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Abstract Telos is a conceptual modeling language intended
to capture software knowledge, such as software system re-
quirements, domain knowledge, architectures, design deci-
sions and more. To accomplish this, Telos was designed to
be extensible in the sense that the concepts used to capture
software knowledge can be defined in the language itself,
instead of being built-in. This extensibility is accomplished
through powerful metamodeling features, which proved very
useful for interrelating heterogeneous models from require-
ments, model-driven software engineering, data integration,
cultural informatics and eLearning. We trace the evolution
of ideas and research results in the Telos project from its ori-
gins in the late eighties. Our account looks at the semantics
of Telos, its various implementations and its applications.
We also recount related research by other groups and the
cross-influences of ideas thereof. We conclude with lessons
learnt.

Keywords metamodeling · conceptual modeling · knowl-
edge representation · software engineering · requirements
modeling · semantic networks · RDF · cultural informatics

1 Introduction

Telos is a conceptual modeling language intended to capture
software-related knowledge, such as requirements, architec-
tural design, design rationale, evolution history and domain
knowledge. To capture such disparate kinds of knowledge,
Telos was designed to be extensible in the sense that one can
define in the language the notions used to model the vari-
ous topics. For example, one can define the concepts of en-
tity and activity as metaclasses, and then use these to build
SADT models with formal semantics. After four years of
language development, Telos was presented in 1990 [59]. It
has seen several implementations and it is still in use.
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The research baseline for Telos was the requirements
modelling language RML, which adopted the primitive con-
cepts of SADT [117], but was formal, adopting ideas from
knowledge representation languages in Artificial Intelligence
(AI), specifically semantic networks. However, RML was
rather impoverished with respect to the concepts it offered
(just activities and entities, called data in SADT), and more
variety would be needed to capture requirements but also
other software-related knowledge, such as domain knowl-
edge, designs and design rationale. Not being sure what these
other concepts would be, we proposed Telos as an extensible
language. From a user perspective, a critical success factor
for the long-term success of Telos was that it combined three
important perspectives: a rather standard logic foundation
suitable for formal reasoning as in deductive databases of
the late 1980s; a frame syntax suitable for an object-oriented
view as well as an extensible graph visualization preceding
the UML metamodel of the late 1990s; and an atomic propo-
sition structure as a precursor to the RDF triple store of the
early 2000s.

For such a long-running research project, it is valuable
to take a retrospective look at the features of Telos, its im-
plementations and applications, along with an assessment of
what worked and what didn’t. The main objective of this pa-
per is exactly that.

In the rest of this paper, we first present a brief his-
tory of research activities and the evolution of ideas Telos
is founded on (Section 2) followed by a detailed example of
modeling with Telos (Section 3). We then discuss the main
challenges for giving a formal semantics to Telos and the
ideas we adopted, mostly from Knowledge Representation
(KR) in AI and Deductive Databases (Section 4). Section 5
presents the implementation of Telos in the SIS and Con-
ceptBase systems together with related work at the Univer-
sity of Toronto. Section 6 discusses important application
areas that used Telos as a metamodeling language. We then
present the bigger picture of metamodeling and KR research
related to Telos (Section 7). In Section 8 we discuss the
lessons we learned from our experiences with Telos. Finally,
Section 9 concludes the paper with lessons learnt and re-
search directions on software modeling languages that used
Telos as research baseline.

2 History and Evolution of Ideas

Semantic networks have a long and illustrious history as
a framework for representing knowledge starting with the
Ph.D. thesis of Ross Quillian in 1966 [109]. Many research
groups were working on semantic-network-based knowledge
representation schemes in the early seventies, including the
KR group at the University of Toronto. The first proposal for
a semantic-network-based KR language came in the Master

thesis of Hector Levesque (1977) in the form of Procedu-
ral Semantic Networks (PSN) where the semantics of nodes
and edges were defined procedurally through attached pro-
cedures, in a similar spirit to Minsky’s frame theory [86], but
in a more constrained and disciplined fashion [80]. Among
other features, PSN treats attributes as first class objects that
are instances of attribute classes, allows for metaclasses, and
includes most general classes, such as the class of all classes.
In this sense, PSN was self-descriptive like the AI program-
ming language LISP. PSN was followed by modeling lan-
guages for information systems (Taxis [88]) and software
requirements (RML [32]), both of which adopted many of
the features of PSN but focused on particular applications
within SE, namely Information Systems Design and Require-
ments Engineering. The retrospective paper [33] places the
requirements modeling language RML in the context of its
roots in knowledge representation and to languages that fol-
lowed it such as CML and Telos. RML focused specifically
on providing a formal language to express requirements for
information systems. It adopted an object-oriented stand-
point to define so-called activity, entity and assertion classes.
A first-order language was proposed to define integrity con-
straints, but no implementation was ever completed.

Telos [89] is a descendant of RML and CML (which was
an intermediary step from RML to Telos). RML was devel-
oped in the Ph.D. thesis of Sol Greenspan, while CML was
defined in the Master thesis of Martin Stanley in 1986. Te-
los was intended to be extensible, in the sense that one could
define new metaclasses in order to build models for a par-
ticular domain. For example, a model for software would
use metaclasses for requirements, design and implementa-
tion concepts.

Telos, like PSN, treats both individuals and attributes
as first-class citizens of the model and represents them uni-
formly as propositions. Propositions consist of a unique iden-
tifier, a source, a label and a destination; hence, they can
be represented graphically as labeled directed arcs with an
identifier. Propositions are organized along four dimensions:
instantiation/classification, specialization/generalization and
two temporal dimensions representing historical and trans-
action time. Classes are themselves instances of metaclasses.
The class hierarchy is infinite; one can define metameta-
classes and so on. In other words, the classification dimen-
sion defines an unbounded linear hierarchy of strata/planes
of ever more abstract propositions. There are also ω-classes
with instances on more than one such plane, such as the class
that has as instances all classes (including itself).

Telos also allows one to represent temporal knowledge
by extending propositions with a history and a belief time
component. History time is the time a fact is true in the do-
main, while belief time is the time a fact is added to the
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model.1 Historical knowledge in Telos is allowed to be in-
complete using Allen’s interval algebra [4], extended with
dates and times, which is used to encode this incomplete
knowledge in terms of temporal constraints.

Another important feature of Telos is the ability to
attach typed integrity constraints and deductive rules to
classes. The semantics of these concepts is as in deduc-
tive databases [84], but Telos also offers metalevel reasoning
based on the predicate Holds.

The first formal semantics of Telos was given through
a translation of Telos models into first order logic. This se-
mantics was presented in a technical report [70] and sum-
marized in [89]. Later, a possible-worlds semantics was de-
veloped in the Master thesis of Dimitris Plexousakis, also
completed at the University of Toronto [106].

Telos was never implemented in its full generality as
defined in [89]. In Toronto, there was an initial Prolog im-
plementation (with its temporal reasoner written in C), pre-
sented in the Master theses of Manolis Koubarakis and
Thodoros Topaloglou, followed by a Lisp implementation
called KNOWBEL [71]. These initial efforts were followed
by two efficient implementations, one completed at the Uni-
versity of Crete, named Semantic Index System (SIS) [20].
A second one, named ConceptBase [44,51,43], was devel-
oped at the University of Passau and subsequently at RWTH
Aachen. ConceptBase is open source2 and actively main-
tained at the University of Skövde as a system for meta-
modeling and method engineering [52]. SIS is also actively
maintained although it is not open source; it is used in var-
ious projects of ICS-FORTH in the domain of Cultural In-
formatics.

Ever since its inception, the KR ideas of Telos, and
its SIS and ConceptBase implementations, had impact and
many applications in research areas beyond AI. The first
such area is Software Engineering and in particular, Re-
quirements Engineering and Model Management. As the
earliest such example which actually motivated much of
the Telos development, the DAIDA [47] project aimed to
develop an integrated, model-based software development
environment where developers maintained and evolved re-
quirements, design and implementation models and their
inter-relationships in a single repository. The requirements,
design and implementation languages adopted were RML,
Taxis and DBPL (a database programming language). Telos

1 Relational database researchers were the first to make this distinc-
tion by introducing the concepts of valid time and transaction time
of a tuple in 1985 [120,124]. Since this paper is on the evolution of
the ideas of Telos, let us point out a fact regarding the evolution of
these two time dimensions in the database community: it took 26 years
for these concepts to be introduced into SQL as part of the standard
SQL:2011. This has also accelerated the introduction of temporal fea-
tures in commercial DBMS.

2 http://conceptbase.sourceforge.net/

was used to define the primitive concepts of the three lan-
guages so one could maintain cross-linked models [21].

The second area is Cultural Informatics, especially
through the introduction of the CIDOC CRM model [24])
which became ISO 21127 standard in 2006. CIDOC is the
International Committee for Documentation of the Interna-
tional Council of Museums, and CIDOC CRM is the con-
ceptual reference model for integrating information about
museum objects. The third area where Telos had great im-
pact is education. The SIS and ConceptBase implementa-
tions have been used for many years in the teaching of KR
concepts to Computer Science and Humanities students with
positive results.

3 Telos by Example

In this section, we present an example of a Telos knowledge
base which is shown graphically in Figure 1.

Fig. 1: An example of a Telos model

Telos models consist of propositions, which are clas-
sified as individuals and attributes. Some propositions are
classes. Individuals are denoted by nodes in the graph of
Figure 1 while attributes are denoted by dashed arrows. In
Figure 1, the proposition TelosPaper is an individual and
it is an instance of another proposition, the class Paper. In-
stantiation links in Figure 1 are denoted by arrows of normal
thickness.

TelosPaper might have been defined by the follow-
ing Telos statement:
TOKEN TelosPaper (at 10/05/2018..*)
IN Paper
WITH
hasTitle
title: "Telos is great!"

END
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When this statement is processed, the following knowl-
edge base propositions are generated:
P1=(TelosPaper, instanceOf, Token, T1)
P2=(TelosPaper, instanceOf, Paper, T1)
P3=(TelosPaper, title, "Telos is great!", T1)

T1 at 10/05/2018..*

As mentioned earlier, a proposition consists of a unique iden-
tifier, a source, a label, a destination and a time interval
representing history time. Hence, proposition P2 represents
the real-world knowledge that TelosPaper belongs to the
class Paper throughout time interval T1.

Since at is a synonym for the relation equals
of Allen’s interval algebra [4], T1 is identical with
10/05/2018..*, an infinite time interval constant which
starts on May 10, 2018. The historical knowledge in
the above knowledge base is complete since we know
the exact duration of T1. The semi-infinite time interval
10/03/2018..* is a way of representing persistence e.g.,
the title of TelosPaper remains the same until the knowl-
edge base learns otherwise through an update. By using a
relation other than at/equals, one can represent incom-
plete historical knowledge in Telos (e.g., the knowledge that
a certain event took place in 1986 but we do not know the
exact day or month in that year). The syntax of Telos allows
using different temporal relations and time intervals for each
part of a statement (e.g., the IN clause or a specific attribute
and value).

The label instanceOf in propositions P1 and P2 is
built-in and it encodes the instantiation relationship between
TelosPaper and classes Paper and Token. Token is a
built-in class of Telos and it has as instances all propositions
at level 0 of the instantiation hierarchy of Telos propositions,
which is depicted in Figure 2.

Fig. 2: The infinite instantiation hierarchy of Telos

The instantiation hierarchy of Telos is infinite and con-
sists of the following levels:
– Level 0: includes all tokens (i.e., objects having no in-

stances) such as P0 to P3 above.

– Level 1: includes all simple classes (i.e., objects having
only tokens as instances) such as Paper and Token.

– Level 2: includes all metaclasses i.e., these having only
simple classes as instances such as Functional to be
defined below, and the built-in class SimpleClass.

– Level 3: includes all metametaclasses i.e., these having
only metaclasses as instances.

– ...
– Level ω: includes all ω-classes e.g., Class,
AttributeClass and Proposition. ω-classes
can have instances from any level of the instantiation
hierarchy.

Before defining TelosPaper, a knowledge engineer
would have to define the class Paper using the following
Telos statement:

CLASS Paper (at 18/03/2018..*)
IN SimpleClass
ISA Document
WITH
attribute
hasTitle: String

END

When this statement is processed, the following knowl-
edge base propositions are generated:

P4=(Paper, instanceOf, SimpleClass, T2)
P5=(Paper, isA, Document, T2)
P6=(Paper, hasTitle, String, T2)

T2 at 18/03/2018...*

Notice that the class Paper has been defined for an inter-
val longer than the one of its instance TelosPaper as ex-
pected. SimpleClass is another built-in class of Telos.
It lives at Level 2 of the instantiation hierarchy and has as
instances all the simple classes at Level 1. The ISA clause
introduces superclasses of the defined class and isA is the
corresponding built-in proposition label. Subclass/superclass
links are shown with arrows of double thickness in Figure 1.
In the above statement, the attribute hasTitle is also de-
fined with domain the defined class Paper and range the
built-in class String.

The above Telos statements give us the opportunity to
discuss one more important feature of Telos. Proposition P3
is an attribute proposition and it is an instance of the at-
tribute class P6. This is represented by the lower vertical
arrow in Figure 1 and in textual terms by the following in-
stantiation proposition:

P7=(P3, instanceOf, P6, T2)

In this way, attributes are first-class objects, exactly as indi-
viduals, in Telos.

Notice also how labels of a proposition such as P6, which
is an attribute class, are then used in the level of tokens to
introduce an attribute token such as P3. This is the way in
which a proposition p living at level i of the instantiation
hierarchy inherits all attributes defined at level i + 1 for a
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proposition p’ of which p is an instance. For each such in-
heritance relationship at levels i and i + 1 of the infinite
instantiation hierarchy, the attribute instantiation constraint
of Telos must hold. This constraint requires that if an at-
tribute proposition is an instance of an attribute class then
the source of the attribute proposition must be an instance
of the source of the attribute class, the destination of the at-
tribute proposition must be an instance of the destination
of the attribute class, and the history time of the attribute
proposition must be included in the history time of the at-
tribute class. The reader is invited to check that this holds
for attribute class P6 and its instance P3.

The same way of modeling attribute instantiation is used
in the built-in features of Telos. For example, the ω-class
AttributeClass, which has all attribute classes as in-
stances, has the components

(Class, attribute, Class, AllTime)

where AllTime is a built-in time interval including all other
time intervals. As one might expect given the above Te-
los statement defining class Paper, P6 is an instance of
AttributeClass and the attribute instantiation constraint
holds here too.

Now imagine that a knowledge engineer wants to ex-
press the fact that papers have at most one title. In other
knowledge representation languages (e.g., OWL-DL), this
would have been expressed using a built-in construct of the
language (e.g., a functional property in OWL-DL). Telos
can define functional properties in the language itself, us-
ing its primitive mechanisms. For example, one can define
the metaclass Functional with the following statement

CLASS Functional
COMPONENTS (Class, single, Class, AllTime)
IN AttributeClass, MetaClass WITH
integrityConstraint

:$(forall s/Single)(forall p,q/Proposition)
(p in s and q in s and from(p)=from(q) and
when(p) overlaps when(q) implies p=q)$

END

and then redefine Paper as follows:

CLASS Paper (at 18/03/2018..*)
IN SimpleClass
ISA Document
WITH
attribute, functional
hasTitle: String

END

Now P5 is also an instance of the metaclass

Functional=<Class, functional, Class, AllTime>

where Class is the ω-class of all classes,
AttributeClass is the ω-class of all attribute classes,
MetaClass is a class which lives on Level 3 of the
instantiation hierarchy and has all metaclasses as instances,
and functions from and when return the source and history
time of their input propositions.

The sorted first-order logic formula in the above state-
ment is an integrity constraint. Using this mechanism of

integrity constraints, Telos can define other constructs use-
ful for a particular domain through the metamodeling fea-
tures of Telos. The interested reader is invited to consult [89,
70] for more details of the language, and more examples of
metamodeling.

4 Formalizing Telos

The semantics of Telos can be disentangled by consider-
ing three linguistic subsets: (i) Telos0: traditional semantic
network features like IN, ISA, factual assertions about at-
tributes of objects and specifications of generic properties of
attributes, like domains and ranges; (ii) Telos1: typed FOL
formulas used as integrity constraints and deductive rules;
(iii) Telos2: history time and belief time for all proposi-
tions; (iv) Telos: update and query of a Telos model via a
TELL/UNTELL/RETELL/ASK interface.

For Telos0, the main KR concern is to support reason-
ing with specialization and instantiation constraints [89,70].
Notice that contrary to analogous inference rules in more
recent ontology languages (e.g., RDFS and OWL), these are
treated as constraints in Telos, thus better supporting model
validation.

The introduction of integrity constraints as typed first-
order logic formulas in Telos1 raises the following question:
If we treat the set of propositions told to the system as a
model, how should we give meaning to an integrity con-
straint IC? Integrity constraints is a concept that has been
studied for decades in Databases, Logic Programming and
KR [123]. Integrity constraints are statements in some for-
mal language that should be true for a model. For example,
in the model of Section 2, we might want to enforce the con-
straint that a paper has only one title at every point in time.
Integrity constraints can be static or dynamic. Static con-
straints enforce properties that should be true in a model. For
example, in our paper model, every paper must have exactly
one title. Dynamic constraints, on the other hand, enforce
properties that refer to facts in two or more model states.
For example, in a model about employees, the salary of an
employee should never decrease.3 Since Telos3 has a notion
of time, both kinds of integrity constraints can be expressed.

Three kinds of semantics of integrity constraints can be
found in the literature. The first semantics requires that an
integrity constraint IC be consistent with the model. The
second semantics requires that an integrity constraint is en-
tailed by the model. Both of these views come from the de-
ductive database tradition [84] where integrity constraints
are considered to be statements about the world modeled by
a model. The third semantics treats an integrity constraint IC
as an epistemic statement to be checked against the model,

3 Sadly enough, in reality, this constraint doesn’t always hold.



6 Manolis Koubarakis et al.

itself described by a set of formulas in first-order logic. This
view was originally proposed by Ray Reiter [113].

Reiter [113] uses the epistemic logic KFOPCE of Lev-
esque [79] to formalize static integrity constraints over a
model expressed in first-order logic. Checking whether an
integrity constraint is satisfied can then be done using the
ASK operator of Levesque [79] as follows. An integrity
constraint IC is satisfied by a model M if and only if the
query ASK(M, IC) returns yes.

Reiter [113] proves that if a model is a complete de-
scription of its domain, the three semantics of integrity con-
straints do not differ. However, once we allow existential
quantification (null values), disjunction or other forms of in-
completeness, the entailment semantics is stronger than the
consistency semantics, and the epistemic semantics is the
only one that allows us to properly state e.g., that “the key
of a class must be known” [113].

The epistemic semantics of integrity constraints also pro-
vides a solution to another dilemma faced by designers of
a knowledge-based system: how to decide whether a for-
mula stating something about the domain should go into the
model or should be treated as an integrity constraint. The
dilemma is typically solved using the detailed knowledge
of the domain and the application that is developed. Hence,
model formulas are used for answering queries, while in-
tegrity constraints are formulas that are checked to see whether
they hold in the model, but they do not participate in query
answering. This methodology is not entirely satisfactory given
that integrity constraints are also formulas about the mod-
eled world. Why aren’t they used in query answering too?
Interestingly enough, the dilemma disappears in the the epis-
temic view of integrity constraints: the formulas in the model
are about the domain whereas integrity constraints are about
the model itself, thus they “live” outside of the model and
do not participate in query processing.

Both formal semantics of Telos given in [70,89] and [106]
adopt the semantics of integrity constraints based on con-
sistency. This choice was motivated by practical considera-
tions. By adopting this semantics, implementations of Telos
such as ConceptBase have been able to draw on many meth-
ods from deductive databases and logic programming for de-
veloping efficient algorithms for integrity constraint check-
ing for Telos. To facilitate multiple, perhaps conflicting in-
tegrity perspectives on a knowledge base, ConceptBase ex-
tended the simple TELL and ASK concepts by introducing
a KB view concept called query classes which – similar to
Reiter’s epistemic approach – could be activated on demand
to analyze a collection of Telos models [11].

Another important issue in the semantics of Telos is the
semantics of propositions expressing deductive rules. Start-
ing from quoted strings, [70,89] propose reasoning facilities
by amalgamating language and meta-language [9] and defin-
ing a provability relation as part of the translation to first-

order logic. If we allowed arbitrary formulas to be given as
deductive rules, provability would be undecidable. [70] sug-
gested limiting rules to Horn form in order to regain decid-
ability. However, this is not guaranteed, due to the presence
of function symbols, like from() used in the example of
Section 3, which can be nested.

The formalization of history time (aspect (iii) above)
needed to be based on an appropriate theory of time in-
tervals and dates e.g., as studied by Ladkin [74]. The for-
malization of belief time, on the other hand, needed to
deal with “frame axioms”: what propositions remain true
when there is a change to a Telos model? This was done
in [106] where a possible-world semantics of Telos is pre-
sented together with a knowledge-level account which gives
semantics to knowledge base operations TELL, UNTELL,
RETELL and ASK (aspect (iv)).

5 Implementations of Telos

In this section we discuss the SIS and ConceptBase im-
plementations of Telos since these have been operational
for 25-30 years and drove significant applications, includ-
ing commercial ones, as we will see in Section 6. While SIS
focuses on the efficient evaluation of the structural and in-
heritance features of Telos, ConceptBase emphasized logic-
based optimizations. We also discuss work on knowledge
base management systems (KBMS) done at the University
of Toronto which, although it did not result in a Telos im-
plementation, was pioneering at that time and guided future
work on RDF stores at the University of Crete after 2000.

SIS. The SIS implementation of Telos was undertaken in
the context of the EU project ITHACA that ran from 1990
to 1994 [20] at the Institute of Computer Science, Founda-
tion of Research and Technology - Hellas. SIS is a scalable
C++ implementation of Telos with a client-server architec-
ture and a client side API for accessing and modifying the
knowledge base [19]. It was further accompanied by con-
figurable, application-independent data entry, browsing and
query formulation components, as well as an interpreter for
Telos statements in ASCII format. It was ported to different
Unix and Microsoft Windows platforms.

SIS implements only the classical semantic-network fea-
tures of Telos. It does not implement ω-classes, history time,
belief time, integrity constraints and deductive rules. Object
labels are globally unique, including attribute labels, which
avoids logical conflicts due to multiple inheritance. Built-in
reasoning only supports ISA transitivity, and the instantia-
tion and generalization constraints of Telos.

The SIS server, implemented in the Master thesis
of Giorgos Georgiannakis [30], stores user-definable Te-
los data as Telos objects in the form of two core inter-
nal C++ classes: Individual and Attribute. Each
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object has a unique internal 32-bit ID, an instantiation
level and contains 6 small, fixed-size arrays for stor-
ing sets of related IDs that can be extended without
limits by additional array blocks. These ID sets pertain
to the associations has instance, is instance of,
has class, is class of, has superclass and
has subclass. In addition, the class Attribute
has a set for has attribute and one ID for each
of has from, is From of, has To and is To of.
Thus, SIS implements a complete bidirectional linking be-
tween Telos objects. Built-in system classes follow the par-
tition of Telos objects by type (individual, attribute) and
instantiation level (individuals, classes, metaclasses etc.),
forming the user-visible endpoints of the linking system.
An unlimited list of labels enables associating each ID with
a unique name that can be modified by the user at run-
time without losing the reference to related objects. In ad-
dition, SIS implements the datatypes string, integer
and real. Users can refer to data values by a suitable syn-
tax or data entry form.

SIS is tuned for very high performance and scalability of
graph traversal. Storage space is optimized by adjusting stor-
age block sizes against linking blocks according to actual us-
age statistics. It features highly optimized multilevel caching
of disk blocks, set arrays and individual objects, using tech-
niques borrowed from the Unix paging systems, and sorted
sets for the bidirectional linkage, maintained from data entry
time on. The query system consists of primitive set-valued
operations. The most basic ones take a set of IDs as input,
e.g. some persons, and return the union of associated IDs,
e.g. “all attributes” of these persons or “all classes”. Unions
and intersections of sorted sets have complexity O(n). This
radical deviation from relational database techniques (im-
plemented in the Master thesis of K. Ntantouris [98]) ren-
ders the pre-calculation of transitive closures unnecessary,
and even cycle detection comes at very low cost. In 1994,
the SIS was tested with a population of up to 850,000 ob-
jects (individuals and attributes), with a maximum capacity
of 1 billion. A recursive query on a binary tree including cy-
cle detection with 1024 links required about 2 seconds on a
Sun Sparc station. Up to a total population of 500,000 ob-
jects, no significant influence of the population size on the
query speed could be measured. Batch data import of 10,000
individuals and attributes required about 2 minutes on the
same machine. The largest application, developed in 1996,
was managing the Getty Thesaurus of Geographic Names4

with some 100,000 records describing historical places. To
the best of our knowledge, SIS was the fastest system com-
parable to Telos KR languages in the 1990s.

Another interesting feature of the SIS implementation is
its simple custom scripting language which allows formulat-

4 http://www.getty.edu/research/tools/
vocabularies/tgn/index.html

ing queries by invoking stateful API components with tem-
porary sets at the server side. This language has been widely
used to customize user interfaces, but also interactively for
exploring SIS knowledge bases. Set-based graph traversal
renders joins practically unnecessary by essentially replac-
ing them, according to our experience with dozens of appli-
cations where a real need for joins was never encountered.
Second-order features still rare in current KR systems, such
as cardinality tests, have been effectively deployed in SIS.
Implementation of various reasoning tasks was delegated to
procedural code using the API.

ConceptBase. The ConceptBase implementation of Telos
[43] was developed in the European projects DAIDA (where
the Toronto KR group was also a collaborator) and COMPU-
LOG between 1986 and 1992. In his Ph.D. thesis, defended
in 1992, Manfred Jeusfeld showed that Datalog with strati-
fied negation is sufficient to describe the semantics of a Te-
los version without history time. Together with the logic pro-
gramming technique of partial evaluation, this result allowed
to reuse all the query optimization and integrity check-
ing results from Deductive Databases to automatically op-
timize rules and constraints across multiple levels of meta-
classes, or even for externally materialized views (such as
browser copies of a knowledge base with limited connec-
tion to the original) [122]. As one consequence, Concept-
Base was, three years before the advent of the World Wide
Web in 1989, the first knowledge-based system to be used in
client-server mode across the Atlantic.

Second-order predicates like Holds(p) [89] were not im-
plemented but replaced by more restricted multi-level rea-
soning mechanisms as illustrated in the power type construct
discussed below.

A key advantage of Telos over other metamodeling
paradigms is its ability to represent its own core princi-
ples (instantiation, specialization, attribution) as predefined
objects in the so-called ω-level. This resulted in just five
predefined ω-classes in ConceptBase. Proposition has
all propositions in a model as instances, including itself.
It has four sub-classes. Individual has all propositions
not relating other propositions as instances. Attribute
has as instances all propositions that are not individuals.
InstanceOf is the class of all explicit instantiation re-
lations (relating a proposition to a class), and finally IsA
is instantiated by all explicit subclass relations between ob-
jects5.

In ConceptBase, all objects including individuals have
system-generated identifiers and there is no history time as-

5 The original version of Telos presented in Section 3 has three
more ω-classes: IndividualClass, AttributeClass and
OmegaClass.
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sociated to propositions anymore6. Further, propositions are
represented by facts of the predicate P (proposition):
P(id1, id1, TelosPaper, id1)
P(id2, id2, Paper, id2)
P(id3, id1, instanceOf, id2)
P(id4, id1, title, id5)
P(id5, id5, "Telos is great!", id5)

This change enabled the implementation of a proposi-
tion store that treats the identifiers like pointers since every
reference to a proposition is now is a system-generated iden-
tifier.

Constants in ConceptBase are reified to objects. A class
Integer thus stands for the currently stored integer con-
stants, not for all integers. The predicate P is available in the
rule and constraint language. It proves in particular useful to
define generic properties of relations such as transitivity.

While the view of instantiation levels has a long tradition
and is currently discussed in the multilevel modeling com-
munity [5], one can also argue that Telos has just two levels:
the data type P(id,x,m,y) and the database of all propo-
sitions matching this data type. A proposition (i.e., object)
is an instance of the object Proposition, but at the same
time it may also be instance of user-defined classes (residing
on any abstraction level).

The ω-class Proposition (being an instance of itself)
is the most general object for defining properties. For exam-
ple, the notion of transitivity can be expressed in terms of at-
tributes of the object Proposition and then is applicable
to any usage domain. The rules and constraints for defining
the semantics of such generic relations are typically ranging
over more than two instantiation levels.

The addition of such generic constructs is an important
application of the metamodeling approach to Software En-
gineering. Most applications of ConceptBase use this abil-
ity. We present here the example of multi-level modeling to
highlight the idea. In Telos, a predefined axiom defines class
membership inheritance:

(forall x,c,d/Proposition)
(x IN c) and (c ISA d) ==> (x IN d)

The formula is realized as a deductive rule that derives
instantiations to the superclass. A simple addition of two re-
lations and a user-defined deductive rule extends Telos to
DeepTelos [55] for multi-level modeling (simplified vari-
ant):

Proposition WITH
attribute
powerType: Proposition

END

(forall m,x,c/Proposition)
(x IN c) and (m powerType c) ==> (x ISA m)

6 ConceptBase supports the belief time of an object, i.e. the time
when the object was first created and when it was marked as deleted, if
applicable.

The rule is similar to the membership inheritance axiom.
The object m is declared as so-called most general instance
of the “powertype” object c. Then, each instance of c be-
comes a subclass of m.

Cross-notational links. Consider, for example, the concept
of a data store in a process model. It stands for the location,
where data is stored. In the multi-perspective approach, a
link between the data store and its data model is planned at
the metametaclass level:

TASK WITH
attribute
writes: STORE;
reads: STORE

END
TYPE END
STORE WITH
attribute
hasType: TYPE

END

The link hasType bridges the process perspective to
the data model perspective. One abstraction level lower, mod-
eling languages are defined using this metametamodel:

Activity IN TASK WITH
writes output: Database
reads input: Database

END
Database IN STORE WITH
attribute
hasType type: ObjectType

END
ObjectType IN TYPE END
EntityType IN TYPE ISA ObjectType END
RelationshipType IN TYPE ISA ObjectType END

Of particular interest are cross-notational links such as
hasType. They come with integrity constraints expressing
the proper linkages of models expressed in the perspectives.
For example, each database such as PERSONDB must have
at least one object type such as Person.

Note that the concepts PERSONDB and Person are
one instantiation level below the concepts Database and
ObjectType, which are themselves instantiated from the
metametamodel. The constraint can still be expressed at the
metametamodel level:

(forall s/STORE) (exists t/TYPE) (s hasType t)

This formula ranges over three instantiation levels. The
concepts STORE and TYPE are metametaclasses. The vari-
ables s and t are instances of instances of these classes. The
formula is equivalent to the formula:

(forall s,S) (s IN S) and (S IN STORE)
(exists t,T) (t IN T) and (T in TYPE) and

(S hasType/m T) and (s m t)
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ConceptBase partially evaluates such multi-level formu-
las to a set of formulas ranging over only two levels. For
example the above definition of Database yields the fol-
lowing facts:

(Database in STORE)
(ObjectType in TYPE)
(Database hasType/type ObjectType)

By evaluating the multi-level formula against these facts,
we obtain:

(forall s) (s IN Database)
(exists t) (t IN ObjectType) and (s type t)

ConceptBase architecture. The architecture of ConceptBase
has three levels. The lowest level is the object store. It has a
highly optimized data structure for propositions and its four
flavors (individuals, attributes, instantiations, and specializa-
tions). The middle level (called the ConceptBase server) is
an engine for rules, constraints and queries based on Dat-
alog with stratified negation. Finally, there are a number of
client programs that interact with the ConceptBase server by
textual and graph views.

The ConceptBase server includes compilers that trans-
late the first-order logic syntax of deductive rules, con-
straints and queries defined in [89] to executable Data-
log code. Several optimization techniques are employed to
achieve short response times. First, predicates that are im-
plied by Telos axioms are removed. This eliminates most
instantiation predicates. Second, the predicate order in rule
bodies is rearranged based on the size of their extensions.
Finally, partial evaluation is used to replace rules with
variable-rich predicates by a set of rules whose predicates
have more constants. The partial evaluation is in particu-
lar used to eliminate occurrences of instantiation predicates
where the class parameter is a variable. Besides efficiency,
the partial evaluation also yields Datalog rules with less vari-
ables, hence being more stratifiable.

Later versions of ConceptBase included a number of fea-
tures that were not included in the original Telos specifica-
tion. The rules and constraints of Telos are augmented by an
active rule component. Similar to tuple-generating depen-
dencies, this allows for example to specify mappings be-
tween modeling languages. Arithmetic and recursive func-
tions allow to compute metrics such as the length of the
shortest path between two nodes in a graph. Finally, a mod-
ule concept allows to manage a large number of models in
the same server and control the visibility of objects in mod-
ules. ConceptBase supports multi-user access, a primitive
form of ACID transactions, and a mechanism to grant access
rights to modules based on user-definable deductive rules.

ConceptBase can handle relatively large Telos models.
The size is limited by the number of bits used for an object

Feature SIS ConceptBase

Implementation languages C++ Prolog, C++

Architecture Client/Server Client/Server

Platforms Unix, Windows Linux, Windows

ω-classes No Yes

Metaclass levels 4 unlimited

Object identifiers 32 bit 32 bit

ISA axioms Yes Yes

Instantiation axioms Yes Yes

History time No No

Belief time No Yes

Integrity constraints No Yes

Deductive rules No Yes

Higher-order predicate Holds No No

Table 1: A comparison of SIS and ConceptBase

identifier, currently 32 bits. This limit allows to store 4 bil-
lion distinct propositions (metaclasses, classes, instances, at-
tributes, rules, constraints, queries). Ludwig et al. [82] have
compared the performance of ConceptBase and Protégé /
Racer for various ontology engineering services such as def-
inition of classes and querying of instances. While Concept-
Base is relatively slow for class definitions (due to compiling
constraints and checking of built-in axioms), it has a linear
query response time for the sample queries in contrast to the
quadratic response time by Protégé/Racer.

Table 1 summarizes the previous discussion by compar-
ing SIS and ConceptBase.

The KBMS Project at Toronto. Parallel to the activities lead-
ing to the development of SIS and ConceptBase, the Te-
los KBMS project at the University of Toronto proposed a
generic architecture for a KBMS intended to support appli-
cations requiring the construction, efficient access and man-
agement of large, shared knowledge bases [90,14]. The ar-
chitecture assumed Telos as the knowledge representation
language with its assertional sublanguage used to express
integrity constraints and deductive rules. It also provided
for general-purpose deductive inference and special-purpose
temporal reasoning. A number of results were produced in
the context of the project addressing several knowledge base
management issues. Specifically, for storage management, a
new method was proposed for generating a logical schema
for a given knowledge base [125]. Query processing algo-
rithms were proposed for semantic and physical query op-
timization, along with an enhanced cost model for query
execution cost estimation [126]. On concurrency control, a
novel concurrency control policy taking advantage of knowl-
edge base structure was shown to outperform two-phase lock-
ing for highly structured knowledge bases and update-in-
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tensive transactions [13,12]. Finally, algorithms for the effi-
cient processing of integrity constraints and deductive rules
during knowledge base operations were described in [107,
108]. Original results included novel data structures and al-
gorithms, as well as performance evaluation techniques [118,
119]. Some of the above results (e.g., the use of vertical par-
titioning for the storage of Telos knowledge bases in rela-
tional systems) were later recast in the context of RDF stores
initially by the ICS-FORTH Semantic Web group [3], and
later by other database researchers [1].

6 Applications of Telos

In this section we discuss the role of Telos in four applica-
tion domains: software and data engineering, cultural infor-
matics and education.

Figure 3 presents an overview of the specific research
fields where Telos and its implementations have had signif-
icant impact, together with indications of the years where
this impact mostly took place.

6.1 Software Engineering

The ConceptBase implementation of Telos was initially used
in the EU DAIDA project, where it served two roles. First,
Telos was used as the specification language for data-inten-
sive applications. Second, it was used as the representation
language for software design decisions [49,45]. The deduc-
tive capabilities of Telos were used to specify rules for for-
ward and backward traceability of design artifacts. In the
subsequent NATURE project, the core European basic re-
search project on the nature of RE in the early 1990s [42],
[83], the ConceptBase implementation of Telos served as the
metadata manager bridging the domain, process, and repre-
sentation perspectives on requirements engineering; in the
follow-up CREWS project, goal modelling and multime-
dia scenarios were added as key object types [36]. In the
ITHACA project, the SIS implementation of Telos was used
to develop a Software Information Base (SIB) [21] which
featured a conceptual model for capturing software require-
ments and static analysis data of large applications and a
software component repository indexed by functional de-
scriptions.

An additional benefit of Telos in the software develop-
ment domain was its ability to describe other modeling lan-
guages such as ER diagrams through metamodeling. The
idea was therefore to use these capabilities of Telos to di-
rectly store such models in ConceptBase, and to make them
available to external development tools through query pro-
cessing. The metamodeling capability was later used in nu-
merous applications of ConceptBase to define domain-speci-
fic conceptual modeling languages.

The uniform representation also allows to link the con-
structs of different modeling languages, such as a data mod-
eling language and a process modeling language. This fea-
ture was pioneered in the DAIDA project. One can distin-
guish two types of relations: two modeling languages are
covering different aspects of the universe of discourses, or
they cover different implementation stages of the software
development process. The objects at the metaclass levels are
used to define objects at the class level, instantiation rela-
tions and attributes defined at the metaclass level. This con-
tinues down to the instance level. The objects at the meta-
class level are the framework to define the links between
objects at the simple class level. Hence, models of some
universe of discourse are linked to each other because their
metamodels are linked as well.

Requirements traceability. The requirements community has
emphasized the need to trace modeling and software arte-
facts from early requirements to the implemented code, and
backward [28]. The DAIDA project has presented a solution
for traceability that was made possible by the flexibility of
Telos in metamodeling (to represent the modeling and pro-
gramming languages) and to super-impose the software de-
velopment framework, which realized full traceability. The
DOT metametamodel [45] of DAIDA defined three meta-
classes for establishing the dependency between artefacts:
design objects linked by design tools, based on human or
automated design decisions, which could be instantiated to
a process model and trace how and why design artefacts
across different languages were derived from each other.

The design objects are the containers for whole models.
In DAIDA, Telos was used for two purposes. First, it was the
language to specify conceptual models of information sys-
tems. Second, it was used as the data model for the reposi-
tory that kept the dependency between design objects. In a
way, the DOT model is a precursor of data provenance ap-
proaches such as W7 [111]. It has been extended in a project
in the automotive domain that studied the interaction of clas-
sical engineering models and processes (usually based on
differential equations), and discrete software-based control
systems. A similar approach within RWTH Aachen’s IM-
PROVE research center on the digitalization of process in-
dustries resulted in a first overall conceptual metamodel with
detailed ontological submodels in the chemical and plastics
engineering domain, and their cross-relationships [10].

Intensive research between New York University, Geor-
gia State University, and RWTH Aachen University in the
1990s showed requirements traceability to be a very impor-
tant, but extremely complex phenomenon in systems devel-
opment practice, with its own maturity levels. In a seven-
year effort interleaving interviews and empirical studies with
leading software development teams in major and medium-
sized organizations, with iterative model building using Con-
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Fig. 3: Research fields linked to Telos

ceptBase, resulted in a set of reference (meta)models for
requirements traceability [112]. The reference models were
adopted by most providers of requirements engineering tools
and many important developer and user organizations; judg-
ing from the ongoing stream of citations, they still form the
background for much of traceability research and practice.

As a typical example, figure 4 shows the graph visual-
ization of the DesignRationale submodel, which combines
multi-criteria decision support with a Rittel-style argumen-
tation model and is (as the upper part of the picture shows)
applicable to any kind of design project.

All such sub-metamodels are integrated via the Telos
Traceability Metamodel shown in figure 5. Its core (upper
part) is a network of design PRODUCT OBJECTS linked
by SATISFIES relationships which are stamped as validated
by COMPLIANCE verifiers, and possibly by technical DE-
PENDENCIES (e.g. design configurations which only jointly
satisfy a higher-level specification). This product network is
embedded in EVOLVES-TO process links, where each evo-
lutionary step can include a RATIONALE, which can itself
be a complex PRODUCT OBJECT (see Figure 4). In addi-
tion to this product & process kernel, the metamodel also
comprises a STAKEHOLDER metaobject which can be in-
stantiated to the network of human and organizational stake-
holders involved in the process, and a SOURCE metaobject
instantiated to the physical context in which the traceabil-

Fig. 4: Rationale Reference Model (screendump), adapted from [112]

ity process and its documentation are placed. ConceptBase
employs metalevel integrity constraints, deductive rules, and
query classes to support the avoidance or detection of incon-
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sistencies between the many submodels in actual projects
which instantiate the reference models.

Multi-perspective modeling and inconsistency management.
The DAIDA project pioneered the idea of using a single
repository for storing design objects represented in hetero-
geneous modeling languages. However, the set of modeling
languages was geared towards the implementation dimen-
sion, i.e. the focus was on mapping specifications to de-
signs, and then to their implementation. There is a second
dimension called the modeling perspective, which identifies
interrelated modeling languages that cover only a certain as-
pect of the information system, e.g., the data perspective in
contrast to the process perspective. Zachman [134] identi-
fied six such perspectives. Not by coincidence, these per-
spectives are virtually the same as in the W7 provenance
model. In the approach of [96] the perspectives are planned
by a rich user-defined metametamodel, which emphasizes
the linkages between modeling languages.

Since 1994, a German consulting firm used Concept-
Base to identify problems in business process models [96].
The key approach was to have each department in a user
organization build their own Telos model following a stan-
dardized metamodel, and then apply query classes (repre-
senting a kind of anti-pattern) for problem identification. As
a real-world example, one department produced a monthly
report which they considered very important for another de-
partment, but that department never knew why it got these
reports; deeper analysis following automated problem iden-
tification by a query class showed that the report simply ar-

rived several days after the decisions, which it was supposed
to support, had to be made.

In a significant extension to this idea, Robinson et al. [115,
116,114] used Telos and ConceptBase for their DealScribe
system to manage possibly conflicting requirements of mul-
tiple stakeholders. The system is based on a metamodel (or
ontology) of dialog statement expressed by stakeholders. The
dialog with stakeholders is ordered by a goal model that en-
forces that certain questions are asked in a logical sequence.
The stakeholder requirements are collected by a hypertext-
based system and then analyzed by a set of ConceptBase
queries. An example query is to retrieve the “most contentious
requirements statement”, i.e. the requirement of a user with
the highest priority for which no resolution is known and
that is not superseded by another contentious requirements
statement. Requirements interactions are pairs or sets of re-
quirements that have an impact on each others fulfillment.

The DealScribe system manages a large number of such
analysis queries and maintains their answer, i.e., the objects
that match the query condition. The stakeholders are thereby
kept up-to-date about the status of their requirements. The
system promotes the concurrent development and monitor-
ing of requirements by a team of stakeholders. The team is
supported by a set of metrics that informs them about the
number of unresolved conflicts.

Requirements modeling for telecom service design. Eber-
lein [25] used Telos to realize a tools called RATS to sup-
port the design of telecommunication services. The tool tar-
gets requirements engineers and services designers, i.e., the
upper level of the model-driven development of information
systems. Requirements can be functional or non-functional
and they have an agreement status. Two types of guidance
are offered. Passive guidance informs the stakeholders about
inconsistencies in their models (as expressed by Concept-
Base queries). Active guidance is provided by textual expla-
nations of development steps, as well as context-specific er-
rors messages that for example inform users when they pro-
vide a design for a requirements that is not yet agreed upon.
It also proposes logical next steps given the current status of
a requirements model and its associated design model. The
Telos language is used for modeling both the requirements
and the design of the telecommunication system. Further,
Telos is used to define the links between these two perspec-
tives. The query language of ConceptBase supports both ac-
tive and passive guidance.

Goal and trust modeling. The first version of the social mod-
eling language i* [133,132] was formalized by mapping it
to Telos using the OME tool [2]. In [29], Telos is used as a
bridging representation between i*-based strategic require-
ments, process specifications, and execution monitoring for
inter-organizational trust management in shared information
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systems, implementing a sociological distinction between
personal trust, trust in the system, and explicit distrust man-
ifested by expensive monitoring mechanisms developed by
sociologists from Berlin’s Free University. Later, the adap-
tation of i* to control systems [97] was realized in Telos
and ConceptBase as well using the query language to ana-
lyze i* goal models. The work also used the timestamps of
Telos propositions to extract all changes between two time
points. An integration [105] of the two requirements for-
malisms CIMOSA, Albert-II and i* was also based on Te-
los and ConceptBase. Finally, Telos and ConceptBase were
used to realize a metamodel to bridge business models and
requirements models [31].

The above applications highlight the usefulness of Te-
los for the requirements engineering domain. The unlimited
instantiation hierarchy of Telos allows to represent multi-
ple interrelated modeling languages in a single (and simple)
framework based on the Telos propositions. The rule, con-
straint, and query capabilities of ConceptBase support the
analysis of large-scale conceptual models and cross-model
analyses.

6.2 Model Management and Data Integration

Model Management 1.0. The main value of traceability ob-
viously lies in making systems more adaptive through main-
tenance and monitoring of consistency between requirements
and running systems. The DAIDA project had already shown
how the documentation of such dependencies between mod-
els can be structured using Telos. The Model Management
movement, initiated by Microsoft Research in 2000 [7], goes
one step further, in order to deal with the rapidly growing
number of software and data models. In his early papers,
Bernstein one of several ConceptBase users at Microsoft
cited DAIDA and Telos as important precursors of these
ideas, but decided to follow an algebraic approach with oper-
ators such as model matching, mapping, and composition in-
stead of Telos logic-based metamodeling strategy. Some al-
gebraic model management technologies have in fact found
their way into the Windows operating system.

Model-based data integration. In the data engineering field,
the DWQ project (1996-1999) demonstrated Telos models
for quality-controlled mappings between data sources via
data extraction, cleaning, transformation, and loading into
data warehouses [46]. As figure 6 shows, the Telos meta-
model interpreted source data as (limited) views on the re-
ality of an enterprise, whereas the data warehouse schema
can be directly derived from a conceptualization of the en-
terprise. In contrast to earlier approaches which saw a data
warehouse schema simply as an integration of source schemas,

DWQs local-as-view approach enables a data quality anal-
ysis to talk in natural ways about incomplete knowledge or
overlap in data sources. Complementing the Datalog-based
analysis capabilities of ConceptBase, the DWQ group at Uni-
versity Roma Sapienza developed a description-logic ap-
proach to the specification of mappings between sources and
conceptual data warehouse schema which enabled certain
kinds of exclusion constraints and subsumption reasoning.
The DAIDA metaconcept of DesignTool was employed to
document reasoning results in the Telos. In follow-up work,
Lenzerini expanded his DWQ approach into a general the-
ory of DL-based data integration, resulting in the most-cited
paper in the field [76].

Fig. 6: Metamodel for data warehouses, adapted from [46]

Data Exchange Using Model Management 2.0. Around 2005,
such novel declarative approaches to data integration re-fo-
cused Bernsteins initial algebraic approach to Model Man-
agement on the core concept of model Mappings. While
ConceptBase focused on the documentation and formal anal-
ysis of model mappings, ”Model Management 2.0” [8] pur-
sues more automation from two directions: the automated
generation of data integration or data exchange code from
the mapping specifications, and the at least semi-automatic
machine learning of mappings from text-based or even in-
stance based matchings between source and target databases.

Here, we only elaborate the first issue even though joint
work with Avi Gal at Technion Haifa has also created com-
petitive solutions enhancing standard ontology matching by
metamodeling [110]. Neither Telos semantics nor Descrip-
tion Logics provide declarative means to specify the actual
creation of transportable data objects. In the CLIO project
[27], an IBM Research team demonstrated that tuple-gene-
rating dependencies (TGD) from 1980s database theory re-
search can solve this problem at least for the commercially
highly important special case of mappings among extended
relational database schemas.
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The GeRoMe approach developed at RWTH Aachen Uni-
versity [59] employs role-based meta modeling to factor out
the combinatorial explosion to individual meta-properties,
and enables model composition and efficient querying even
across heterogeneous data models [60]. GeRoMe also im-
proves view integration by provably minimal integrated views,
thus strengthening model quality and query/data exchange
performance in different settings such as database design
from requirements views, or data warehouse data integra-
tion [81].

6.3 Cultural Informatics

In the years after 1992, SIS was used to implement a series
of cultural information systems for documentation and ed-
ucation applications in cultural heritage organizations. The
most notable of these systems is the terminology manage-
ment system SIS-TMS, commercially exploited by ICS-FORTH
until recently, which is capable of handling large vocabular-
ies, such as the Getty vocabularies Art and Architecture The-
saurus, the Thesaurus of Geographic Names, and the Union
List of Artist Names. Based on the experience gained from
developing and using the Telos-based museum documenta-
tion system CLIO [18], the SIS team was able to convince
the International Committee for Documentation (CIDOC) of
the International Council of Museums7, that a knowledge
representation specification as a reference model is the best
way to integrate multidisciplinary information about mu-
seum objects in all its scientific depth, and was assigned the
leadership of the CIDOC CRM Special Interest Group.8 The
activity of the group, which started in 1996 and is still on-
going, resulted in a high-level ontology, the CIDOC Con-
ceptual Reference Model (CIDOC CRM9 ), which became
ISO standard 21127 in 2006, updated in 2014. The model
enjoys increasing uptake, e.g. by the British Museum [99],
and a set of mutually harmonized extensions10, covering mu-
seum collections, history, archaeology, library data and the
recording of scientific observations in various disciplines in-
cluding archaeology, art conservation, geology and biodi-
versity. Whereas most users now employ an OWL version,
the master copy is still maintained and validated in Telos by
ICS-FORTH on SIS. In the above applications, there is re-
cently an increasing interest for using attributes of attributes
and metamodeling, both of which can be done nicely in Te-
los.

7 http://network.icom.museum/cidoc/
8 http://network.icom.museum/cidoc/

working-groups/crm-special-interest-group/
9 http://www.cidoc-crm.org/

10 http://www.cidoc-crm.org/collaborations

6.4 Education and Ontology Engineering

Telos has been put to educational use since 1998. The SIS
implementation in particular has been used at the Univer-
sity of Crete and the Athens University of Economics and
Business in undergraduate and graduate conceptual model-
ing and system analysis courses for computer scientists and,
to a lesser extent, for digital humanists, along with UML
diagrams, totaling about 1500 undergraduate and 250 grad-
uate students. In the newer version of the conceptual mod-
eling course, including semantic web applications, students
are also exposed to OWL and RDF(S).

In all these courses, it has been consistently observed
that two particular features of Telos turned out to be es-
pecially useful from an educational point of view: meta-
classes and the attribute instantiation constraint. The com-
pulsory explicit declaration of the instantiation level of an
object in Telos imposes a clarity of perception concerning
the role of the object in terms of specifying and/or con-
forming to a structure or behavior. It also helps convey a
disciplined bottom-up thinking when designing models, i.e.
working from token-level ground facts upwards thus always
exposing the consequences of the object being at a partic-
ular instantiation level. Although metaclasses are also sup-
ported by OWL2 through punning, the characterization is
not part of a specification process therefore not equally vis-
ible nor consequential. Similarly, the attribute instantiation
constraint in Telos explicitly acknowledges the need for se-
mantic validation, which is not quite well served by OWL.
Using Telos, students acquire this practice. It is worth noting
that SIS Telos proved equally accessible to computer sci-
ence, digital humanities and archaeology graduate students.
We believe that this might be attributed to the clarity and
simplicity of the language along with the practice it imposes
of making all modeling decisions explicit.

ConceptBase has been used in education at RWTH Aa-
chen University and about a dozen other universities world-
wide in the 1990s. Moreover, it served as prototyping tool
for early ideas on Web-based learning networks, such as
Nejdl’s Edutella system [92], which spawned, together with
other efforts, the European Conference series on Technology
Enhanced Learning.

At Tilburg University, ConceptBase was used in a Master-
level method engineering course to design and formalize
domain-specific languages, and to explore links between mod-
eling languages. The course went on from 2004 to 2010
and attracted about 20 students each year. ConceptBase has
also been used by Saı̈d Assar in a metamodeling course at
Telecom Ecole de Management (France). Assar notes that
the particular strenths of Telos is the support of multiple
abstraction levels, the explicit nature of instantiation links,
and the ability to represent class attributes. The observation
about the usefulness of the attribute instantiation axiom has
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also been made in these courses. In 2019-2020, Concept-
Base was used at University of Skövde (Sweden) in a Ph.D.
course on domain-specific languages (including goal model-
ing) and on a master-level course on models for IT-security
of cyber-physical systems. Finally, about 30 Ph.D. theses so
far have used ConceptBase to a greater extent.

ConceptBase has been used by a number of researchers
to define ontologies, for example to model product informa-
tion [129]. User-definable constraints facilitate the definition
of correct ontologies, e.g. constraints on forbidden product
configurations. Another challenging ontology-related Con-
ceptBase application (1997-1998) provided semantic sup-
port for the distributed collaborative translation of the large
SNOMED medical terminology with more than 10.000 con-
cepts from English to German. A team of medical volun-
teers did this work in their free time mostly from home with
very limited interaction among them. A ConceptBase model
representing both versions and the translation mappings be-
tween them did not just point out emerging inconsistencies
among the different translators working on related sections
of the terminology, but also revealed several important in-
consistencies in the original terminology itself which was at
the time a commercial tool licensed for over 1.000 per copy
[61].

While Telos at least in its ConceptBase formalization
was directly based on the well-understood Datalog-neg se-
mantics, F-Logic and HiLog originally pursued a more gen-
eral first-order logic approach which proved hard to imple-
ment. In the late 1990s, their FLORID prototype and the
later commercial Flora-2 implementation restricted the syn-
tax in a similar way as ConceptBase.

7 Related Work

In this section, we first survey research conducted in parallel
with work on Telos and also based on similar ideas. Then,
we concentrate on research that rediscovered core ideas of
Telos. Our survey is selective and should not be understood
as a complete survey of the relevant technical areas.

A detailed early discussion of the use of KR languages
like RML in Requirements Modeling is given in paper [33],
which won the most influential paper award for the 1982
IEEE International Conference on Software Engineering.

The first area related to Telos is that of deductive data-
bases [85] and deductive object-oriented databases [62]. In
fact, the ConceptBase implementation of Telos was origi-
nally presented as a deductive object-based system for meta-
data [43]. In the area of deductive object-oriented databases,
influential parallel language developments have been the frame-
works of F-logic [63,64] and HiLog [15,16]. F-logic can be
used to model in a declarative way many structural aspects
of object-oriented and frame-based languages e.g., object

identity, complex objects, inheritance, polymorphic types,
query methods, encapsulation, etc. HiLog is a logic with
higher-order syntax, but first-order semantics, which allows
arbitrary terms to appear in places where predicates, func-
tions, and atomic formulas occur in first-order logic.

Flora-2, an implementation of F-logic, is still actively
maintained11 and used e.g., by the company Coherent Knowl-
edge and SRI International. Coherent Knowledge markets
an AI and NLP product called Ergo Suite which is based on
Flora-212.

The second area related to Telos is the area of metalevel
representation and reasoning. In Description Logics and On-
tologies, there have been a few interesting papers that con-
sider metamodeling issues for ontology languages such as
OWL. OWL supports metamodeling through punning e.g.,
the same name can be used to denote a class and an indi-
vidual (instance). However, the direct semantics of OWL2
treat punning in a way that an individual and a class with the
same name are mapped to different elements of an interpre-
tation. In this way, no changes are needed in the reasoning
machinery of OWL2 to deal with punning.

In 2001, Jeff Pan and Ian Horrocks presented a stratified
approach to metamodeling in RDFS and OWL-DL [100,
101,103,102] which, like Telos, considers a possibly infi-
nite hierarchy of strata where individuals, classes and prop-
erties, metaclasses and metaproperties and so on can live.
This stratified approach is stricter than the approach taken
by Telos because each layer has its own vocabulary even for
predicates like “subsumes”, but it has the nice feature that
reasoning tasks can be done in a stratified manner, hence the
defined logics have exactly the same computational proper-
ties as the logics of each stratum.

Subsequently, Boris Motik utilized the first-order seman-
tics of HiLog for giving semantics to metalevel features of
the description logic SHOIQ (the logic underlying OWL-
DL) and, in this way, he obtained a decidable logic. If the
standard OWL-Full semantics are used, the same logic is un-
decidable (technically, even ALC-full is undecidable) [87].

Another implemented ontology system that treats triples
as objects, for which metalevel knowledge (e.g., provenance)
can also be stated, is described in [128]. The authors take an
OWL knowledge base, use annotations to represent meta-
information, and then create a meta-knowledge-base by reifi-
cation. They also define a query language that allows both
knowledge and meta-knowledge to be queried together.

In [23], the problem of metamodeling in description log-
ics was revisited. For every description logic languageL, the
authors show how to define its higher order version Hi(L)
and how to give it semantics as in HiLog. More importantly,
the authors also showed that the computational complexity
of reasoning and question answering for unions of conjunc-

11 http://flora.sourceforge.net/
12 http://coherentknowledge.com/
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tive queries remains the same for the higher order version
of the description logic SHIQ and logics in the DL-Lite
family. More recently, following the same approach, [77,78]
defined a higher-order version of OWL2 QL and studied the
computational complexity of various reasoning and question
answering problems showing that this remains the same as
in OWL2 QL. Related description logics with metamodel-
ing features have also been proposed by other groups of re-
searchers [72].

Omega [38] and CycL [75] are some of the early sys-
tems in this field with such features, which were inspired by
Weyhrauch’s work on reflection [130], and both use meta-
reasoning mostly as a way of describing/controlling the in-
ference process, rather than conceptual modeling.

The third area related to Telos is that of temporal repre-
sentation and reasoning. Telos was the first KR language to
propose the modeling of history and belief time. Historical
knowledge in Telos can be incomplete and incompleteness is
captured using temporal constraints [68]. This feature of Te-
los was not implemented in its SIS and ConceptBase imple-
mentations; as we saw, ConceptBase implements only belief
time. In parallel with Telos, another well-known KR formal-
ism, the Event Calculus, was extended to handle belief time
in the Ph.D. thesis of Sury Sripada at Imperial College [121].
Later on, the ability to model incomplete historical knowl-
edge motivated one of the developers of Telos to study the
framework of incomplete constraint databases in his Ph.D.
thesis [65,66].

Metamodel development and use often employ a graph
visualization of the Telos frame syntax. A recent cooper-
ative modeling environment at RWTH Aachen University
even enables realtime support for metamodel-assisted coop-
erative modeling and view integration [94]. Other metamod-
eling environments employ directly an extensible graph syn-
tax, with semantics often checked by services offered in the
API. MetaEdit+ developed at the University of Jyväskylä,
Finland [58] is the best-known early example of this kind.
More recently, University of Vienna’s commercialized meta-
modeling environment ADONIS [56] whose original devel-
opment was also motivated by the Telos experience is ac-
tively used in research, education, and practice. Initiated in
1997 and regularly revised and enriched ever since, the UML
meta object facility (MOF) also follows this graph-oriented
approach while adopting the four metalevel structure already
pursued in the DAIDA project; over the past 20 years, for-
mal semantics is gradually being added e.g. using UML’s
Object Constraint Language OCL. Further details on these
and other metamodeling approaches related to method engi-
neering can be found in [50].

More recently, some of the ideas of Telos were redis-
covered by Semantic Web researchers in the context of the

Resource Description Framework (RDF) in 1997.13 RDF is
based on triples of the form (subject, predicate, object)

that correspond to the source, label and destination com-
ponents of a Telos proposition. It is important to empha-
size that, unlike Telos propositions, RDF triples do not have
identity. This omission has resulted in the development of
ideas such as singleton properties [93], application of named
graphs [37] and nested triples [35], which would have been
unnecessary within the Telos framework. As early as 2001,
the paper [91] defined the framework O-Telos-RDF which
demonstrated how RDF and RDFS could have been if they
would have been based on Telos.14 [91] argued eloquently
for an RDF version of the core Telos ideas (ID for all propo-
sitions, an infinite instantiation hierarchy, etc.) but this initial
proposal was not taken up by the Semantic Web community.
The Knowledge Graph community has recently been invest-
ing a lot of effort in defining worldwide unique identifiers in
order to heal this omission.

Semantic Web researchers have also worked on exten-
sions of RDF with valid time (called history time in Telos).
The first such proposal is [34] where the concept of RDF
triple is extended to a 4-tuple, with valid time being the
fourth component, to model the time that a fact represented
by the triple is true in reality. This idea was first proposed in
CML (and then Telos) in 1986.

More recent Semantic Web proposals for introducing valid
time in RDF (but also geospatial information) are the Ph.D.
theses of Matthew Perry [104] and Kostis Kyzirakos [69,
73], and the Master thesis of Konstantina Bereta [6]. The
last two theses also resulted in the implementation of an ef-
ficient spatiotemporal RDF store called Strabon15.

The Telos group in Toronto also studied representation
and inference with incomplete spatial knowledge in the con-
text of Telos, in the Ph.D. thesis of Thodoros Topaloglou [127].
The topic of modeling incomplete spatial and temporal knowl-
edge using constraints was revisited 20 years later in the
context of RDF, in the Ph.D. thesis of Charalampos Niko-
laou [95].

The 4-tuple model for valid time discussed above was
also re-discovered in the knowledge graph Yago2 [39,40]
where it has been extended to a 5-tuple model which can
also represent geographical location.

Table 2 summarizes the previous discussion by offering
of tabular view of the main ideas of Telos and where similar
ideas have appeared in related research.

13 The W3C document https://www.w3.org/TR/
WD-rdf-syntax-971002/ introduced RDF to the research
community. RDF became a W3C Recommendation two years later; its
most recent version is RDF 1.1.

14 O-Telos is the Telos dialect implemented in ConceptBase.
15 http://strabon.di.uoa.gr/
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Main Idea RDF Description Deductive and Higher-order Temporal Temporal

RDFS logics object-oriented logics databases reasoning

databases

Object-centered [91] [63,64]

framework

Metaclasses [100,101,103,102] [87,128,23,77,78,72]

History time [34,104,69,73,6] [121] [4,120,124,65,66]

Incomplete temporal [65,66] [68]

knowledge

Belief time [121]

Integrity constraints [85]

Deductive rules [84,85]

Higher-order [15,16]

predicate Holds

Table 2: Main ideas of Telos and relevant related works by research areas

8 Lessons learned

There are lessons learned from our experiences with Telos.
These are discussed below.

The metamodeling framework of Telos constitutes its
most distinctive feature and greatest strength. Equally pio-
neering was the direct integration of frame-based (i.e., close
to object-oriented) syntax, relatively simple logic-based for-
malization, and a physical grounding of the Proposition con-
cept which turned out to become extremely popular for mod-
ern semantic network structures such as RDF and its under-
lying compact storage structures. These Telos features have
enabled scalable implementations with wide and long-term
usage but also nice typed graph modeling user interfaces.

Another positive lesson learned which was later taken
up by others was that the kernel of the axiomatic definition
essentially based on Datalog with stratified negation was a
critical success factor for efficient query optimization and
integrity checking. Thus, the rules and constraints frame-
work could be scalably implemented in ConceptBase and
was used in multiple applications. The axioms were virtu-
ally never updated and helped users to identify semantic
mistakes in their models and metamodels. The axioms re-
lated to instantiation of attributes force users to correctly use
class/metaclass definitions when creating instances.

In contrast, the parts of the language definition that went
beyond what could be mapped to Datalog(neg) proved very
hard to implement efficiently. Most importantly, the tem-
poral component of the language (both history and belief
time) has seen only partial implementations and has been
ignored in most applications of Telos. In hindsight, Telos of-
fers a rather cumbersome representation for time, compared
to later proposals in the RE literature, e.g., KAOS [22], a
requirements modeling language that uses linear temporal

logic to represent temporal knowledge. In contrast, the his-
tory time as defined in Telos results in intractable query
processing since it has the ability to represent incomplete
temporal knowledge. This was established by complexity
results of one of the authors in [67] where the problem of
query evaluation for indefinite constraint databases is stud-
ied (query evaluation for the history time component of Te-
los can be cast in this framework).

From an application perspective, Telos applications in
the area of requirements modeling required only the con-
cept of belief time (called transaction time in the Concept-
Base implementation), so history time was either not imple-
mented or dropped at an early stage of the implementation.
On the other hand, applications in the area of cultural in-
formatics need very refined notions of time, but those can
be defined using the semantic network structures of the lan-
guage, hence no history time neither belief time was imple-
mented in the SIS implementation.

A related gap in the original Telos definition proved to be
its rather simplistic change operators (TELL, UNTELL). In
particular, Telos was missing a transaction concept that tol-
erated temporary inconsistencies. As a consequence, users
found the strict axiomatization and integrity constraints both
a blessing and a curse, as it was very hard to avoid tempo-
rary constraint violations when making complex changes to
the knowledge base – a problem that is also well-known with
e.g. referential integrity preservation in commercial databases.

As an example, Telos had a signification impact on sub-
sequent languages for requirements engineering, such as i*.
The Telos axioms complicate changes to existing definitions
in metamodels, when models already exist. The axiom vio-
lations are similar to violations of foreign key references in
traditional databases. The difference is that Telos has many
more such axioms, which can make incremental change cum-
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bersome. Another observation from applications was that
the presence of multiple instantiation levels is conceptually
difficult to grasp for human users, in particular the omega-
level of Telos, which subsumes objects of any abstraction
level. As mentioned before, in the meantime a whole com-
munity on multi-level modeling has evolved around this is-
sue, with Manfred Jeusfeld’s DeepTelos as an early attempt
to make this easier for users.

Similar to the SQL standard which has also faced the
referential integrity problem, a number of workarounds have
evolved in the Telos implementations and usage. For exam-
ple, the authors of the Requirements Assistant for Telecom-
munications Services (RATS) tool [26] note in [54] a trade-
off between efficiency and number of classes and deductive
rules. This led them to restrict the number of classes in their
conceptualization of requirements for the telecommunica-
tions domain.

Another often-used workaround in requirements mod-
eling applications were ConceptBase query classes which
can be activated by users at their desire as opposed to al-
ways enforced integrity constrains. Additionally, Concept-
Base users may employ active rules (not present in the orig-
inal Telos definition) to heal, e.g., automatically referential
integrity violations by constraint propagation. As an exam-
ple, Robinson discusses the Telos features that were help-
ing with the implementation of his DealScribe [114] tool to
track requirements and goal evolution. He reports that an ad-
vantage of Telos (ConceptBase) is that the metamodel can be
queried by the DealScribe user interface to adapt to chang-
ing definitions at the metamodel level. Another important
feature was the predicate language used for defining rules,
constraints and queries. DealScribe also used the hypotheti-
cal querying of ConceptBase, where certain objects are de-
fined temporarily before querying the model (”what if ques-
tions”).

The pioneering development of Telos well before simi-
lar standards such as RDF and XML has created the obvious
backward compatibility issues when exchanging models and
data with them. Export interfaces have partially been im-
plemented but import of RDF triples or XML files is still
work to be done. Embarassingly, the interoperability issues
extend even to the two Telos implementations themselves.
While both SIS and ConceptBase are implementing Telos,
they have followed a different path on the supported Telos
frame syntax. As a consequence, frame syntax cannot yet be
easily exchanged between the two systems but have to resort
to the logic or storage perspectives of Telos.

All of these gaps, however, are doable implementation
tasks with no fundamental difficulties. For example, an API
for the ADOxx tool was recently developed to interface with
ConceptBase [53]. It allows to use the constraint checking
function of ConceptBase to find semantic flaws in metamod-

els of domain-specific modeling languages (in particular for
requirements engineering) developed with ADOxx [57].

9 Conclusions

Telos was intended as a extensible modeling language for
software knowledge. It has seen two major implementations
that addressed the hard problems of semantics and scalable
reasoning. It has also been applied in multiple application ar-
eas, notably Software Engineering and Cultural Informatics.
The literature suggests that core ideas of Telos were revis-
ited, and sometimes extended, by other communities many
years later, and put to good use in modern KR technologies,
such as RDF stores and knowledge graphs.

The results on Telos, its implementations, and applica-
tions reported in the paper have been widely cited, adopted
in standards and practice (e.g., cultural heritage and trace-
ability), or achieved additional visibility by being selected
for best paper special issues of reputed journals. At least six
edited books report on metamodeling concepts and applica-
tions using Telos as the major integrating basis [17,48,41,
46,131,50] but also including chapters on closely related re-
search of international cooperation partners. The same holds
for special issues of journals such as CACM (1998), IEEE
Transactions on Software Engineering (1992 and 1998), the
RE Journal (1998), and others. Telos-related papers were
selected for “best-paper” special issues from leading con-
ferences including the ACM-IEEE RE Conference (1996,
1998, 2001) and the European CAiSE conference (1994,
1998, 1999, 2000, 2016).

Acknowledgements We are grateful to all of our colleagues who con-
tributed to the design, implementation and applications of Telos from
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