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Abstract

Successfully applying theoretical models to natural communities and predicting ecosystem

behavior under changing conditions is the backbone of predictive ecology. However, the

experiments required to test these models are dictated by practical constraints, and models

are often opportunistically validated against data for which they were never intended. Alter-

natively, we can inform and improve experimental design by an in-depth pre-experimental

analysis of the model, generating experiments better targeted at testing the validity of a the-

ory. Here, we describe this process for a specific experiment. Starting from food web eco-

logical theory, we formulate a model and design an experiment to optimally test the validity

of the theory, supplementing traditional design considerations with model analysis. The

experiment itself will be run and described in a separate paper. The theory we test is that tro-

phic population dynamics are dictated by species traits, and we study this in a community

of terrestrial arthropods. We depart from the Allometric Trophic Network (ATN) model and

hypothesize that including habitat use, in addition to body mass, is necessary to better

model trophic interactions. We therefore formulate new terms which account for micro-habi-

tat use as well as intra- and interspecific interference in the ATN model. We design an exper-

iment and an effective sampling regime to test this model and the underlying assumptions

about the traits dominating trophic interactions. We arrive at a detailed sampling protocol to

maximize information content in the empirical data obtained from the experiment and, rely-

ing on theoretical analysis of the proposed model, explore potential shortcomings of our

design. Consequently, since this is a “pre-experimental” exercise aimed at improving the

links between hypothesis formulation, model construction, experimental design and data

collection, we hasten to publish our findings before analyzing data from the actual experi-

ment, thus setting the stage for strong inference.
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Introduction

Quantifying theory—A challenging process

Models are abstractions of reality, distilling presumed relationships. In empirical science,

model credibility is established by predicting outcomes observable in real systems. This is the

ultimate test of a model: the better it holds up to tests which should easily prove it wrong, the

more confidently we can conclude that it reveals something useful about nature and incorpo-

rates important mechanisms dictating system behavior. While this is a fundamental principle

of modern science [1], the steps between general theory, formulation of an explicit model, and

application of this model to predict the outcome of an empirical experiment are typically chal-

lenging. Ecological data tend to be both messy and expensive to obtain. Thus, by intimately

linking the development of the model to the design of the experiment testing the model, we

are able to ensure that we optimize the amount of useful information collected relative to the

amount of work required to collect it. To obtain maximal data for resources invested, we need

to cunningly design experiments and sample only as much as necessary. By gauging our

approach in advance of performing the actual experiment, we obtain rigor in our approach,

minimize sources of uncontrolled variation, and sample only as much as needed. Designing

our experiments to target clear-cut predictions and estimating well-defined quantities also

increases the conclusiveness of the test. Strong inference requires that experiments are

designed specifically to test and distinguish among a priori hypotheses [2]. To encourage and

support this distinction, some fields, such as psychology and neurology, have started promot-

ing pre-registration of research [3–5]. In addition to encouraging clear a priori hypotheses,

pre-registration has the advantage of enabling researchers to critically examine their hypothe-

ses and plans before beginning their research and providing the chance to receive feedback

and improve experimental design [3]. Here, we carefully perform the steps between ecological

theory and experimental testing of that theory, before conducting the actual experiment.

The analysis we present is intrinsically linked to our ecological hypotheses and associated

model, but we advocate for the application of this same approach to other study systems. The

experiment itself, following the design we arrive at here, will be presented in a subsequent

publication.

A specific theory in need of testing

Predicting how ecological communities will respond to changes in abundance or composition

is a high priority for ecologists and conservationists, requiring the use of models describing the

communities and their driving mechanisms. However, it is well understood that “all models

are wrong, but some models are useful” [6]. We consider a model useful if it accurately cap-

tures the dynamics it is supposed to describe along with a significant portion of the most

important mechanisms. Developing such a model requires (i) creating the model with what

are thought to be the most important mechanisms, based on the information available, and (ii)

exploring that model to determine if it behaves as one would expect and gives robust results.

This step includes asking how sensitive the model is to parameter values and whether or not

the chosen model formulation is useful. The final step (iii) is testing the model performance

and parameterizing the resultant model using empirical data. Establishing a useful predictive

model usually requires a number of rounds of (i)-(iii).

We begin with the theory of why and how species interact to create an ecological commu-

nity, and specifically that these interactions are dictated by species traits. To make accurate

predictions about a particular ecological community requires an understanding of its underly-

ing interaction structure and governing dynamics. Empirically obtaining this information is
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difficult, possibly requiring multiple observations of interactions between predator and prey to

determine interaction frequencies as well as experiments to determine the impact of changes

to species abundances or presence. There is, however, a growing body of research indicating

that species interactions are influenced by their traits, and that these traits can be used, at least

to some extent, to predict interaction strength and resulting population dynamics [7, 8]. For

example, larger predators have higher metabolic demands and can capture larger prey, while

prey can use defenses such as a shell or hard integument to protect themselves from predators

[9–12]. These traits show promise in predicting community structure and dynamics as well as,

ultimately, how communities respond to changing environmental conditions and species com-

positions [12–14].

Predictions based on species traits can then be used to manage communities subject to

environmental change or to manipulate communities to achieve a particular outcome, e.g. to

manage for enhanced ecosystem services such as pest control by natural predators [15, 16].

Predators require traits that increase their ability to locate, capture, and consume their prey,

while prey require traits that decrease their chances of being consumed [7]. It is, therefore, the

match between predator and prey traits that determines the strength of the trophic interaction

between them. Understanding and quantifying the nature of this relationship between traits

and trophic interactions gives the two-fold advantage of understanding of the mechanisms

behind the interactions as well as potentially reconstructing a food web with less empirical

information. This allows for the development of models that predict community population

dynamics.

The utility of traits in predicting food web dynamics lies in knowing which few, ideally eas-

ily measurable traits, are most important for governing interactions. Body size is a prime can-

didate as it directly relates to the metabolism (and thus ecophysiology) of a species [17] and

determines a number of other characteristics and behavior, such as diet generality [18] and

range of movement [19]. Additionally, body mass is well-studied as an important trait in

governing food web dynamics [20–23] and the Allometric Trophic Network (ATN) model

in particular has been successfully applied to predict the outcome of trophic interactions in

microcosm studies of terrestrial arthropods [8, 24]. We therefore begin with the ATN model

as used in [8], which models intraspecific competition and can allow for intraguild predation,

but which does not support explicit interspecific predator interference. The interplay of differ-

ent predator species is particularly important in determining trophic interactions, as commu-

nities of predators can have both complementary and adversarial effects on one another. In

order to capture the complex effect this might have on herbivore populations [25–28], we

modify the ATN model to accommodate intraguild interactions beyond predation.

Although body size can explain a large proportion of interactions and is well-studied in a

range of systems [8, 12, 29–31], in many cases it is either unimportant or acts primarily as a fil-

ter, such that two individuals can, but do not necessarily, have a trophic interaction if they are

within a relatively broad size spectrum [32]. Within that size spectrum, other traits may be

required to explain why an interaction occurs, and efforts have been made to inform models

with additional traits [18, 22, 33]. The problem lies in determining which other traits to

include. There is little understanding of how different traits might affect interaction strength

and resulting population dynamics (but see [13, 15, 34]). Species micro-habitat use is gaining

support as another important trait dictating trophic interactions [28, 35], and here we formu-

late terms which account for this trait in the ATN model. Differences in the use of micro-habi-

tat (e.g., mainly foraging on the ground or in the vegetation) can mean that organisms rarely

encounter each other and thus have a weaker than expected interaction.

The specific hypotheses we intend to test are: (i) In the absence of other species, consump-

tion rates will be, to a large extent, determined by body size such that the impact of predators
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on prey, in simple two-species treatments, will increase with predator-prey body mass ratio up

to the optimal body mass ratio. (ii) Habitat overlap between predator and prey affects preda-

tion rates such that predators which spend more time in the same habitat as their prey will

have a stronger impact on prey populations. (iii) Presence of other species affects predator

behaviour such that predators which are more likely to be intraguild prey to another predator,

due to body mass ratio and shared habitat use, will spend more time avoiding the other preda-

tor and thus have a weaker impact on the shared prey in more complex (species-rich) treat-

ments. (iv) A dynamical model parameterized using predator-prey body mass ratios and

habitat overlap data will explain more (but not all) of the variation in species abundances than

a model based only on body mass.

To maximize the amount of useful information collected relative to the amount of work

required to collect it, we examine how the information content of the data that will be collected

depends on the timing and frequency with which it is collected. Below we describe the original

model presented in the literature as well as why and how we have altered it to describe missing

traits and mechanisms we believe are important. We then describe how we design an experi-

ment to test this model, including choice of predators and prey and traits to include. We finally

use model sensitivity to parameter estimation to determine optimal timing, frequency, and

subsampling techniques which allow us to best sample the experiment to obtain information

necessary for model validation; this analysis is the main theme of our paper, as it is rarely used

in ecological research.

1 Model: ATN with predator avoidance

We introduce a variation on the ATN model used in [8]. The original ATN model assumes

Lotka-Volterra dynamics, with a functional response of type two which accounts for both

intraspecific competition and predator satiation, and interaction parameters are generalized as

functions of body mass. Here we introduce the parameter νij to describe spatial overlap, with

the hypothesis that species which spend more time in the same space will have a greater impact

on each other. We assume that the only source of mortality for the duration of the experiment

is predation.

Dynamics for the number of individuals Ni of species i are therefore given by

dNi
dt
¼ riNi �

X

j2Ci

aijnijNiNj
1þ

P
k2Rj
akjnkjhkjNk þ

P
l2Cj
b0ajlnjlNl

; ð1Þ

where i, j, k, and l are indices for species in the system. The first term in the differential equa-

tion (ri Ni) describes exponential growth of the population, with ri the intrinsic growth rate of

species i (which we assume to be zero-valued for predators for the duration of our experi-

ment). The second term describes death by predation; we sum over all species j which con-

sume species i (j 2 Ci, for Ci the set of predators for species i), and the fractions in this sum

describe the population-level consumption of each species j on species i. The numerator is the

possible attack rate of species j on species i and the denominator is a functional response that

bounds this attack rate to physically reasonable levels. The first sum in the denominator is over

all species k which are resources for species j (k 2 Rj, for Rj the set of prey for species j) and

accounts for predator satiation. We introduce the second sum in the denominator, which

accounts for intraguild interference. The parameters aij (attack rate), hij (handling time), and

νij (spatial overlap, or, similarity in habitat use) are parameterized by measurable traits, and

definitions of these model parameters are summarized in Table 1.
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The quantity
P

l2Cj
b0ajlnjlNl describes the trade off that arises from some species balancing

the competing requirements of being both predator and prey. In such cases, the time an organ-

ism spends avoiding potential predators will limit the time spent exploiting prey. We sum over

the potential attack rates of all species l on a single individual of species j to account for time

spent avoiding or evading species l while species j is attempting to capture its own prey. The

parameter b0 is a scaling constant for the effect of this predator interference on the predation

force of species j. For a group of cannibalistic predators, interference from one’s own species

may not be distinguishable from general predator interference, and so we remove the intraspe-

cific competition term cj(Nj − 1) as used in [8] from this version of the ATN model. We note

that intraspecific interference due to potential predation is described by our formulation of the

ATN model, but strictly competition-based intraspecific interference (as specified by a Bed-

dington-DeAngelis functional response [36]) is not included.

As in [8], we assume that for species body massesWi andWj (corresponding to predator i
and prey j), the allometric parameters are given by

aij ¼ a0W
1=4

i W1=4

j

Wj=Wi

Ropt
e1�

Wj=Wi
Ropt

 !�

;

hij ¼ h0W
1=4

i W � 1=4

j :

ð2Þ

We refer to [8] and references therein for a detailed defense of the allometric formulation for

these parameters. To summarize, we rely on the assumptions that

1. the speed of an individual of species i scales with the quantityW1=4

i ,

2. there exists some predator-prey body mass ratio Ropt at which attacks by the predator on its

prey are most successful, and

3. the time required for a predation event scales with decreasing predator-prey body mass

ratios.

The quantity a0W
1=4

i W1=4

j describes the rate at which individuals of species i and j encounter

one another. The remainder of aij describes the likelihood of a successful attack for the

encounter; the quantity inside parentheses is equal to 1 when the actual predator-prey body

Table 1. Definitions of model parameters. Left-aligned parameters (in shaded cells) are defined in terms of the corre-

sponding right-aligned parameters (in unshaded cells). See (2) and (3) for details.

Parameter Physical Meaning

aij Attack rate of species j on species i
a0 Normalizing constant for encounter rates

Ropt Optimal predator-prey body mass ratio

ϕ Sensitivity to predator-prey body mass ratio

Wi,Wj Body masses of species i and j
νij Habitat use overlap for species i and j

v0 Normalizing constant for habitat use

μi, μj Habitat uses for species i and j
hij Time for species j to handle i

h0 Normalizing constant for handling time

Wi,Wj Body masses of species i and j
b0 Normalizing constant for predator interference

https://doi.org/10.1371/journal.pone.0195919.t001
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mass ratio (Wj/Wi) is equal to Ropt and decreases forWj/Wi 6¼ Ropt, while ϕ tunes the severity

of this penalty. The handling time for an individual of species j to process an individual of spe-

cies i decreases allometrically with the relative size difference between a predator and its prey

(R =Wj/Wi) at a rate of R−1/4 (such that, relative to the size of a predator, smaller prey require

a shorter handling time).

We introduce the parameter νij to account for the effect of habitat use on encounter rates.

For the set O of all modes of habitat use, we define the probability measure (μi) such that evalu-

ating miðAÞ for some habitat A contained in O gives us the likelihood that species i occupies

that habitat A. For example, one A in O might be “residing in foliage” and an entirely ground-

dwelling predator would therefore have a measure miðAÞ ¼ 0. That is, μi is a mathematical way

to describe observed species habitat use. For species pair i and j, we define the overlap parame-

ter

nij ¼ 1 � v0TVðmi; mjÞ ¼ 1 � v0sup
A�O

jmiðAÞ � mjðAÞj; ð3Þ

where TV(μi, μj) is the total variation distance [37] and 0� v0� 1 is a scaling factor for the

importance of habitat use in determining spatial overlap. Total variation distance quantifies

the difference between two measures, so TV(μi, μj) can be interpreted as the dissimilarity

between the spatial distributions μi and μj of species i and j, and it takes on values between zero

(no variation between μi and μj) and one (maximal variation between μi and μj). Continuing

the example above, an entirely ground-dwelling predator and an entirely foliage-dwelling

predator would have TV(μi, μj) = 1, since their spatial distributions are completely dissimilar.

The corresponding overlap νij = 1 − v0 is a quantification of the similarity of habitat use for the

two species in our example, with v0 indicating how much weight we give to the assumed distri-

butions μi and μj. If v0 = 1, then we give full consideration to the assumed distributions (νij = 0

and the predators do not overlap in our model). If v0 = 0, we ignore the assumed distributions

(νij = 1 and the predators completely overlap in our model). For a more detailed explanation of

this formulation with examples from our experiment, see S1 Appendix.

Our primary goal in choosing traits to model is that they significantly affect population

dynamics. However, we must weigh this goal against the model’s general relevance for differ-

ing communities and environments outside the scope of our experiment, where we eventually

hope to evaluate its performance [38]. We must also consider the tractability of our model; a

model with too many parameters to feasibly identify or which fluctuates wildly for relatively

small changes in model parameters cannot reliably be used to investigate questions about

physical processes. Although our formulation of overlap is not driven by physical mechanisms,

it is amenable to inclusion in the ATN model, which assumes encounters rates increase with

mutual distance covered. Inclusion of νij scales species encounter rates so that they increase

with mutual distance covered in the same habitat zones. Additionally, this formulation is flexi-

ble and can be adapted to any study system; we can define the set O as is most-relevant for the

expected species behaviors and measure μi in any new habitats.

2 Designing the experiment

2.1 Choosing the study system

To test this model requires a food web which is easily manipulated in the lab, where generation

time is sufficiently brief to observe population dynamics over a short time period, and where

predators and prey vary in the traits of interest, body mass and habitat overlap. By selecting

both predators and prey which vary in these traits, we can additionally investigate the impor-

tance of a match between predator and prey traits.

Experimental design for trait-based predator-prey dynamics
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We use modules from a simplified agricultural food web to test the model, which we manip-

ulate in a replicated cage experiment in greenhouses (Fig 1). In addition to the reasons listed

above, we choose this foodweb for its important applied relevance—crop pest control using

natural predators—and because we have data from a previous experiment to use as a basis for

the predictions outlined here. Furthermore, the prey items (aphids) reproduce rapidly, allow-

ing us to determine the effect of predators on their population growth in a tractable period of

time. For this reason, we limit the length of the experiment to 8 days so that aphid growth is

neither limited by quality of remaining resources nor complicated by the production of alates,

although these mechanisms are important in describing long-term population dynamics. We

focus our efforts on modelling the effect of predator interactions on aphids in the absence of

processes which introduce uncertainty to our model, and we monitor for the appearance of

alates during the experiment to ensure that these assumptions are met.

To determine the effect of body size and habitat overlap, we select predators varying in both

of these traits. We choose two predators which are primarily ground predators (Wolf spiders

of the genus Pardosa and ground beetles of the genus Bembidion) and two which primarily

reside in the foliage (lady beetle Coccinella septempunctata and the minute pirate bug Orius
majusculus). While these predators primarily reside either in the foliage or on the ground,

there is still substantial overlap and all predators can encounter one another. We note in pre-

liminary trials that Bembidion is the most restricted in habitat use, while Pardosa sometimes

climb the plants, and both of the foliage predators spend time on the ground. We choose phy-

logenetically diverse predators to determine whether the importance of body size and habitat

use are valid despite phylogenetic differences. Pardosa, Coccinella, and Bembidion are collected

in the field at locations 59.740 ˚N, 17.680 ˚E and 60.047 ˚N, 17.981 ˚E, in areas surrounding

Uppsala, Sweden. Orius majusculus is purchased from Lindesro AB, Helsingborg, Sweden.

We select a large and a small predator for both foliage and ground predators to determine

the effect of body size (Fig 1). To also compare the importance of a match between predator

and prey traits, we use two prey species (both aphids) differing in body size and habitat use.

Fig 1. An overview of the experimental design and the hypotheses we test. We select two predators which reside primarily in the foliage and two on

the ground. Of those two, one is large and one is small such that each combination of size and habitat use is covered. Each predator is combined with

each other predator, including itself, to cover all one- and two-predator combinations. We also select two species of prey, and within each predator

combination, each prey combination is represented (shown by horizontal bars of one or two colors). Thus, including controls containing no predators,

we have 33 predator-prey combinations.

https://doi.org/10.1371/journal.pone.0195919.g001
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The larger aphid (Acyrthosiphon pisum) lives primarily on the underside of bean leaves, while

the smaller aphid (Rhopalosiphum padi) grows on barley plants and resides low down on the

stem where it is available to ground-dwelling predators. The choice of these two prey species

necessitates the choice of barley and beans as plants, which we sow in five alternating rows

(three rows of barley, and two rows of beans). Beans are planted first, as they take longest to

grow. We plant barley four days after beans, and seven days after that we uniformly thin

the seedlings (leaving 15 tillers in every barley row and 10 tillers in every bean row) before

introducing the aphid population. After two days, we introduce the predator population and

monitor aphid abundances for the following eight days. We state the initial abundances of all

species, as well as their body masses, in Table 2.

Having a range of predator body sizes also allows us to explore intraguild predation and

predator avoidance as a result of body mass and habitat overlap. We hypothesize that the closer

one predator is to the optimal predator-prey body mass ratio of a larger predator, the more

likely that the smaller predator will be the victim of intraguild predation and thus spend time

avoiding the larger predator instead of consuming aphids. Similarly, we hypothesize that with

greater overlap in habitat use, smaller predators are more likely to become intraguild prey and

thus spend time avoiding the intraguild predator. To test these hypotheses, we test all combi-

nations of two predators with each of the prey species alone and with both prey species; this

allows us to explore how a predator’s traits match with different prey as well as how the effect

of predators on each other may change their impact on the prey. Each combination of preda-

tors and prey is replicated six times in caged mesocosms in the greenhouse, with the number

of replicates selected as a result of a previous experiment. Including controls for each of the

prey treatments, this yields 33 different predator-prey combinations (Fig 1). We will use the

control treatments to determine the intrinsic growth rate of the aphid populations, after which

we will rely on the predator-treated mesocosms to specify the remaining model parameters.

2.2 Determining parameter sensitivities and critical sampling times

A standard approach when designing ecological experiments tends to be to distribute data col-

lection at regular intervals without much consideration of the information content inherent to

various sampling dates. To effectively estimate parameters for a dynamic model, we must col-

lect sufficient data throughout an experiment, but obtaining data at an appropriate temporal

scale is a time-consuming and expensive endeavour. It is therefore advantageous to know the

optimal timing for data collection during the experiment, with the goal of using these data to

estimate model parameters a0, Ropt, ϕ, h0, b0, and v0 (from which the higher-level parameters

aij, hij, and νij can be computed as given in (2)). We will estimate model parameters using an

“inverse problem” methodology, in which model dynamics are fit to time-series data using

some predetermined cost function of the collected data. Data from different days can vary in

how much information they provide for the solution of the inverse problem, and we want to

focus our effort on those days which provide the most information. To ensure that maximal

information is present in the collected data, we examine the sensitivity of model output (popu-

lation densities) to parameter inputs as time progresses. We refer to sensitivities of great

Table 2. The body masses and initial abundances for species in our study system. We note that the initial abundance for a single-species treatment is doubled, as if we

were introducing two populations of the same species.

A. pisum R. padi Bembidion Coccinella Orius Pardosa
mass (mg) 0.6706 0.1550 2.145 37.4636 0.58 17.72

initial density 75 75 20 2 20 10

https://doi.org/10.1371/journal.pone.0195919.t002
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magnitude (regardless of sign) as “high”, indicating that model solutions depend strongly on a

given parameter. To effectively estimate parameters for our model, we must collect data on

days with high sensitivity; we obtain less information about the parameters by sampling on

days with low sensitivity. We are primarily concerned with the sensitivities of aphid population

densities with respect to model parameters, since we cannot obtain predator population data

during the experiment.

We compute the sensitivity of a population density Ni with respect to a parameter θ,

syi ¼
dNi
dy

, by solving the sensitivity equations [39, 40] which are given in S2 Appendix. To facili-

tate comparison of sensitivities between treatments, we compute the relative sensitivity (simi-

lar to elasticity) [41, 42]sry
i ðtÞ,

sry
i ðtÞ ¼

y

Niðt; yÞ
syi ðtÞ; ð4Þ

and to avoid giving undue importance to aphid populations approaching zero, we do not nor-

malize by the population when Ni(t, θ)< 1. We present sensitivity results for θ = a0, ϕ, v0, h0,

b0 using parameter values a0 = 24 × .9, ϕ = 1, v0 = 1, h0 = 2/24, b0 = h0, Ropt = 60 for Bembidion,

Ropt = 115 for Coccinella, Ropt = 1 for Orius, and Ropt = 60 for Pardosa. We cannot know

the model parameters prior to running the experiment, and so our scaling parameters are

informed by estimates from similar mesocosm experiments [24] and Ropt is estimated from

personal observations of predators during planning stages of the experiment. We choose these

parameter values because they are, to the best of our knowledge, physically reasonable. We

stress that these “preliminary” values will likely differ from actual estimates in our experiment.

However, if there is not a dramatic difference between these values, preliminary approxima-

tions are useful for suggesting sampling times (as utilized below). We additionally computed

model sensitivities for a range of nearby parameter values and obtained similar results.

From control (no predators) cage “trial runs” during planning, we estimate intrinsic growth

rates r = 0.3007 for A. pisum alone, r = 0.3211 for R. padi, and r = 0.2453, r = 0.2591 for A.

pisum and R. padi (respectively) in a combined treatment. We plot in Fig 2 the sensitivities of

aphid populations to model parameters for four cage treatments (described in Table 3), which

exhibit the types of behavior we see in the sensitivities as a function of time. We note that we

do not consider sensitivity results for growth rates r, as we know that sampling at the begin-

ning and end of the experiment is sufficient for the estimation of an exponential growth rate.

We additionally do not include sensitivity of model solutions to Ropt in our consideration of

sampling protocol. We manually specify values of Ropt which describe an impact on the aphid

population; without corroborating this decision with estimates using experimental data, we

are not confident in the resulting reports of parameter sensitivity.

The first type of sensitivity behavior (represented by treatment R-BP) is the most common

and characterized by high sensitivities on or before t = 2, which quickly decrease to low levels

for the remainder of the experiment. Cages of this type correspond to aphid populations

which the model predicts will be quickly decimated by the predator treatment and do not

recover. The second type (represented by treatment R-C) is characterized by low sensitivities

until t = 2, after which sensitivities quickly increase to their peak around t = 3 and remain at

high levels for the duration of the experiment. In these cages, the modeled aphid population

does experience eventual decimation, but the decline is sometimes slightly delayed. The third

type (represented by treatment A-OP) exhibits high sensitivity early in the experiment, which

decreases to low values around t = 4 and then increases slightly towards the end of the experi-

ment. The modeled aphid population under these treatments experiences a drastic decline at

the beginning of the experiment but manages a slight rebound when predators become scarce
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later in the experiment. The final type (represented by treatment A-B) has constant or increas-

ing sensitivities for most of the experiment, with sensitivities increasing the most before t = 2.

Treatments of this type do not result in a drastic decline in the modeled aphid population; the

population is increasing for at least several days of the experiment.

Fig 2. Sensitivities of aphid population abundances with respect to model parameters. Upper left: R. padi with predator treatment Bembidion-
Pardosa. Upper right: R. padi with predator treatment Coccinella. Lower left: A. pisum with predator treatmentOrius-Pardosa. Lower right: A. pisum
with predator treatment Bembidion. Sensitivities are plotted in time and different parameters are indicated by line style.

https://doi.org/10.1371/journal.pone.0195919.g002

Table 3. Key for cage treatments referenced in Fig 2.

Treatment Prey Predator 1 Predator 2

R-BP R. padi Bembidion Pardosa
R-C R. padi Coccinella Coccinella

A-OP A. pisum Orius Pardosa
A-B A. pisum Bembidion Bembidion

https://doi.org/10.1371/journal.pone.0195919.t003
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We note that our sensitivity results are local to the assumed parameters in model formula-

tion and therefore may change for different parameter inputs. That is, if any parameters esti-

mated from experimental data are significantly different from the values we assume above, the

model sensitivities to all parameters may differ from what we present here. To minimize this

risk, we obtain assumed parameter ranges using estimates from a related experiment and ver-

ify that similar peaks in sensitivity are obtained for different parameter values in this range.

We cannot draw conclusions about the specific cages which belong to each of these categories

for the experiment, where true model parameters may be significantly different from what is

assumed here. Rather, we present an example of the types of behaviors that model sensitivities

might exhibit, regardless of the treatments under which they truly occur. Based on these

results, sampling on days t = 2, 4, and 8 will yield data with high information content related to

all model parameters, in at least some treatments. In the interest of obtaining maximal infor-

mation in treatments with rapid aphid population decline, we suggest additional samples on

days t = 1 and 3. We obtain less information with repeated sampling later in the experiment,

when the population has already been decimated; the rate of decimation is of greater interest.

Under this sampling scheme, we can be as confident as possible that the collected data contain

sufficient information for parameter estimation.

However, use of the above sampling scheme does not immediately imply that model param-

eters are realistically identifiable. When solving the inverse problem, we may find that some

parameters are difficult to identify simultaneously; despite describing different mechanisms,

these parameters might have similar effects on prey dynamics and therefore be indistinguish-

able when validating the model against experimental data. To illustrate this, we present a con-

trived example of a potential identifiability issue in Fig 3, where we consider model solutions

for a single predator treatment (Bembidion-Pardosa) using different parameter values. We

choose two reasonable values of h0 based on the results from [24] (h1
0
¼ 2=24; h2

0
¼ 3=24).

Since we introduced b0 to the model, we do not have prior results to consult; we consider

b1
0
¼ 2=24 and b2

0
¼ 9=24 to capture a broad range of resulting model dynamics. Suppose we

were trying to determine the value of h0 from population trajectories; if b0 ¼ b2
0
, we see a sig-

nificant difference in the A. pisum population on day 8. If populations were close to 450 under

treatment A-BP and close to 0 under treatment AR-BP, we could conclude that b0 ¼ b2
0

and

h0 ¼ h1
0
. However, suppose we did not know that b0 ¼ b2

0
and instead assumed that b0 ¼ b1

0
.

Since error in the data is as likely to over- as under-estimate the aphid population, we might

erroneously conclude that h0 ¼ h2
0

(dashed line, no marker) instead of h0 ¼ h1
0

(solid line, no

marker) based on a noisy observation of the true solution (solid line, circle marker). Given the

noise inherent to experimental data (in particular, noise which will increase with the size of the

population we sample), it is unlikely that we could distinguish between these two population

trajectories. This problem is inherent to the model and we cannot necessarily anticipate where

it may arise prior to parameter estimation. However, we can guard against this problem by

sampling sufficiently often in time to outweigh experimental noise. If such sampling is not fea-

sible, comparing parameter results across different treatment types can improve identifiability,

as we expect these problems to vary across treatments.

2.3 Determining feasible sampling strategies for parameter estimation

In defining the sampling protocol, we must balance what is a reasonable undertaking with the

data required for parameter estimation. Since different methods of data analysis have different

criteria for meaningful information content, we must identify the method of analysis when

establishing sampling protocol. This choice determines the frequency with which we must col-

lect data and the sampling strategies we can implement. We employ a data-driven least squares
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minimization to estimate model parameters, as described in [39, 40]. We note that other meth-

ods exist for the estimation of model parameters (see, for example, examining terminal inter-

action strengths as in [8]). Solving a least squares inverse problem allows us to fit model

dynamics to data in time, preserving maximal information about physical processes. However,

convergence of this solution requires substantial, temporal data, and we must therefore utilize

increased sampling rates.

Obtaining these data is a time-consuming and expensive process and, with limited

resources, becomes a trade-off between sampling thoroughly at a single time or sampling fre-

quently in time. There is no consistent translation of this requirement to some amount of data

required to obtain a sensible solution to the inverse problem. However, we tentatively assume

that to estimate our five model parameters, we should inform the inverse problem with at least

Fig 3. Model trajectories for aphid populations under predator treatment Bembidion-Pardosa. Upper left: A. pisum aphid treatment. Upper right:

R. padi aphid treatment. Lower left: A. pisum in combined aphid treatment. Lower Right: R. padi in combined aphid treatment. We plot model

solutions for all combinations of parameters h1
0
¼ 2=24, h2

0
¼ 3=24, b1

0
¼ 2=24, and b2

0
¼ 9=24.

https://doi.org/10.1371/journal.pone.0195919.g003
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ten data points. Grouping our cages into cohorts of the three aphid treatments, with predator

treatments fixed, yields nine data points when using our proposed samples on days t = 2, 4, 8.

The alternative of grouping our cages into cohorts of the ten predator treatments, with aphid

treatments fixed, for 30 data points is perhaps drastic (especially since we can only theorize

that dynamics will be the same for all predators, despite phylogenetic differences). We there-

fore compromise by adding an additional sample on day t = 6, which may not be a day with

particularly high parameter sensitivities but does give additional information. This choice still

presents an enormous effort, requiring many man-hours of lab work. We therefore consider

the potential for subsampling of the aphid population in order to obtain data more quickly

(with less effort) on these days; due to resource availability, it is crucial that we establish a sub-

sampling protocol for the experiment.

To subsample the aphid population, Nj, at time tj in a cage with T tillers (individual plants

on which aphid populations are counted), we count the number of aphids on n< T tillers, ~Nn
j ,

and scale by T/n to obtain an estimate of the aphid population, Nn
j ¼

T
n

~Nn
j . We investigate the

effect that any error in Nn
j might have on our ability to estimate model parameters. We first

consider this problem in predator-free control cages for R. padi, for which we had previous

data to consult. In these cages, we assume strictly exponential growth of the aphids at

some rate r0, and we estimate the average growth rate �r in six replicate cages to use as an

approximation to r0 in the ATN model. From the per-tiller counts in these six cages, we con-

struct synthetic data for aphids with growth rate �r (see S3 Appendix for details). We consider

subsampling strategies in which n = 5, 6, . . ., 90 tillers are counted and estimate the growth

rate rn from the approximated population Nn
j . We compute the resulting error jrn � �r j for all

n, and repeat this process for 200 synthetic data sets.

We plot the average error jrn � �rj for each subsampling strategy in Fig 4. The dashed line

in the figure indicates the average value of jr � �rj for the estimated growth rates in the six

true data sets. We note that although the strategy prone to the least error is to sample all 90

tillers, the accuracy gained from sampling additional tillers drops significantly around n = 25

tillers. Sampling around n = 40 tillers results in error that is on the same scale as the average

value of jr � �rj. That is, the error induced by subsampling is no more drastic than the natural

variation we see in parameter estimates across controlled replicates; if we are comfortable

averaging out the latter and incorporating this parameter in our model, then the former

should be similarly manageable. We therefore conclude that sampling 45 out of 90 tillers

(or, 1-in-2 subsampling) yields sufficiently accurate parameter estimates. If the burden of

data collection is too high, sampling 30 out of 90 tillers (1-in-3 subsampling) is justifiable,

and sampling as high as 60 out of 90 tillers (2-in-3 subsampling) seems to be a very safe, if

intensive, strategy.

We next consider the effect of error induced by subsampling on our estimates of ATN

model parameters. We obtained per-tiller aphid counts for experimental cages with R. padi as

the basal species, but sometimes under different predator treatments than our intended study

communities [24]. Additionally, previous data are not sampled sufficiently in time to permit

the estimation of ATN model parameters. We must directly infer from these experimental

data the distribution of noise induced by subsampling (see S3 Appendix for details) and

add this noise to a simulation of cages which we assume perfectly follow ATN dynamics. We

present in Fig 5 the scatter plots and histograms of the normalized error in aphid population

counts induced by subsampling synthetic data for three categories of aphid densities, corre-

sponding to full-cage counts in the ranges of [0, 100], [150, 1500], and [4000, 9000]. We only

present results for the 1-in-3 subsampling rate here; at higher subsampling rates, the behavior

of the error is similar.
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We conclude that for full-cage populations greater than 150 aphids, the normalized error

induced by subsampling n tillers is normally distributed, with variance decreasing as the aphid

population increases. However, we note that when the aphid population is at very low values,

it is easier to make the worst possible over- and under-estimates of the population when

subsampling. There is therefore a clear bias towards the upper and lower limits of the error

induced by subsampling in this range. When generating synthetic data with errors sampled

from the distributions in Fig 5 and dynamics given by ATN model solutions for use in an

inverse problem, visual fits to the true model solution are poor for aphid populations below

150 (results not shown). Although the error in our parameter estimation did not vary consid-

erably in these cases, we caution against implementing a subsampling strategy for cages with

low population densities until more information is available.

An additional challenge in employing this method of parameter estimation is that the accu-

racy of results is dependent on the study system’s adherence to both themathematical model
of dynamics and the statistical model of error in the data. In particular, misspecification of the

statistical model can result in inverse problem solutions which appear to fit the data without

matching underlying behavior. This is a problematic outcome, as it is impossible to tell from

standard errors in our estimates and visual fit alone if the data are accurately described by

the models [40]; model-based analysis in this situation could be wrong without any indication

of the underlying issue. To avoid this, the statistical model is often revised iteratively, with

methods which either include an assumption of the underlying dynamics or which rely

entirely on information present in the data, once experimental data are available (see [43, 44]

Fig 4. The average value of jrn � �r j across 200 synthetic cages. The horizontal dashed line indicates the average value of jr � �r j for parameter

estimates using the true data set.

https://doi.org/10.1371/journal.pone.0195919.g004
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for implementation of these methods). When establishing the experimental sampling protocol,

we must consider the underlying statistical model of error that such a protocol suggests and

how we might be able to identify this model.

A previous cage experiment [24], which we have used as the basis for this work, employed

destructive sampling on the final day of data collection (to obtain estimates of aphid and pred-

ator abundances) and only collected aphid abundance data on one additional day during the

experiment. When a cage is destructively sampled, each plant is cut at ground level and

removed from the cage before aphids are counted. Aphids that are obscured from view within

the plants can be found with destructive sampling, and we therefore expect that destructive

sampling yields a more accurate count of the population. However, it is not possible to

destructively sample a cage more than once, meaning we cannot sample this way before the

Fig 5. Normalized errors induced by subsampling at a 1-in-3 rate for synthetic data. Left: data in the ranges of [0, 100]. Middle: data in the ranges of

[150, 1500]. Right: data in the ranges of [4000, 9000].

https://doi.org/10.1371/journal.pone.0195919.g005
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end of the experiment. Unfortunately, this means we cannot describe the relationship between

the error in non-destructive and destructive samples at all aphid density levels without destruc-

tively sampling over a range of predator treatments for the duration of the experiment. With-

out the space and resources to destroy a set of cages on every day that data are collected, we

refrain from destructively sampling the aphid population on the final day. We are therefore

able to statistically model error with fewer unquantifiable assumptions, despite trading away

the added accuracy of a destructive count on a single day.

2.4 Fitting and evaluating the model

Once the experiment is performed, we will parameterize our formulation of the ATN model

using the experimental abundance data in a least squares inverse problem (as summarized at

the beginnings of Sections 2.2 and 2.3, and detailed in [39, 40]). We will quantify statistical

properties of noise in our data, which permits the formulation of a weighted cost criterion

describing the difference between model predictions and empirical observations. By minimiz-

ing this cost, we obtain a best-fitting set of model parameters. We will first establish a baseline

for aphid growth using data from the control treatments, after which we will estimate ATN

model parameters using data from predator-treated mesocosms. By fitting the same model

parameters to treatments which utilize a phylogenetically diverse group of predators, we test

the generalizability of the trait-based model.

In order to compare the importance of habitat use and predator interference (as described

in our model by νij and b0, respectively), we will repeat this fitting for three models

1. the full model, as described in section 1,

2. a partially-reduced model, where b0 = 0, and

3. a fully-reduced model, where b0, v0 = 0.

The performance of each model will be compared based on

(i). the fit of the model, as quantified by the cost criterion described above,

(ii). precision (i.e. standard errors) of parameter estimates,

(iii). realism of estimated parameter values, and

(iv). realism of associated processes (e.g. feeding rates).

In comparing performance by (i), a lower cost indicates a better model fit; however, we for-

malize this by using a statistical comparison test for nested models, which corrects for the

number of parameters in each model. To evaluate (ii), we seek smaller standard errors associ-

ated with our estimates; a small standard error indicates high confidence in the estimate,

which requires that the model is sensitive to the parameter while reasonably fitting true

dynamics. Evaluation of (iii) and (iv) requires that we consult literature or supplemental

empirical testing; the realism of parameter values and processes allows us to assess how accu-

rate the models are.

3 Discussion

We have outlined a theory to test, developed a model which distills that theory into a mathe-

matical relationship, and designed experimental protocol to test that model, including the

optimal sampling method to minimize potential difficulties in estimating model parameters.

Taxa and treatments are chosen to address our trait-based hypotheses within the framework

of our ATN model, and combined in the design laid out in Fig 1. In order to attain sufficient
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information for model validation, we sample on days 2, 4, 6, and 8. If we are constrained by

resources and cannot sample at this rate, we expect that aphid populations will be most sensi-

tive to model parameters on days 2, 4 and 8. For treatments under which the aphid population

is rapidly decimated, it may be necessary to sample more frequently at the start of the experi-

ment. In these cases, we may also sample on days 1 and 3. From the available information, we

conclude that population data obtained by subsampling 2-in-3 or 1-in-3 tillers would be suffi-

ciently accurate under most treatments. However, since this analysis is based on data from an

experiment with different prey treatments than we use, we fully sample whenever possible.

We note that our proposed sampling schemes are intrinsically linked to the assumed ATN

model for species behavior and statistical properties of the data we intend to collect. Because of

this, we cannot make general conclusions about the amount of data necessary for validation of

a given model, or the frequency with which such data should be collected (except for models

and study systems sufficiently similar to our own). Instead, we make the case that sampling

schemes should optimize the expected information content of the resulting data set, in the con-

text of the proposed model for system dynamics and anticipated experimental noise. By

designing the experiment explicitly to test the model, we substantially increase our confidence

that any variation the model does not capture is due to mechanisms we have missed or misrep-

resented in the model, as opposed to simply insufficient data or data collected at incorrect tem-

poral resolutions. This can then form the basis for future studies investigating additional traits

or mechanisms in the iterative process of refining both the model and experiments testing it

[2]. By explicitly presenting our route through this process, we prevent the possibility of short-

circuiting it by retrospectively creating hypotheses to explain our data [45].

We first explicitly link the experiment with the model, allowing a clear test of how the

traits we seek to study affect food web dynamics. However, it is equally valuable to work in

the opposite direction, formulating our model with the knowledge that we will be fitting it to

an unrealistic mesocosm experiment. By measuring habitat use throughout the experiment

and including it in our formulation of overlap, our model implicitly addresses the fact that

species may be forced by the experimental design to share habitat. Our model therefore

allows for results to be generalized to communities where species habitat use might be differ-

ently defined, which is amenable to our eventual goal of extending an experimentally vali-

dated model to naturally occurring communities.

In specifically formulating our model to address a trait-based hypothesis, we guarantee that

each parameter’s effect on model output is an expression of the importance of an ecological

mechanism we seek to study. Solutions to time-varying sensitivity equations therefore reveal

intervals over which population data are most-influenced by the mechanisms we have designed

this experiment to study, and temporal sampling protocol must be informed by these results.

Failure to obtain data on days with high sensitivities might lead to the conclusion that an

experiment was not sufficiently thorough to determine the importance of a particular mecha-

nism or, even more alarmingly, that the mechanism does not significantly affect dynamics. For

our design, we note that sensitivity peaks across different two-day intervals for a variety of

experimental treatments and identify treatments where it might be necessary to sample more

frequently at the start of the experiment. By identifying critical sampling times for maximal

information prior to running the experiment, we ultimately save time and resources and, most

importantly, safeguard against the possibility of collecting data which are useless in model vali-

dation [46].

It is an unfortunate reality that unforeseeable circumstances will sometimes result in miss-

ing data where experimental results cannot be obtained, making model validation difficult. In

our experiment, we cannot guarantee that there will be sufficient time in the day to obtain the

necessary data at the experiment’s peak, when populations have reached maximal values. In
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addition to identifying a temporal sampling protocol, it is therefore equally important that we

determine a viable subsampling protocol before starting the experiment. We conclude that

once the population reaches a threshold value, subsampling is a viable option. At low popula-

tion densities, subsampled populations might poorly estimate the true population size, and so

we prioritize fully sampling these populations when there is insufficient time for the full sam-

pling of all populations. Moreover, our quantification of the error induced by subsampling will

be necessary in informing any uncertainty quantification for our estimated parameters, if sub-

sampling is implemented. In adapting this hybrid subsampling protocol, we guarantee that the

best possible data are collected whenever possible. In the event that we cannot fully sample, we

collect imperfect population data with quantifiable error for all treatments; from a mathemati-

cal perspective, this is preferable to the alternative of collecting perfect data for a handful of

treatments and obtaining no information on the remaining treatments.

The final step is to implement this experiment and use the data to estimate model parame-

ters that yield a best-fitting solution to observed dynamics, which we will present in future

work. However, in anticipation of this goal, we explore potential identifiability issues which, as

with many ecological models, exist in our formulation of the ATN model. Although we have

designed the experiment to maximize information content in the data, we demonstrate that it

is necessary to investigate possible non-unique parameter solutions when fitting the model to

these data and potentially augment our parameter estimation with some empirically measured

parameters. The intent in fitting a model to data from an ecological community is not only to

numerically identify a specific parameter, since the parameter value may not be generalizable

to other communities. Instead, our goal must be to describe the important mechanisms driv-

ing dynamics. If different parameter sets can fit the data equally well but tell different stories

about necessary traits in describing trophic interactions, then a failure to recognize these iden-

tifiability issues renders conclusions about underlying behaviors questionable.

A challenge in model validation is the ease with which confounding factors can derail our

understanding of the conditions for which a particular model is appropriate. In designing our

experiment, we must balance the need for controlled conditions with generalizability. We uti-

lize predators of diverse phylogeny in order to test the strength of these traits in determining

trophic interactions despite phylogenetic differences. However, we make a number of simplify-

ing assumptions and omissions which would otherwise be valuable additions to the model. We

design our experiment to control for predator population growth and complicated modes of

aphid reproduction, limiting our ability to test long-term model applicability. Moreover, a

multitude of other traits affect trophic interactions, and with the exception of predator avoid-

ance, we do not consider behavioral additions to the model. In particular, predator avoidance

by prey is an important aspect of population viability which we exclude in this experiment. As

a preliminary attempt at advancing a trait-based model, we choose two traits which we believe

to be particularly important and attempt to precisely quantify the effect of these traits on aphid

dynamics and intraguild predation. By omitting additional mechanisms, we ensure that the

experiment is specific to our traits of interest and maximize our confidence that the effects of

these traits will be captured by the empirical data and model fitting. After establishing a base-

line model for these simple interactions, we must formulate and test new terms which are

appropriate under complicated conditions.

The future of predictive ecology lies in the successful implementation of models to predict

changes in natural communities. In order for these models to produce credible results, they

must be based on and tested by empirical experiments. Moreover, these experiments must be

optimally designed such that sufficient data can be extracted to inform the model [47]. By pre-

senting this process before conducting the experiment, we have been forced, a priori, to explic-

itly establish our hypotheses and the rationale behind our experimental design [2, 45, 48]. This
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ensures that we have designed the experiment in a way which maximizes its relevance to the

model. When validating the model with experimental data, we will be able to investigate the

importance of modeled traits with maximal confidence and, if necessary, conclude that addi-

tional traits must be investigated to sufficiently describe observed behavior. The results of the

experiment will inform our efforts to build an appropriate model for these dynamics which

can be applied to different study systems, furthering our ability to describe and predict behav-

iors in natural ecosystems.
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S1 Fig. Fit of exponential model to control data using an OLS parameter estimation. Full-

cage population counts are indicated with x-markers and the estimated exponential growth for

each cage is plotted with a solid green line. Exponential growth at rate �r , the average across the

six replicates, is plotted with a dashed black line.

(TIF)

S2 Fig. Normalized errors induced by subsampling (̂�n) for synthetic cages generated from

tiller counts in category 1. We take n = 30, 45, 60 (1-in-3, 1-in-2, and 2-in-3 subsampling

strategies, respectively).

(TIF)

S3 Fig. Normalized errors induced by subsampling (̂�n) for synthetic cages generated from

tiller counts in category 2. We take n = 30, 45, 60 (1-in-3, 1-in-2, and 2-in-3 subsampling

strategies, respectively).

(TIF)

S4 Fig. Normalized errors induced by subsampling (̂�n) for synthetic cages generated from

tiller counts in category 3. We take n = 30, 45, 60 (1-in-3, 1-in-2, and 2-in-3 subsampling

strategies, respectively).

(TIF)
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