with the headset’s po-
sition and orientation to calculate the participant’s current focus point in the virtual en-
vironment. These values were calculated in real-time in the Unity environment, allow-
ing focus points to be calculated with respect to the first virtual object that the headset
relative eye gaze vector intersected in the scene. SRanipal provides processed eye values
relative to the headset with a delay from eye record to provided data due to processing of
approximately 16.6 ms. As a result, given Unity’s 90hz framerate for the HTC Vive, eye
tracking values have an expected latency of up to 33.2 ms.

The project was submitted for ethical review to the Ethical Review authority of Swe-
den (#2020-00677, Umeå) and was found to not require ethical review under Swedish
legislation (2003:615).

4. Results

For the purpose of analysis, the data from each trial is divided into two phases. The first
phase begins with the appearance of the object on the table and ends with the participant
grasping the object. We refer to this phase as appear-to-grasp (ATG). The second phase
starts with the grasp and ends with the object landing in the bin. This object transport
phase will not be analysed in this paper.

On any given trial participants executed one of two action strategies during the ATG
phase; DR or RAR. Trials where the participant moved such that the left foot was located
at the side of the table during the ATG phase were defined as RAR, otherwise the trial
was labeled as a DR (c.f., Figure 1). Out of 1500 trials in total, 620 trials (41%) were
labeled as RAR.

2HTC’s SRanipal plugin for Unity, https://developer.vive.com/resources/knowledgebase/

vive-sranipal-sdk/
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Table 1. The most frequently observed gaze sequences during the ATG phase.

Action Fixation seq. Frequency Percentage

DR

table → object 444 71%
table → object → table → object 76 12%

table → object → table 57 9%
object 42 6%

RAR

table → object → floor → object 58 9%
table → object → table → object 46 7%

table → object 44 7%
table → floor → object 44 7%

4.1. Fixation points

In order to analyze where people were looking when reaching for objects, a low-pass
filter of 15 frames (8 Hz) was applied to the eye-gaze data. Gaze fixations were identified
and grouped into 6 categories of eye-focus points: hand, object, bin, table, floor, and
surrounding. Surrounding included gazes towards e.g. walls and ceiling. Gazes within a
radius of 15 cm from the center point of the object were labeled as ”object”.

The most frequently observed fixation sequences during ATG are presented in Table
1. In most cases, participants started a trial by looking at the table and thereafter shifting
their gaze to the object once it had appeared. During DR trials, the object typically re-
mains fixated upon until grasp, sometimes combined with a gaze shift to the surrounding
area on the table. The object was fixated at least once during reach in 99% of all DR
trials, and remained fixated during 65% of the reaching phase. These numbers are even
higher if we include the immediate surrounding of the object. 82% of all gazes during
DR landed within 30 cm from the object.

In a small proportion of all DR trials (6%), the ATG phase begins with the partic-
ipant looking at the object’s appearance location. Relevantly, the object initial position
varies randomly along the dimension extending from the participant, but not along the
orthogonal dimensions. Thus, in these cases, it is likely that the participant is looking at
the table in the task relevant region before the ATG phase, and just happens to be looking
in a region that is occluded by the object when it appears.

RAR trials comprise much more variability in fixation sequences but typically in-
volve combinations of the object, table, and the floor. Notably, the four most common
fixation sequences only account for 30% of all trials. Similar to DR, the object was fix-
ated at least once in 99% of all RAR trials, and remained fixated during 47% of the
reaching phase (60% within 30 cm from the object).

As can be seen in Figure 2, the differences between DR and RAR are also visible
in the eye-gaze distribution over the room. While there are fixations around the room in
both conditions, gazes during DR are more tightly grouped along the left side of the table
(where the object appears). As indicated by the sequential analysis presented in Table 1,
the RAR trials frequently (but not always) comprise gaze shifts towards the floor. Here
we can see that these gazes are primarily located within the region where the participant
is about to go, but also include scanning gazes around the room.
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Figure 2. Distribution of eye-gaze during the ATG phase, over the room seen from above. Circle and rectangle
represents the initial location of the participant and the location of the table, respectively. Intensity of red
represents frequency of eye-gaze, scaled logarithmicly to make sparse gaze patterns more visible.

4.2. Temporal dynamics

The analysis presented in the previous section provides insight on where participants
are looking when reaching for objects. This section will target the when. One dominant
pattern observed during both DR and RAR trials was an initial shift of gaze from the
table to the object. In order to analyse when this shift occurs, the time of the first gaze
on the object was calculated relative to action onset. Action onset was here defined as
5% of peak velocity of the right hand, along the X-dimension (forward in relation to the
participant’s starting position). Results are presented in Figure 3.

We are also interested in the temporal coordination between the eye and the hand
motion. In the present task, this is primarily visible in the sideways motion of the par-
ticipant, when reaching for the object. If previous literature stipulating a strong coordi-
nation between eye-gaze and hand motion is correct, we expect to see the hand motion
following the eye-focus point, with a certain delay. Results are presented in Figure 4.
Here we also include the motion of the left foot, which has been less studied in relation
to eye-gaze. Interestingly, results reveal a high correlation between both eye-hand and
hand-ankle, with an approximate delay of about 1.0 s and 0.3 s, respectively.

5. Discussion

In the present work, we have taken the first steps towards a model for automatic selection
of viewpoint. While the present study does not result in a fully developed computational
model, we suggest the following principles for automatic viewpoint selection in DHM
software. These principles are based on the experimental results from the present study
combined with previous literature. Although these formulations do not account for the
full variability in human visual behavior, we hope that they will constitute implementable
formulations of automatic viewpoint selection in DHM tools.
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Figure 3. Timing of eye-gaze on target object and action onset relative to the appearance of the object on the
table.

Figure 4. Sideways motion of the eye-focus point, hand, and ankle during the ATG phase, relative to the
position of the target object. The plot shows mean values from all 10 participants. Envelopes represents the
95% confidence interval of the mean.

1. Eyes on target. This principle is highly dominating during direct reaching behav-
iors when the participant is standing still, and aligns well with previous research
[e.g. 5, 7]. Somewhat surprisingly, this appears to be also valid when participants
relocate, as more than half of all gazes were directed on to the object or in its
near surrounding in RAR trials.

2. Eyes on floor. Similar to previous research [5], we here observe a shorter fixation
on intermediate targets, in this case the floor where participants are about to re-
locate. This intermediate eye-gaze appears to interrupt the otherwise dominating
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principle of looking at the main target for the action.
3. Coordinated onset. As visible in Figure 3, the first eye-gaze on target object ap-

pears to be highly coordinated with the onset of the action. Here, there is a greater
variability in previous literature and there are certainly many situations where
individuals look at targets long before initiating an action. However, our results
align well with the seminal study of Biguer et al. [10], describing eye-gaze, head
motion, and hand motion during reaching as initiated by a single ”neural com-
mand”. Although there may be exceptions, we believe this principle constitutes
a simple and yet realistic approach to the timing between eye-gaze and reaching
actions for DHM tools.

4. Eyes in the lead. Although onset of eye movements appear to be synchronous
with the action, the eye-gaze is leading motion of the rest of the body. This has
been repeatedly expressed in literature, and is also obvious in our data (Figure
4). We believe this constitutes good basis for modelling the relationship between
hand motion and eye-gaze, while recognizing the fact that DHM tool developers
may want to describe eye-gaze as a product of hand movements; the opposite is
likely a more accurate description of the cognitive mechanisms.
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