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analysis of multidimensional data sets
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Abstract
This article presents an empirical user study that compares eight multidimensional projection techniques
for supporting the estimation of the number of clusters, k, embedded in six multidimensional data sets.
The selection of the techniques was based on their intended design, or use, for visually encoding data
structures, that is, neighborhood relations between data points or groups of data points in a data set.
Concretely, we study: the difference between the estimates of k as given by participants when using differ-
ent multidimensional projections; the accuracy of user estimations with respect to the number of labels in
the data sets; the perceived usability of each multidimensional projection; whether user estimates dis-
agree with k values given by a set of cluster quality measures; and whether there is a difference between
experienced and novice users in terms of estimates and perceived usability. The results show that: den-
drograms (from Ward’s hierarchical clustering) are likely to lead to estimates of k that are different from
those given with other multidimensional projections, while Star Coordinates and Radial Visualizations are
likely to lead to similar estimates; t-Stochastic Neighbor Embedding is likely to lead to estimates which
are closer to the number of labels in a data set; cluster quality measures are likely to produce estimates
which are different from those given by users using Ward and t-Stochastic Neighbor Embedding; U-
Matrices and reachability plots will likely have a low perceived usability; and there is no statistically signif-
icant difference between the answers of experienced and novice users. Moreover, as data dimensionality
increases, cluster quality measures are likely to produce estimates which are different from those per-
ceived by users using any of the assessed multidimensional projections. It is also apparent that the inher-
ent complexity of a data set, as well as the capability of each visual technique to disclose such complexity,
has an influence on the perceived usability.
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Introduction

Visualizing the structure of a data set can be seen as

an initial step toward gaining an understanding of the

problem space represented by the data itself. Such an

understanding can form the basis for subsequent ana-

lytical decisions, especially during exploratory data

analysis1 (EDA). Formally, data structure can be

defined as ‘‘geometric relationships among subsets of

the data vectors in the L-space,’’2 where L is the
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dimensionality of a data set. Following this definition,

a technique which visually encodes neighborhood rela-

tions between data points is the one which visually

represents data structure. Such type of visual tech-

niques commonly discloses cluster patterns and,

hence, the naturally occurring number of k clusters in

a data set. We regard these techniques as multidimen-

sional projections (MDPs).

The concept of MDPs is commonly used in the

context of dimensionality reduction (DR) and scatter

plots. Here, for simplicity purposes, we extend its

meaning to include any technique which visually

encodes neighborhood relationships.

There are a variety of MDPs which can provide a

two-dimensional (2D) visual representation of a data

set’s structure. Scatter plots and scatter plot matrices

are common examples for visually encoding data sets

with dimensionalities between two and twelve.3 For

higher dimensional data sets, MDPs may rely on two

types of unsupervised, machine learning (ML) tech-

niques: DR and clustering. Both take a multidimen-

sional data as input, and may produce an output which

can later be plotted using a visual encoder (VE, also

used for visual encoding), for example, scatter plots or

dendrograms.

DR techniques project data from a multidimen-

sional space onto a 2D or three-dimensional (3D)

plane, enabling, thus, the use of common VEs (e.g.

scatter plots or scatter plot matrices). Examples of

these techniques—and which are of interest to this

study—are Radial Visualizations (RadViz),4 Star

Coordinates (SC),5 Principal Component Analysis

(PCA),6 and t-Stochastic Neighbor Embedding (t-

SNE).7

Clustering techniques, however, produce groupings

and relations which can later be used to represent data

structure. Examples of these—and also the ones of

interest to this study—are hierarchical clustering (HC)

methods (e.g. Ward),8 ordering points to identify the

clustering structure (OPTICS) density-based cluster-

ing,9 Self-Organizing Maps (SOM),10 and the

Growing Neural Gas (GNG).11 Their produced

groupings and relations can, respectively, be visually

encoded using dendrograms, reachability plots (RPs),

unified distance matrices (U-Matrices),12 and force-

directed graphs (FDGs).

The previously mentioned MDPs provide a user-

driven approach to estimating the number of k in a

data set. An alternative, automated approach is the

use of clustering quality measures (CQMs, such as the

Silhouette or the Duda index) for assessing the quality

of k centroids, as given by some clustering methods

(CMs, such as Ward and k-means). CQMs may be

seen as the users’ counterpart as estimators of k, while

CMs as MDPs’ counterpart as constructors of a data

set’s structure representation. The NbClust library for

R13 provides an easy-to-deploy implementation of a

set of CQMs and CMs for estimating k.

Within this context, we investigate the effects the

aforementioned MDPs have on user-driven estima-

tions of k, their perceived usability for the task of esti-

mating k, and whether they lead to an implicit

agreement with the estimates given by NbClust.

Hence, we aim to complement the studies presented

by Sedlmair et al.,14 Lewis et al.,15 and Etemadpour

et al.16 on the use of DR techniques for the visual

analysis of multidimensional data. To these studies, we

add a new selection of MDPs, in combination with

clustering-based methods, presenting, as well, a com-

parison between user-perceived clusters and auto-

mated clustering estimated methods. More

specifically, we address two main groups of research

questions:

MDPs versus MDPs

Q1.a: Are there differences between the estimates of k

when using different MDPs?

Q1.b: Will some MDPs lead to estimates which are

closer to the number of classes in a data set?

Q1.c: Are some MDPs perceived as more usable than

others for estimating k?

MDPs versus CQMs

Q2.a: Are there differences between the estimates

given with MDPs and those given by NbClust?

Q2.b: Does NbClust provide estimates closer to the

number of classes in a data set than users do with

MDPs?

In order to answer these questions, we designed

and carried out an empirical study where 41 partici-

pants were asked to estimate the number of clusters in

a VE, as produced by eight MDPs, when applied to

six real-world data sets. In addition, participants were

requested to rank the usability of each plot, based on

the following three aspects: confidence (how confident

did a participant feel when given an estimate to the

number of clusters), intuitiveness (how intuitive did

the participant find estimating the number of clusters),

and difficulty (how difficult was the task of estimating

the number of clusters). To assess the second set of

questions, we used 24 out of the 30 CQMs provided

by the NbClust R library. These were applied on four

CMs: single linkage, complete and Ward HC, and k-

means.
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In addition to these two sets of questions, and to

further complement the work of Lewis et al.,15 we

investigated the effects of user experience in the esti-

mation of k. Concretely:

Q3.a: Are there differences between the estimates

given by experienced and novice users?

Q3.b: Are there differences between the perceived

usability of the MDPs?

Each MDP was assessed based on their static VE,

as given by their default implementations and para-

meters. In that sense, we do not account for user inter-

actions. The reason is that, in spite of any explicit

designs for having user involvement (as in the case of

RadViz and SC), all techniques require some para-

meter setting (even implicitly when using default val-

ues). This is a limitation of the study which is enforced

both by the complexity of the problem space (provided

by all possible parameter settings) and by the required

number of experienced users (provided they needed to

set those parameters). Even if based on default VE

‘‘snapshots,’’ we argue that the results from the evalua-

tion still provide useful insight into the effectiveness

and usability of each technique. Moreover, the results

presented support users in the selection of MDPs for

estimating k clusters in a multidimensional data set, an

input parameter often required by other clustering

analysis methods.

Organization of the article. Section ‘‘Background’’ is

dedicated to reviewing and presenting the techniques

compared in this study, while section ‘‘Related work’’

is dedicated to summarizing similar works. The evalua-

tion methodology and metrics used in the study are

described in section ‘‘Experimental methodology.’’ The

results are presented in section ‘‘Results and analysis’’

and discussed in section ‘‘Discussion.’’ We finish this

article with a summary of the lessons learned and some

concluding remarks in section ‘‘Conclusion.’’

Background

This section presents a summary of the MDPs

assessed during the empirical evaluation, as well as a

brief description of NbClust, which is the R library

used as the automated approach for estimating k.

MDPs

An MDP, for the purposes of this study, is regarded as

the combination of an ML algorithm and a VE. From

a technical point of view, the former computes the

neighborhood relations, whereas the latter makes a

visual representation of them. The projection of a mul-

tidimensional data set onto a 2D plane cannot occur

without either.

Figure 1 provides an overview framework of the

characteristics of the MDPs of interest, that is, the

independent variables of the study.

DR. DR techniques are often divided into linear and

non-linear. In this study, we account for two linear

(SC and PCA) and two non-linear (RadViz and t-

SNE) techniques. SC and RadViz are commonly

regarded as visualization techniques and not as DR

techniques. These, however, can be seen as such if

their visual encoding (i.e. scaling and applying visual

cues on Cartesian coordinates) is omitted—thus leav-

ing only their 2D mappings (as latter described in this

section). It may be argued that using either technique

for the sole purpose of DR is unreasonable and, thus,

not proper to label them under such category.

However, we argue that such would also be the case of

t-SNE, since its behavior as a general DR technique is

uncertain,17 and which is why it was presented by its

authors as a visualization technique.

SC. The SC plot, proposed by Kandogan,5 places in a

radial manner as many axes as features there are in the

data set. Each axis is represented by a 2D unit vector

Vn =(x, y), where n is the number of features.

Placement of a data point is then given by scaling each

of its feature values by x and y of the corresponding

vector, and by adding all scaled values. The result is a

list of 2D vectors, where each is a projection of a mul-

tidimensional data point onto a 2D plane. SC imple-

mentations usually enable user interaction for

shrinking or enlarging the unit vectors, so as to give

(or demote) relevance to a given feature.

PCA. PCA6 reduces the features in a data set to a fixed

(user given) number of principal components. The

number of features is not only reduced but also sorted

according to how informative they are, that is, by their

variance. The intuition behind PCA is that correlated

features are ‘‘merged,’’ while uncorrelated ones are

kept separate. Reducing the number of features to two

components enables the use of traditional scatter plots

as well. PCA can also be used as a preprocessing tech-

nique, where the number of features is not necessarily

reduced to two but more principal components.

RadViz. RadViz is a technique presented by Hoffman

et al.4 for visualizing DNA sequences. The solution

places ‘‘anchor’’ points in the perimeter of a circle,

where each anchor represents a feature of the data set
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(similar to SC). Data points are then arranged within

the circle by attaching ‘‘springs’’ that pull with differ-

ent forces from each anchor. The final position of each

point is then given by the springs where the force is

equal to zero. RadViz has the advantage of showing

which feature in the data set contributes the most to

the position of a data point, hence, to the cluster for-

mations. Its effectiveness is, however, limited to a

number of features.

t-distributed SNE. t-SNE7 is a state-of-the-art DR

technique for data visualization. The technique uses

random walks on neighborhood graphs in order to

capture both the local and global structure. The intui-

tion is that neighborhood probabilities are constructed

for each data point in the original multidimensional

space, and then replicated (approximately) in a low-

dimensional space. Unlike PCA, its performance is

uncertain when applied as general DR technique, that

is, when used to project to a number of dimensions

greater than three.7 The original t-SNE is computa-

tionally expensive, yet recent work has proposed means

to accelerate it, for example, see Van Der Maaten17

and Pezzotti et al.18

The common VE for DR techniques is 2D or 3D

scatter plots, or scatter plot matrices. All of these

appeal to the Gestalt proximity visual perception prin-

ciple, which states that elements close together tend to

be grouped and perceived as similar.19

Other well-known, non-linear DR techniques are

Landmark Multidimensional Scaling (L_MDS), LSP

(Least Square Projection), Isomap, and LLE (Local

Linear Embedding). Isomap20 and LLE21 make use of

graphs to capture neighborhood relations. The former

looks at preserving global relationships, whereas the

latter the local ones, that is, that of nearby data points.

L-MDS22 and LSP,23 however, are the techniques

which make use of landmarks in order to make faster

projections, as well as to enable the projection of out-

of-core data points, that is, new data points which were

not part of the training data set.

Clustering. This type of MDPs relies on algorithms

that group data points together based on a given criter-

ion. Clustering algorithms can be classified in different

ways, here we chose Fahad et al.’s:24 partitioning-

based, hierarchy-based, density-based, grid-based, and

model-based. In this section, we give a description of

the MDPs related to this study, and refer the reader to

Fahad et al. for more details on each classification

type.

Not all clustering algorithms, however, such as k-

means, produce an output that can be used for visually

encoding data structure. The ones hereby presented

do provide such means.

Ward. HC represents a category of methods where

data points are partitioned and arranged in a

Figure 1. Overview framework of the multidimensional projection techniques used in the empirical study. The ML area
represents machine learning techniques categorized as dimensionality reduction (DR) and clustering. The VE area
corresponds to the visual encodings that were applied to each ML output.
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hierarchical manner. In the initial state of an HC algo-

rithm, each data point is its own cluster. As the algo-

rithm advances, each cluster is connected or merged

with others until all data points belong to a single clus-

ter. The merging criteria are set by a CM, for example,

single linkage, complete, and Ward. In single linkage,

for example, the criterion is based on the distance (e.g.

Euclidean) between the two closest data points of two

clusters. In Ward, however, the criterion is based on

cluster variance. More detailed descriptions of these

are given by Charrad et al.13

HC algorithms produce a tree-like structure which

can be visually encoded using dendrograms. This VE

depicts data points at the bottom of the plot and then

joins them with lines at different levels or heights. The

height at which each joint takes place represents the

distance measure used in the merging process.

Perceiving groups in dendrograms can be related to

the Gestalt principle of element connectedness, where

pieces/elements connected together are perceived as

part of the same object.

Optics. Developed by Ankerst et al.,9 OPTICS is a

density-based clustering algorithm. The algorithm has

a similar logic to that of HC algorithms in the sense

that data points are brought together one by one.

Clusters are initially formed by finding a set of core

data points, that is, points with at least a given number

of neighboring points falling within a fixed radius.

Other data points are then grouped with a core point

if they fall within a distance threshold around it, or

around any other previously grouped point. A key

characteristic of OPTICS is that data points are sorted

in a way that can later be visually encoded using RPs.

In this VE, the formed valleys can be seen as clusters,

valleys within valleys as clusters within clusters, and

peaks as outliers. Perceiving groups in RPs can be

related to the common region Gestalt principle, where

‘‘elements that lie within the same bounded area (or

region)’’ tend to be ‘‘grouped together;’’19 bounded

areas, in the case of RPs, are represented by the hills

or peaks.

SOM. Proposed by Kohonen,10 SOM is a topology

preserving neural network. The algorithm takes a set

of n-dimensional training vectors as input and clusters

them into a smaller set of n-dimensional nodes, also

known as model vectors. These model vectors tend to

move toward regions with a high training data density,

and the final nodes are found by minimizing the dis-

tance between the training data and the model vectors.

The output from an SOM can be visually encoded

using a U-Matrix, which is a 2D arrangement of

mono-colored hexabins (as proposed by Ultsch).12

The opacity color of each bin is then varied based on a

distance value between model vectors: the more opa-

que, the higher the distance, and vice versa. White

regions in a U-Matrix can be interpreted as clouds of

data points, whereas the dark regions as empty spaces.

Perception of groups in U-Matrices can also be related

to the common region principle, where boundaries are

represented by the shifts in opacity.

GNG. GNG is described as an incremental neural net-

work that learns topologies.11 It is similar to SOM in

the sense that the learning output is a network of

nodes (units), and connections between nodes, as a

representation of the data space. Unlike SOM, the

algorithm starts with a two unit/node network, which

grows and adapts to the data space as new data points

are given. Growth is given in terms of units, and adap-

tation in terms of connections and units’ locations in

the multidimensional space. Growth can be indefinite

(bound only by the number of iterations) unless a limit

is given. The topology built by the GNG can be

visually encoded in a 2D plot using force-directed pla-

cement (FDG) or any other graph layout technique,

as shown by Ventocilla and Riveiro.25 Perception of

groups in FDGs can be associated with the Gestalt

principles of proximity and element connectedness. The

latter is obvious since nodes are linked together by

edges. Proximity, however, can be enforced, to an

extent, by applying constraints on the lengths of the

edges; this way, nodes close together may also be per-

ceived as groups within connected networks.

CQMs and NbClust

Estimating the number of clusters k in a multidimen-

sional data set is normally a challenge, and there are

automated CQMs such as the Silhouette or the Duda

index for doing so. One library that can be used for

predicting k is NbClust. Developed by Charrad

et al.,13 NbClust is an R library that facilitates comput-

ing estimates of k using 30 different CQMs, through

the call of a single function. The function only requires

the data set for which the estimates are to be com-

puted. It also allows defining the distance measure

(e.g. Euclidean and Manhattan), the CM (e.g. com-

plete and Ward), the minimum and maximum number

of k centroids to try, and the CQM with which to

assess the learned centroids. To further simplify its

use, the authors made it possible to specify ‘‘all,’’ or

‘‘alllong,’’ for the CM parameter in order to assess the

centroids using all CQMs—‘‘alllong’’ computes all

CQMs, including four which are computationally

expensive (Gamma, Tau, Gap, and Gplus), while ‘‘all’’
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only applies the other 26. Further details about each

CQM and CM can be found in Charrad et al.13

Due to the easy-to-deploy format of NbClust, we

selected this platform for answering the second set of

research questions (Q2) addressed in the study, which

derived from a more general one: does user estimates

of k implicitly agree with the estimates given by

NbClust? We assessed these questions solely in terms

of the k estimates, thus relying on the following

assumption: estimating the same number for k means

seeing the same clusters; this is further addressed in

section ‘‘Discussion.’’

Related work

Empirical studies

Sedlmair et al.14 presented a four-category taxonomy

of visual cluster separation factors in scatter plots

(scale, point distance, shape, and position), which can

be used to guide the design and the evaluation of clus-

ter separation measures. The taxonomy was a product

of an in-depth qualitative evaluation using a broad col-

lection of high-dimensional data sets, using only multi-

dimensional scaling techniques. Their method, as in

our case, assumed data sets to have a representative

class structure, so as to use as ground truth. In addi-

tion to the taxonomy, they found that two cluster

separation measures failed to produce reliable results.

Our study also accounts for similar measures, and the

results are closely aligned to their findings, that is,

there are often mismatches between what a quality

measure proposes as a good k, and what users perceive.

Sedlmair et al.26 carried out a study on the use of

scatter plots, in particular, 2D scatter plots and inter-

active 3D scatter plots, to support cluster separation

tasks in high-dimensional data through an empirical

study. Their results show that 2D scatter plots are

often good enough and that their interactive 3D var-

iant did not add notable additional support. These

findings further contribute to justifying the design

rationale of our study, concretely, to the use of 2D

visual encodings.

Parallel coordinates plots (PCPs) for supporting

cluster identification are investigated through user

studies by Holten and van Wijk27 and Kanjanabose

et al.28 Holten and van Wijk27 performed a user study

to evaluate cluster identification performance w.r.t.

response time and correctness of nine PCP variations,

including standard PCPs and other novel variations

proposed by the authors. The authors highlight that a

fair number of the seemingly valid improvements pro-

posed (with the exception of scatter plots embedded

into PCPs) did not result in significant performance

gains. Kanjanabose et al.28 compared the use of data

tables, scatter plots, and PCPs for supporting value

retrieval, clustering, outlier detection, and change

detection tasks. Their results show that data tables are

better suited for the value retrieval task, while PCPs

generally outperform the two other visual representa-

tions in three other tasks.

Projection methods for multidimensional data were

perceptually evaluated by Etemadpour et al.16,29

Etemadpour et al.29 selected and compared four tech-

niques as representatives of three distinct strategies for

embedding data in two dimensions (PCA, Isomap,

LSP, Glimmer, and Neighbor Joining (NJ) tree).

Their results showed that the density and the shape of

clusters significantly affected the perception during a

visual inspection leading to bias; however, cluster

size and orientation did not affect the interpretation

significantly. This study was complemented with

investigations using various analysis tasks (pattern

identification, behavior pattern comparison, and

relation-seeking) in Etemadpour et al.16 The authors

confirmed that no projection technique is capable of

performing equally well on the different types of

tasks and performance is dependent on data charac-

teristics, especially in tasks that require distance

interpretation.

In order to investigate the characteristics of the tasks

that analysts engage in when visually analyzing dimen-

sionally reduced data, Brehmer et al.30 interviewed 10

data analysts from various application domains. They

characterize five task sequences: synthesized dimen-

sions, mapping a synthesized dimension to original

dimensions, verifying clusters, naming clusters, and

matching clusters and classes. These task sequences

can be used in the design and analysis of future tech-

niques and tools for data analysis, and have been used

in the design of our study as well when specifying the

clustering tasks.

Lewis et al.15 compared formal CQMs with human

evaluations of clustering. Their results show that some

CQMs with seemingly natural mathematical formula-

tions yield evaluations that disagree with human per-

ception, while some CQMs such as Calinski–Harabasz

measure and Silhouette have a significant correlation

with human evaluations.

Reviews

There are several reviews that describe and compare

DR techniques, for example, Van der Maaten et al.,31

Tsai,32 and Sacha et al.33 The exhaustive review on

MDPs for visual analysis presented by Nonato and

Aupetit34 provides a detailed analysis and categoriza-

tions of the MDPs according to various parameters

elaborating on the impact of their properties for visual

perception and other human factors. Nonato and
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Aupetit34 also presented a user evaluation investigating

the impact of the distortions produced by these tech-

niques when analyzing multidimensional data, fol-

lowed by guidelines for choosing the best technique

for an intended task. A complementary perspective is

given by Espadoto et al.,35 where a large number of

DR techniques are assessed in terms of different quan-

titative quality metrics.

Comparisons

Other existing works compare DR and visualization

methods using various measures and metrics (but no

user studies were carried out). Rubio-Sánchez et al.36

compared two of the most popular projection-based

visualization techniques that arrange features in radial

layouts—RadViz and SC. After studying how the non-

linear normalization used in RadViz affects exploratory

analysis tasks (as detecting outliers), the recommenda-

tion of the authors36 is that analysts and researchers

should carefully consider whether RadViz’s normaliza-

tion step is beneficial regarding the analysis tasks and

characteristics of the data. One of the drawbacks of

RadViz is, for example, that it can introduce non-linear

distortions. Garcı́a-Fernández et al.37 presented a

study of the stability, robustness, and performance of

selected unsupervised DR methods with respect to var-

iations in algorithm and data parameters and, in par-

ticular, they compared visualizations based on the use

of PCA, Isomap, Laplacian Eigenmaps (LE), LLE,

Stochastic Neighbor Embedding (SNE), and t-SNE.

The results presented show that the local methods ana-

lyzed, LE and LLE (which retain the local structure of

the data) are more likely to be influenced by small

changes in both data and parameter variations, and

they tend to provide cluttered visualizations, whereas

data points in t-SNE, Isomap, and PCA are more scat-

tered. t-SNE, due to the nature of its gradient, tends to

form small clusters. The authors also highlight that

when the visualization of the whole data set is required,

graph-based techniques are not recommended, as the

construction of the graph can lead to not fully con-

nected graphs and so not all points will be embedded;

however, PCA, t-SNE, and SNE are not affected by

this problem. Of these, t-SNE and SNE present a bet-

ter quality of the visualization, particularly when work-

ing with non-linear manifolds.37

After introducing t-SNE, van der Maaten and

Hinton7 compared t-SNE to other non-parametric

techniques for DR, in particular, Sammon mapping,

Isomap, and LLE (t-SNE is compared to other tech-

niques, up to seven, in their supplementary material).

The authors demonstrate through various experiments

that t-SNE outperforms the other techniques, but

discuss three weakness of this method: (1) unclear

how t-SNE performs on general DR tasks, (2) the rel-

atively local nature of t-SNE makes it sensitive to the

curse of the intrinsic dimensionality of the data, and

(3) t-SNE is not guaranteed to converge to a global

optimum of the cost function.7

In summary, our study complements the works of

Sedlmair et al.,14 Lewis et al.,15 and Etemadpour

et al.16,29 by the following:

� Studying the agreement between estimates of k

given by users when using different MDPs, as well

as the accuracy of such estimates.
� Comparing the agreement between human and

machine (CQM) estimates of k in an indirect man-

ner, that is, by comparing distributions instead of

asking users whether they agreed or not with

CQM estimates.
� Studying different data sets and MDPs—including

those which are cluster-based—as well as a larger

set of CQMs.
� Comparing MDPs in terms of usability.
� Studying the impact of user experience in estimat-

ing k, when using either DR-based or cluster-based

MDPs.

Experimental methodology

This section elaborates on the participants, the config-

uration of the study, visual cues, and the used data

sets.

Participants

Forty-one participants took part in the study, 31 male

and 10 female, with ages between 22 and 60 years.

Their background varied between informatics, com-

puter science, engineering, physics, data science,

bioinformatics, cognitive science, cybersecurity, and

game research. We asked about their years of experi-

ence analyzing data, that is, using any type of data and

tool (e.g. Excel, Python, and SPSS) to draw conclu-

sions. Seven had no previous experience, seven had

1 year or less, 10 had 2–3 years, and the rest 17 had 4

or more years. The only precondition to participate in

the study was to be aware of the concept of clusters

within the context of data analysis. All participants

had normal or corrected normal vision.

Procedure

The procedure of the study was as follows: (a) an

introduction to the study, (b) personal information,

(c) general task description, (d) main tasks and ques-

tions, and (e) wrap-up questions. This was all given as

a questionnaire in printed copies.
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In (a) participants were given a general description

of what was expected of them, that is, to identify clusters

(groups of data points in a data set) as you perceive them

through different visual techniques. Here was also stated

that there were no right or wrong answers, and that

they were to answer based on their own perception

and intuition. Personal information (b) covered gen-

der, age, field of study, years analyzing data (i.e. using

any type of data and tool to draw conclusions), and

whether they were aware of the concept of clusters.

The questionnaire was anonymous, and no other per-

sonal information was gathered.

Further introduction to the task was given in (c),

where it was explained that different plots were shown

in the following pages of the questionnaire, that for

each a number of clusters was to be estimated, and

that three subjective questions were to be answered:

� How confident do you feel about your estimation of

the number of clusters?
� How intuitive did you find the plot in order to esti-

mate the number of clusters?
� How difficult was it to give the estimated number of

clusters?

Figure 2 shows an example of how the main tasks

were given in (d). The description of the tasks varied

depending on the type of VE. For those using the scatter

plots (i.e. PCA, t-SNE, RadViz, and SC), the task was to

‘‘Circle groups of points.’’ For RP, the task was to ‘‘Surround

valleys with a circle;’’ for HC to ‘‘‘Cut’ the tree with one hori-

zontal line, at a height you find reasonable. Each branch cut

by the line is cluster;’’ for SOM to ‘‘Circle the clouds (white

areas);’’ and for GNG to ‘‘Circle groups of nodes.’’

The number of clusters to estimate was limited to a

range between 2 and 20. The purpose was to prevent

participants from looking for too fine-grained clusters

(i.e. indefinitely larger than 20)—therefore reducing

the uncertainty of the task—and to emulate ML-driven

clustering where k given to an algorithm is always

larger than 1. The subjective questions were to be

answered in a 1–5 Likert-type scale (1 = low confi-

dence, low intuition, and low difficulty; 5 = high confi-

dence, high intuition, and high difficulty).

To provide a further understanding of the less com-

mon techniques (i.e. HC, RP, SOM, and GNG), the

following descriptions were also given:

� RP: in RPs, valleys are clusters and peaks are data

points far from their cluster center. Valleys within val-

leys are clusters within clusters.
� Dendrogram: the root of the tree (top) represents

the whole data set, and the leaves (bottom) each data

point. Branches (lines) connect data points, and groups

of data points, based on some similarity. Leaves in a

branch can be seen as a cluster. The longer the branch,

the more distant its leaves from the leaves of other

branches.
� U-Matrix: in a U-Matrix, white areas are like

‘‘clouds’’ of data points, whereas darker areas are

empty spaces. Clouds can be seen as clusters.
� Graphs: each circle/node represents a set of data points;

the bigger the node, the more data points it represents.

Connected neighboring nodes are somewhat similar.

Networks and nodes cramped within a network can be

seen as clusters.

Three plots were laid out per page. Plots belonging

to a visual technique (e.g. PCA) were placed subse-

quently on both sides of a paper (one plot per data set,

three plots per page, six per paper). Their order was

randomized within each paper, and each paper was

Figure 2. Case example where participants had to estimate the number of clusters by marking them in the plot, and
then answer three subjective questions about the task: confidence, difficulty, and intuitiveness.
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randomized per participant. The study had a within-

subjects design.

Finally, in (e), the questionnaire concluded with

‘‘which type(s) of plot(s) did you find less intuitive (not

easy to understand) for estimating the number of clusters?’’

and, in a ‘‘general comments’’ box, the participants

were welcome to write their final impressions/

comments.

No limit of time was given. Participants could take

the questionnaires with them and answer when and

wherever they could. This may be seen as a limitation

to the study, since context variables (e.g. noise and

company) may have an impact on the responses. Such

variability was sought to be diminished through cor-

rected statistical inference (i.e. Holm–Bonferroni).

Data sets

Six data sets were used—four from the UCI ML repo-

sitory38 and two from projects within our institution.

The data sets from UCI were Iris, Abalone, Breast

Cancer Wisconsin (Diagnostic), and Isolet. One of

our project data sets, regarded as Expressions, was

about facial expressions and heart rate of a participant

while playing games. The second data set, Weather,

contains 7 years of aggregated weather data from a

specific region in Sweden; this data set is used to pre-

dict certain condition associated with wheat in a farm-

ing project. All data sets came in table-like format (i.e.

CSV), with ratio values only, with the exception of the

labels, so that Euclidean distances are meaningful.

Table 1 shows all six data sets, sorted by the number

of features from left to right, plotted using each of the

eight MDPs. Four of the data sets contain labels: three

in Iris; two in Breast cancer; seven in Weather; and 28

in Isolet. For the purposes of this study, it is assumed

that the features and values of the data sets are infor-

mative enough to represent, and distinguish, the mem-

bers (data points) associated with each label.

Criteria. Selecting representative data sets for these

types of studies is challenging mainly because there

are no properties that reflect the inherent cluster pat-

terns of a multidimensional data set—size and dimen-

sionality are arguably not enough. Sedlmair et al.’s14

cluster separation factors represent a strong contribu-

tion in this direction. These, however, are dependent

on the users’ visual perception and, therefore, on the

layouts produced by MDPs themselves. This means

that one would have to project data sets using some

MDP before defining the cluster separation factors

that apply to each of the data sets. In spite of these

limitations, we relied on their work while accounting

for other variables.

Our selection of the data sets was driven by the fol-

lowing criteria: real-life data sets with a commonly

used format and value types in ML; accessible and fre-

quently used; varied in size, dimensionality, and the

number of labels; resulting in varied visual patterns

(i.e. in terms of Sedlmair et al.’s clumpiness and shape

factors); and, finally, suited for the selected set of

MDPs.

From the UCI repository (publicly accessible with

real-life data sets), we filtered by:

� Format type matrix (table-like, e.g. CSV), which is

a commonly used format in the ML community.
� Data type multivariate, and attribute type real and

integer; and categorical as long as it was only for

labels.
� The number of attributes greater than three (i.e.

multidimensional data sets).
� The number of instances greater than the number

of attributes, and lower than 65,536, which is the

limit of instances handled by the hclust method in

R.
� Used for the task of classification and clustering.

The search resulted in 58 data sets. These were fur-

ther filtered by non-image related, and then sorted by

number of hits in order to account for relevance. Iris,

Breast cancer, and Abalone were in the top 5. From

this point, we sought for variety in terms of number of

attributes, size (instances), labels, and cluster patterns.

Iris and Breast cancer had different number attributes,

instances, and labels, and also resulted in different

cluster patterns when applying the different MDPs.

Subsequently, other data sets were filtered out to avoid

similar properties to these two. Abalone was then

selected for having different number of attributes and

instances than Iris and Breast cancer, but especially

for its cluster pattern (such Gaussian-like patterns are

common in the Biology domain, particularly in rela-

tion to RNA transcripts, e.g., the E-MTAB 5367 tran-

scriptomics data set from ArrayExpress). Finally,

Isolet provided the next set of distinctive characteris-

tics, especially in terms of number of labels and cluster

patterns.

Parameters and visual cues

All ML techniques were deployed using the default

parameters as given by the libraries used, with the

exception of SOM and GNG, which had their number

of units set/limited to a 100.

PCA and t-SNE were deployed using the Python

library, scikit-learn. Their resulting 2D projections

were then plotted using Matplotlib scatter plots.

RadViz was computed using the Pandas visualization
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library; Ward (HC), RP, and SOM were computed

using R. Ward was performed using the hclust

method, with Euclidean distance and Ward.D2 as

merging method. RP was deployed using the dbscan

library; and SOM using the kohonen library with a

hexagonal grid of 10 times 10 for all data sets. GNG

was computed and visually encoded using

VisualGNG.25 SC was implemented by one of the

authors based on the specification given by

Kandogan.5

Table 1. The different plots evaluated in the study. MDPs (y-axis) applied to six data sets (x-axis, sorted by the number of
features). The size, dimensionality, and number of labels are given for each data set.

Iris

RadViz

SC

PCA

t-SNE

Ward

RP

SOM

Expressions Abalone Breast cancer Weather Isolet

RadViz: Radial Visualizations; SC: Star Coordinates; PCA: Principal Component Analysis; RP: reachability plots; SOM: Self-Organizing
Maps; GNG: Growing Neural Gas.
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All VEs were customized to have gray-scale colors.

The opacity of the data points in scatter plots, and

nodes in FDGs, was reduced to 30% (a = .3); the size

of the circles was set to 15 points (as given by the

Matplotlib Python library), except in the case of

VisualGNG where nodes’ size varied based on the

number of data points represented by their corre-

sponding unit. Finally, all axis cues were removed.

These were considered unnecessary for the task since

users were unaware of the data sets used.

Results and analysis

Transcription and preprocessing

For consistency, all the answers to the questionnaires

were transcribed manually by one of the authors.

Not in all cases did participants complied to the

tasks as expected. Some participants, for some plots,

did not give an estimate of k within the 2–20

boundary—some gave lower estimations (e.g. RadViz/

Isolet) or higher estimations (e.g. t-SNE/Isolet). These

answers were kept as given by the participants.

Moreover, 41 out of 1969 subjective questions were

left unanswered. For these cases, we imputed the most

frequent ranking given by the rest of the participants

for the corresponding Multidimensional scaling

(MDS) and data set. Finally, when performing SOM-

related tasks, six participants marked dark areas

instead of the white ones. Here, similarly to the previ-

ous case, we imputed the most frequent estimated k as

given for SOM and the corresponding data set.

Answers to subjective questions—confidence, intui-

tiveness, and difficulty—were summed and scaled

between zero and one (the value for difficulty was

inverted)

sspvx =
1

12
cpvx + ipvx � dpvx + 3
� �

ð1Þ

where c represents the confidence, i the intuitiveness,

and d the difficulty, as given by participant p, for

MDP v on data set x. We refer to the resulting value

as subjective score—where values closer to 1 are best.

Similarly, a distance score was computed based on the

normalized absolute distance between an estimated k

and the number of labels in a data set

epvx =
kpvx � yx

�� ��

yx

, dspvx = 1� epvx

max exð Þ
ð2Þ

where kpvx is the estimated number of clusters given by

participant p for MDP v on data set x, and yx is the

number of labels in data set x. The values were then

scaled (between 0 and 1) and inverted (so that higher

values also represent a ‘‘better’’ estimation, i.e. closer

to the number of labels in a data set). The distance

score was only calculated for labeled data sets and were

also computed for the NbClust estimates.

Histograms are provided in the supplementary

material for participants’ estimates, usability ratings,

and NbClust estimates.

Statistical analysis

The statistical analysis is divided and described in

three parts, one per each set of research questions. A

summary of the independent variables is shown in

Table 3, and a summary of the statistical tests is shown

in Table 2. For all tests, statistical significance is given

in terms of Holm–Bonferroni39 corrected p \ .05.

The resulting p values from the statistical tests are pro-

vided in the supplementary material.

In order to facilitate the analysis of the results, we

make use of a set of enriched Tables (4 and 6–9)—one

for each of the questions in Table 2. Each cell in these

tables is encoded as a circle, and each circle represents

a statistical test comparing an element in the y-axis

(row), with an element in the x-axis (column), for

example, a chi-square comparing estimates of k given

with PCA (Pa), with estimates given with SOM (Pb),
for the Iris data set (D). Circles are color-coded to rep-

resent a data set, as provided in Table 3. These

enriched tables are intended to be read (mainly) in

column-wise manner, where each column (or block)

provides a summary of the statistical test results for

the dependent variable stated above it (i.e. RadViz,

PCA, SOM, etc.).

MDPs versus MDPs

Q1.a. Figure 3 depicts the distribution of the estima-

tions of k given by the participants, per each MDP and

data set (P3D), while Table 4 shows the results from

the statistical analysis. The differences between esti-

mations given with Pa, and estimations given with Pb,

were assessed based on the frequency of the estimates

using the chi-square test, for each data set. Concretely,

the assessed p value for significance was given by

max(Chi(Pa,Pb),Chi(Pb,Pa))—that is, the maximum p

value of the test using Pa as expected frequency, and

then using Pb as the expected frequency. The results

shown in Table 4 depict significant difference with

filled circles. The bottom row shows how frequently

(in percentage) an MDP disagreed with all other

MDPs. Table 5, however, shows the disagreement

count between one MDP and another.

Q1.b. Figure 4 depicts the distributions of the distance

scores (computed as defined in equation 2) for each

MDP and data set, while Table 6 shows the results
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from the statistical analysis. The differences between

the mean of the distance scores were assessed using

the dependent t-test. Unlike the analysis applied for

Q1.a, the winnings (where Pa had a statistically

significant higher mean than Pb) and the losses (where

Pa had a statistically significant lower mean than Pb)

are of interest. Filled circles in Table 6 represent the

former case, whereas thick, empty circles represent the

Table 2. Summary of the statistical tests. For all tests, statistical significance is given in terms of p \ .05 with Holm–
Bonferroni39 correction.

Question Dependent Independent Null hypothesis Test type

Q1.a Estimates of k P, D No difference between the estimates of k
given by users using Pa and Pb on a given Di

Chi-square

Q1.b Distance score P, L No difference between the distance scores
of estimates given by users using Pa, and
Pb, on a given Di

Dependent t-test

Q1.c Subjective score P, D No difference in the perceived usability of
Pa and Pb, when applied on a given Di

Wilcoxon signed-rank

Q2.a Estimates of k P, M, D No difference between the estimates of k
given by users using Pa, and NbClust using
Mb, on a given Di

Chi-square

Q2.b Distance score P, M, L No difference between the distance scores
of estimates given by users using Pa, and
NbClust using Mb, on a given Di

Independent t-test

Q3.a Estimates of k U, P, D No difference between the estimates of k
given by Ua and Ub, when using Pj on a
given Di

Chi-square

Q3.b Subjective score U, P, D No difference between the subjective scores
given by Ua and Ub, when using Pj on a
given Di

Mann–Whitney rank

Table 3. Summary of independent variables used in the statistical analysis.

MDPs P = {RadViz, SC, PCA, t-SNE, Ward, RP, SOM}
Data sets D = { Iris, Expressions, Abalone, Breast cancer, Weather and Isolet}
Labeled data sets L = { Iris, Breast cancer, Weather, Isolet} (L 5 D)
Cluster methods M = {Ward.D2, k-Means, Single, Complete}
Users U = {experienced, novice}

MDPs: multidimensional projections; SC: Star Coordinates; PCA: Principal Component Analysis; RP: reachability plots; SOM: Self-
Organizing Maps.

Figure 3. Estimations of k as given by the participants when using P for a given D. The red line represents the ground
truth, that is, the number of labels in D.
SOM: Self-Organizing Maps; PCA: Principal Component Analysis; SC: Star Coordinates; RadViz: Radial Visualizations; t-SNE: t-
Stochastic Neighbor Embedding; GNG: Growing Neural Gas; RP: reachability plots.
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latter. The bottom row of the same table shows the

percentage of total wins and losses Pa (an MDP on the

horizontal axis) had on all other Ps—that is, the

number of filled circles divided by the total number of

circles in the corresponding column, and similarly for

the thick circles.

Table 5. Adjacency matrix showing the number of times Pa led to estimates of k different than those of Pb. Red cells
highlight five or more disagreements, while blue cells two or less.

SOM PCA SC RadViz t-SNE GNG RP Ward

SOM 2 2 3 2 1 2 3
PCA 2 2 2 2 3 3 5
SC 2 2 1 3 3 4 5
RadViz 3 2 1 3 4 5 5
t-SNE 2 2 3 3 4 4 5
GNG 1 3 3 4 4 3 6
RP 2 3 4 5 4 3 6
Ward 3 5 5 5 5 6 6

SOM: Self-Organizing Maps; PCA: Principal Component Analysis; SC: Star Coordinates; RadViz: Radial Visualizations; t-SNE: t-
Stochastic Neighbor Embedding; GNG: Growing Neural Gas; RP: reachability plots.

Table 4. Q1.a: Are there differences between the estimates of k when using different MDPs? Adjacency matrix where
filled circles represent statistical differences between the estimates given with Pa (in the horizontal axis) and Pb (in the
vertical axis). The bottom row shows how often Pa led to estimates that disagreed with others, that is, the number of
filled circles divided by the total number of circles in a block.

SOM: Self-Organizing Maps; PCA: Principal Component Analysis; SC: Star Coordinates; RadViz: Radial Visualizations; t-SNE: t-
Stochastic Neighbor Embedding; GNG: Growing Neural Gas; RP: reachability plots.

Figure 4. Distance scores for each D and each P. Higher values represent closer estimates to the number of labels in
the data set.
RadViz: Radial Visualizations; SC: Star Coordinates; RP: reachability plots; GNG: Growing Neural Gas; SOM: Self-Organizing Maps; PCA:
Principal Component Analysis; t-SNE: t-Stochastic Neighbor Embedding.
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Q1.c. Figure 5 shows the distributions of the subjective

scores (computed as defined in equation 1) as boxplots,

while Table 7 shows the results from the statistical

analysis. The distribution of the subjective scores was

assessed using the Wilcoxon signed-rank test. Similar

to the analysis of the previous question, wins (where Pa

had a higher mean than Pb) and losses (where Pa had a

lower mean than Pb) are also of interest. The bottom

row of Table 7 shows the usability win and loss percen-

tages for each P. In the wrap-up questions of part (e)

of the questionnaire, 17 participants said SOM to be

the least intuitive technique, five said RP, two said HC,

and two said ‘‘points’’ referring to general scatter plots.

Other participants did not give an answer.

MDP versus NbClust

Q2.a. Figure 6 shows the distributions of the estimated

k as given by 24 (out of the 30) CQMs provided by

NbClust, when applied to the computed centroids of

the four CMs (M). Due to time constraints, we made

use of the ‘‘all’’ option instead of ‘‘alllong,’’ hence leav-

ing aside the four computationally expensive CQMs

(Gamma, Tau, Gap, and Gplus). Two other CQMs—

Dindex and Hubert—were also left out because of

their required visual assessment on users’ behalf. The

minimum number and the maximum number of k to

try were set to 2 and 20, respectively, as it was

requested in the user study. All other parameters were

left to their default values.

The distributions of the estimation frequencies of

each M were compared to the estimation frequencies

of each P using chi-square. Similarly to Q1.a, the p

value for a test between Pa and Mb was given by

max(Chi(Pa,Mb),Chi(Mb,Pa)). The results are shown

in Tables 8 and 10. The former depicts comparisons

between each P-M pair and each data set D. As in the

previous figures, filled circles represent a significant

difference between the frequencies. The bottom row

shows how often (in percentage) P in the

Table 6. Q1.b: Will some MDPs lead to estimates which are closer to the number of classes in a data set? Adjacency
matrix where filled circles represent statistical difference in the mean distance score between Pa (in the horizontal axis)
and Pb (in the vertical axis), when Pa . Pb. Thick empty circles, however, represent the opposite case (Pa \ Pb). The
bottom row shows how often the former occurred (wins) and how often the latter occurred (losses).

RadViz: Radial Visualizations; SC: Star Coordinates; RP: reachability plots; GNG: Growing Neural Gas; SOM: Self-Organizing Maps; PCA:
Principal Component Analysis; t-SNE: t-Stochastic Neighbor Embedding.

Figure 5. Subjective scores for each D and each P.
SOM: Self-Organizing Maps; RP: reachability plots; SC: Star Coordinates; RadViz: Radial Visualizations; GNG: Growing Neural Gas; PCA:
Principal Component Analysis; t-SNE: t-Stochastic Neighbor Embedding.
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corresponding column disagreed with all M estimates

for all data sets. Table 10, however, represents fre-

quency counts in pair-wise disagreements, that is, the

number of times Pa disagreed with Mb.

Q2.b. Figure 7 shows distributions of the distance

score computed on the estimations of NbClust for

each M. These were compared to the Ps’ distance

scores using independent t-tests. The results are shown

in Table 9, where filled circles represent wins (i.e. Pa

produced a statistically significant higher mean than

Mb) and thick, empty circles represent losses (i.e. Pa

produced a statistically significant lower mean than

Mb). The bottom row states how often (in percentage)

Table 7. Q1.c: Are some MDPs perceived as more usable than others for estimating k? Adjacency matrix where filled
circles represent statistical difference in the subjective score distributions of Pa (in the horizontal axis) and Pb (in the
vertical axis), when Pa . Pb. Thick empty circles, however, represent the opposite case (Pa \ Pb). The bottom row shows
how often the former occurred (wins) and how often the latter occurred (losses).

SOM: Self-Organizing Maps; RP: reachability plots; SC: Star Coordinates; RadViz: Radial Visualizations; GNG: Growing Neural Gas; PCA:
Principal Component Analysis; t-SNE: t-Stochastic Neighbor Embedding.

Figure 6. NbClust’s estimations of k for each D and each M.

Table 8. Q2.a: Are there differences between the estimates given with MDPs and those given by NbClust? Filled circles
represent statistical difference between the estimates given with Pa (in the horizontal axis) and Mb (in the vertical axis).
The bottom row represents how often Pa led to estimates that disagreed with all M estimates, for all D. The right-most
column shows Mb disagreement percentages for all P and for all D.

SOM: Self-Organizing Maps; SC: Star Coordinates; RadViz: Radial Visualizations; RP: reachability plots; PCA: Principal Component
Analysis; GNG: Growing Neural Gas; t-SNE: t-Stochastic Neighbor Embedding.
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an MDP in the corresponding column has won or lost

in all comparisons; the right-most column shows CM-

wise win and loss percentages.

User experience

Q3.a. Users with 4 or more years of experience analyz-

ing data were regarded as experienced users (17 users),

and novice otherwise (24 users). The estimates from

both groups were compared using chi-square, as done

in Q1.a. None of the results were significantly different

and, therefore, they are only shown in the supplemen-

tal material.

Q3.b. Subjective scores from the two groups of users

were compared using the Mann–Whitney rank test.

Results did not show any significant difference for the

subjective scores either and, hence, they are only

shown in the supplemental material.

In addition to the statistical analysis, an overall per-

formance plot is provided in Figure 8. In this plot, the

farther to the right, the better the subjective score, and

the farther to the top, the better the distance score.

Visual techniques closer to the upper right-most cor-

ner may be said to have performed better than those

closer to the lower left corner, in terms of both subjec-

tive and distance scores. The values of the subjective

scores were computed taking only labeled data sets

into account, and all data sets for the subjective scores.

Discussion

The discussion is addressed per question basis. For

simplicity, statistical difference between two samples

will also be regarded as disagreement.

Q1.a

There are differences in user estimations of k when

using different MDPs; however, these differences

Figure 7. Distance scores for each M and each D, as given by NbClust.

Table 9. Q2.b: Does NbClust provide estimates closer to the number of classes in a data set than users do with MDPs?
Filled circles represent statistical difference in the mean distance score between Pa (in the horizontal axis) and Mb (in
the vertical axis), when Pa . Mb. Thick empty circles, however, represent the opposite case (Pa \ Mb). The bottom row
shows how often the former case occurred (Pa wins over all M, for all D) and how often the latter occurred (Pa losses for
all M and all D). The right-most column shows Mb win and loss percentages for all P and all D.

RadViz: Radial Visualizations; SC: Star Coordinates; RP: reachability plots; SOM: Self-Organizing Maps; GNG: Growing Neural Gas; PCA:
Principal Component Analysis; t-SNE: t-Stochastic Neighbor Embedding.
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cannot be solely attributed to them. As seen in the

results shown in Table 4, differences between the esti-

mates are also influenced by the data sets in play. A

concrete example is RadViz versus SC. Estimates of

these were only statistically differenced in the case of

the Weather data set.

Two other patterns emerge from the analysis of

Table 4. The first is the frequency of the statistical dif-

ferences between Ward and all other MDPs, for all

data sets. 83.3% of the times the estimates given with

Ward disagreed with other estimates. This result is fur-

ther highlighted in Table 5, where disagreement counts

for Ward are above 5 in all but one case. It is apparent

that Ward will often lead to estimations different from

those made with other MDPs; in that sense, Ward may

be disclosing certain data structures that other tech-

niques do not.

The second pattern drawn from Table 4 is the fre-

quency with which higher dimensional data sets led to

different estimates. The Isolet data set led to 25, out

28 comparisons, to statistically significant differences;

this is compared to 14 statistical differences in the case

of the Iris data set. One of the non-disagreements was

between RadViz and SC, which is understandable

when looking at their corresponding plots. It seems

apparent that both SC and RadViz will tend to lead to

the same estimates (as in the cases of Iris, Expressions,

Abalone, and Breast cancer) and that both are quite

limited by the dimensionality of the data sets (as in the

case of Isolet); nevertheless, SC provides a more

descriptive visualization of data with higher dimen-

sionality than RadViz (as in the case of Weather). This

result echoes the findings of Rubio-Sánchez et al.36

Q1.b

Closeness to the number of labels in a data set also var-

ied from one data set to another. We hypothesized that

t-SNE would often lead to closer estimates than other

MDPs. In 57.1% of the cases, t-SNE led to closer esti-

mates than other MDPs, thus proving the hypothesis

right. However, looking at the results on a per-data set

basis, t-SNE had a high number of losses for the Breast

cancer data set. Looking at the corresponding plots in

Table 1, it is apparent that t-SNE is capable of disclos-

ing more complex patterns than other MDPs—which

is aligned with Garcı́a-Fernández et al.’s37 observation

on the nature of t-SNE’s gradient. The highest number

of losses and the lowest number of wins, however, are

attributed to Ward. This result, and the previous, may

be worth taking into account when selecting Ward for

a given data analysis task.

Q1.c

Results in Table 7 show that RP and SOM were the

ones with the lowest perceived usability for the pur-

pose of estimating k. 54.8% of the times SOM had a

lower subjective score mean than all other techniques,

and not one time a higher. RP was 42.9% of the times

below the means of other techniques, and only once

above (i.e. when compared to SOM). It is of interest

to see that, in spite of its low perceived usability, when

compared to others, SOM did not perform too badly in

terms of distance score. This leaves the door open for

further investigating other SOM formats which may

increase its perceived usability for the task of estimat-

ing k. An advantage of cluster-based MDPs, such as

SOM and GNG, is that they provide a summary of

data which reduces the number of elements to be

visually encoded. This brings possibilities for visualiz-

ing and interacting with the structure of large, as well

as streaming, data, due to their nature of incremental

learning.

In a more general sense, it seems that the confi-

dence, intuitiveness, and difficulty to estimate the

number of clusters, as well as the accuracy of the esti-

mations, are influenced by both the complexity of the

patterns inherent in the data set, and in the capacity of

an MDP to disclose them. Furthermore, it is worth

noting that perceived usability is not bound to the VE.

That is, FDGs can be perceived as more usable than

scatter plots, as it is shown by the wins and losses of

SC (9.5% and 19.0%) and RadViz (21.4% and 7.1%),

when compared to GNG (23.8.7% and 4.8%).

Figure 8. Distance score versus subjective score. To the
right-most side are MDPs with a higher mean subjective
score, and to the upper-most side are MDPs with higher
distance score.
t-SNE: t-Stochastic Neighbor Embedding; PCA: Principal
Component Analysis; GNG: Growing Neural Gas; RP: reachability
plots; SC: Star Coordinates; HC: hierarchical clustering; UM: U-
Matrix; RV: RadViz.
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Q2.a

Revising the bottom row of Table 8, it is possible to

see similar patterns like the ones mentioned for Q1.a.

Concretely, a high percentage of disagreement on

Ward’s behalf, as well as in the cases where higher

dimensional data sets (Weather and Isolet) were used.

Moreover, it is possible to see an equally high dis-

agreement with t-SNE estimations. These numbers

are further highlighted in Table 10, where in three out

of four times, both Ward and t-SNE had statistical dif-

ferences in over four of the six data sets. In other

words, given six data sets with similar properties to the

ones in this study, chances are that the estimates given

with Ward or t-SNE will be statistically different from

those given by NbClust, as with the settings given

here. Furthermore, looking at the same table, it is

worth noting that the least number of disagreements

came from estimates given with k-means and SC. It

may be worth investigating further to see if this lack of

statistical differences generalizes to more data sets.

Q2.b

Table 9 shows a lower number of statistical significant

differences, when compared to the previous analyses.

However, in the cases of where higher dimensional

data was tested (Weather and Isolet), differences were

much more frequent. For those, estimates given by

NbClust performed poorly when compared to user esti-

mations. Only when compared to RadViz and SC, for

the Isolet data set, most CMs provide closer estimates

to the number of labels. If the task is to estimate the

number of labels in a data set, it may be safe to suggest

to do so using an MDP, rather than NbClust. This is

aligned with the findings provided by Sedlmair et al.14

and Lewis et al.15

Q3.a

Aligned with the findings of Lewis et al.,15 we found

no statistical difference in the estimates given by expe-

rienced users and novice users. Echoing—and also

extending their work—it is not only possible to have

inexperienced users estimate k in scatter plots but also

in other, less conventional plots such as dendrograms,

U-Matrices, RPs, and FDGs.

Q3.b

In regard to the differences between the perceived

usability of experienced versus novice users, no case

led to a statistically significant difference either. We

hypothesized that Ward would have a statistically sig-

nificant difference in between both groups since den-

drograms are a commonly used VE in some fields such

as bioinformatics. To our surprise, the hypothesis did

not hold.

Limitations

The problem space represented by data sets is vast if

we consider it in terms of properties such as type (i.e.

table-like, image, text, and graph), values (i.e. continu-

ous, categorical, and mixed), dimensionality, size, and

sparsity; and cluster separation factors (as proposed by

Sedlmair et al.)14 such as shape, mixture, and separa-

tion. This problem space is farther extended if we

account for MDP classification types such as DR or

clustering, linear or non-linear, density-based, model-

based, stochastic or deterministic; as well as for VE

types such as graphs, scatter plots, bars, gradients, and

trees; and the Gestalt principles they represent (e.g.

proximity, similarity, common area, and connected-

ness). All of these different characteristics will ulti-

mately have an impact on a resulting layout, thus

limiting the generalization of the results.

Taking the previous into account, the results here

presented may be generalized to the described MDPs,

with their default parameter settings, when applied to

data sets with similar cluster patterns to the ones

shown in Table 1. In other words, to data sets resulting

in similar clumpiness and shapes, when visualized

using RadViz, SC, t-SNE, PCA, SOM, GNG, Ward,

and OPTICS. The impact of other MDPs—such as

Table 10. Number of times Pa led to estimates of k different than those estimated by CQMs using Mb. Red cells highlight
five or more disagreements, while blue cells two or less.

SOM SC RadViz RP PCA GNG t-SNE Ward

Ward.D2 1 2 3 2 3 3 4 3
k-Means 2 1 2 3 3 3 4 5
Single 3 2 3 3 3 4 5 6
Complete 2 3 2 5 4 4 5 5

SOM: Self-Organizing Maps; SC: Star Coordinates; RadViz: Radial Visualizations; RP: reachability plots; PCA: Principal Component
Analysis; GNG: Growing Neural Gas; t-SNE: t-Stochastic Neighbor Embedding.
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Isomap, LLE, and LSP—on the visual perception of

clusters is left for future work.

Conclusion

This article presents an empirical study comparing

several structure visualization techniques used for esti-

mating the number of clusters of a multidimensional

data set. The MDPs evaluated were RadViz, SC, 2D

projections using PCA and t-SNE, U-Matrices derived

from SOM, dendrograms from Ward clustering, RPs

from OPTICS density-based clustering, and FDGs

from the GNG. We compare the MDPs to each other

and to automated methods of estimating k. Forty-one

participants took part in the study. Based on the

results and analysis, the following lessons learned are

outlined:

� Ward (dendrograms) will likely lead to estimates of

k, which are different to those given with other

techniques. In this regard, analysts should be aware

that Ward may be disclosing patterns which are not

seen with other techniques.
� SC and RadViz, however, will most likely lead to

similar estimates when applied to lower dimen-

sional data (~32 features as in the Breast cancer

data set), but may lead to different estimates when

applied to slightly higher dimensional data (~94

features as in the case of Isolet).
� t-SNE will likely lead to estimates which are closer

to the number of labels in a data set, when com-

pared to other MDPs. Ward, however, will likely

lead farther estimates.
� SOM (U-Matrix) and RP will likely lead to low

usability ratings when used for estimating k. t-

SNE, however, is perceived as more usable than

others. Usability, however, in the context of esti-

mating k, may be hindered by the complexity of

the cluster patterns.
� CQMs on CM centroids will likely lead to esti-

mates which are different to those given with Ward

and t-SNE.
� CQMs on CM centroids will likely lead to esti-

mates which are not as close to the labels in a data

set, as user estimates given with an MDP.

During our analysis, we consider assuming that no

disagreement between two estimations may be inter-

preted as a possible agreement. That is, if no statisti-

cally significant difference is found between two

sample estimations, then it is possible for the estima-

tions to be the same or similar. Even if this is a valid

possibility, it is not possible to say that two similar esti-

mates are describing the same clusters; it is probable,

both from the user and the CQM-CM side, that two

similar sample estimations describe different groups of

data points. This we hope to analyze by taking into

account the clusters marked by the participants during

the study.

Moreover, in the context of estimating the number

of clusters, we learned that the task and nature of the

data sets have a high impact on the perceived usability

of a visual technique. This implies both, limitations to

the generalizations of the findings in this study and

opportunities for future research. In regard to the for-

mer, our findings can be generalized to data sets whose

properties are similar to the ones shown in this study.

Nevertheless, it is a challenge to describe such proper-

ties, since size and dimensionality do not suffice to

describe the inherent complexity of the patterns in a

data set. The efforts of Sedlmair et al.14 provide useful

guidelines in this matter.

In the future, two lines of investigations continue

the work are presented here. The first one concerns

the understanding of cluster patterns (given a visual

technique, why are data points distributed as they

are?). The second concerns combining and applying

these findings into generic solutions, and evaluating

their usability for the purpose of EDA. This latter

study will be targeted to users with well-defined exper-

tise within a given domain (e.g. researchers in biology

or medicine), in order to investigate their particular

requirements.
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