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Abstract—Cutting-edge sensors and devices are increasingly
deployed within urban areas to make-up the fabric of TCP/IP
connectivity driven by Internet of Things (IoT). This immersion
into physical urban environments creates new data-streams
which could be exploited to deliver novel cloud-based services.
Connected-vehicles and road-infrastructure data are leveraged
in this paper to build applications that alleviate notorious
parking and induced traffic-congestion issues. To optimize
the utility of parking-lots, our proposed SmartPark algorithm
employs a discrete Markov-chain model to demystify the future
state of a parking-lot, by the time a vehicle is expected
to reach it. The algorithm features three modular sections.
First a search process is triggered to identify the expected
arrival-time periods to all parking lots in the targeted Central
Business District or CBD area. This process utilizes smart-pole
data-streams reporting congestion rates across parking-area
junctions. Then, a predictive analytics phase uses consolidated
historical-data about past parking-dynamics, to infer a state-
transition matrix showing the transformation of available spots
in a parking-lot over short periods of time. Finally, this
matrix is projected against similar future seasonal-periods
to figure out the actual vacancy-expectation of a lot. The
performance evaluation over an actual busy CBD area in
Stockholm (Sweden) shows increased scalability capabilities,
when further parking-resources are made available, compared
to a baseline case algorithm. Using standard urban-mobility
simulation packages, the traffic- congestion aware SmartPark
is also shown to minimize the journey duration to the selected
parking-lot while maximizing the chances to find an available
spot at the selected lot.

Keywords-Smart parking; Markov chain; Internet of Things;
optimization; traffic management; search; Artificial Intelli-
gence;

I. INTRODUCTION

The increased volume of individuals in a limited land area
to seek some activity provides grounds for a parking problem
to arise. Motorists hope to locate an available spot that is
close to business and/or administrative attractions in order to
minimize walking distances to desired activity. Urban-cores
house Central Business District (CBD) areas where human
activity thrives and hence raises the demand for further
parking spaces. Municipalities need to attract office tenants,
shopping consumers, and tourists to CBD areas, and many
of them expect to use their vehicles which they park upon
arrival from home. However, on-street parking lowers road-
capacity in crucial fluid CBD areas, and hence off-street
parking-lots spread across 1-2 km radius within hotspot
CBD areas or districts are recommended [1]. These parking

structures require less land and can better be screened
compared to their on-street counterparts.

Ultrasonic and magnetic sensors are already mounted
on the ceiling to detect the availability of a parking spot,
particularly in parking lots. The sensor conveys the parking-
spot availability information in real-time to a gateway to
be processed by a parking system which for instance dis-
plays the rate of available spots on screens. The gateway
could also communicate that information to a Cloud-based
service that is further exploited by third-party parking-
service providers. This trend is part of the current Internet-
of-Things (IoT) evolution that is powering the reach to
contextual information of a wide range of future smart-city
sub-systems, such as energy, waste and traffic management.
Smart-poles are part of this evolution whereby junctions
are able to identify traffic patterns across outgoing edges
[2, 3, 4, 5, 6]. Using traffic sensors, a pole can detect
the movements of individual vehicles, leading to a range
of analytical applications to improve traffic-induced issues
including parking-related ones.

The streams of data that literally "senses the city" is
increasingly driving open Cloud-services to stimulate tech-
nology and business innovations [7, 8]. These services are
expected to be exploited for better infrastructure manage-
ment and new added-value services to both users, city
managers and businesses. Smart parking service providers
are potential beneficiaries of this evolution, particularly with
the expected progression towards connected and driverless
vehicles. In this foreseeable context, parking land is a com-
modity used by the real-estate owner and/or by tenants for a
fee, while new parking-service provider (PSP) intermediaries
supply necessary IoT infrastructures to bring that parking
information to a Cloud service. Fig. 1 illustrates this Parking
as A Service that is driven by IoT integration in traffic
subsystems of smart cities. For example, supermarkets may
outsource their parking-facility to a PSP in off-peak periods
to generate new revenue streams.

Driven and autonomous vehicles may cruise through
streets and need to park when dropping passengers, and
taken out of service. At this time, previously-registered PSPs
relay parking-lot availabilities and bind their navigation
services to vehicles. This is where our proposed SmartPark
approach comes into action to run as a Cloud service using
PSP-provided data, offering an available spot in a parking-



Fig. 1. Parking as A Service

lot, as well as a congestion-aware navigation route. The
foreseeable rise of parking real-estates, which may be driven
by profit incentives from PSPs and land owners takes the
parking-selection problem to a higher-complexity level. The
complexity of numerous parking options to pick from, is
amplified by balancing stakeholder needs. These include city
operators who are wary about carbon-emission from cars
roaming around to find an available parking spot, and PSPs
pushing for an increased service utilization, as well as drivers
seeking a suitable spot.

The combination of data streams from parking-lot gate-
ways and traffic junction smart-poles are particularly of
interest in this paper. We argue that the accumulation of
such data provides historical grounds for optimizing future
decision-marking. Furthermore, we contribute a parking-
selection and navigation algorithm named SmartPark which
performance evaluation shows increased scalability capabili-
ties when further parking resources are made available in the
parking area. The traffic-congestion aware SmartPark also
minimizes the journey duration to the selected parking lot,
while maximizing the chances to find an available spot there.

The remaining sections in this paper are organized as
follows. Section II describes further the problem addressed
in this paper and explores some related works. Section IV re-
veals the first part of our proposed SmartPark algorithm that
deals with routing vehicles to designated parking lots, while
the second part of the algorithm that demystifies SmartPark’s
approach to predict future parking states and optimizes
parking-lot selection is further elaborated in Section V.
Section VI shows the experiment setup and the performance
results of the proposed SmartPark approach, against a greedy
approach labelled BlindPark. Finally, Section VII concludes
the paper with a summary of our contributions and some
suggested future works.

II. PROBLEM STATEMENT

The parking-selection problem is confined within urban
cellular areas, named "parking areas" which are instances of
a 1-2km radius of land within CBD regions. This modular
approach allows the proposed parking-selection algorithm

to operate within some preset attributes that are specific
to each particular area. There may be several parking-areas
with vehicles cruising across them, in which case separate
execution-instances of the algorithm are triggered.

A. Problem description

Thousands of motorists are daily faced with the dilemma
to choose among numerous parking-lots when entering a
city area in the urban core to reach many destinations of
interest. While motorists are mostly aiming at minimizing
walking-distance to destination, driving-time to parking lots,
and parking-fees, there are other stakeholders such as city
and parking operators who would like to factor-in the traffic-
induced while searching for parking, and the distribution
of parking-lots’ utilization. On the other hand, Internet-
connected components are generating streams of real-time
data about both traffic-flow and parking usage, which could
be exploited to judiciously reveal the actual utility of se-
lected parking-lots. The search for parking lots suggests
examining policies that influence parking-lot selection deci-
sions, which take into account concurrent parking requests
in a way that spreads traffic, unlike traditional navigation
applications which drive motorists along the same path to a
common parking destination.

Furthermore, parking lot availability and traffic situation
fluctuate across different seasonal periods, raising the need
for a data approach to the parking selection problem that
learns from past historical seasonal data to predict current
parking- and traffic-dynamics. IoT enabled parking systems
capture the dynamics of parking-lots across different times
of the day, and smart-poles provide traffic information dur-
ing different hours. City managers and parking-lot owners
can leverage the accumulated data warehouses to improve
sustainability, service-quality and overall business profits.

The parking selection problem addressed in this paper
makes some assumptions, states research questions and
targets specific objectives. The assumptions driving the pro-
posed solution in this paper include the pervasive integration
of sensing and communication devices in parking lots,
whereby the rate of entering and departing vehicles are
known at anytime, as well as parking-lot occupancy. This
assumption drives the expectation that such historical data is
available, which could be supplied by contemporary parking-
lot operators or future PSPs seeking to leverage their services
quality and increase the utilization rate of owned parking
lots. We also assume that a vehicle’s GPS-location is known
when entering the parking area. This allows the proposed
algorithm in this paper to be triggered and use the vehicle’s
entry point as a navigation startup to the selected parking-
lot. However, motorists may specify the desired parking-area
entry point, and expected entry-time into the area offline to
trigger the algorithm, as well. Alternatively, these parameters
are determined online as vehicles proceed into a parking
area.



Smart-poles are available at each junction of the parking-
area, recording traffic patterns through real-time data that
can contribute to reduce congestion and carbon emission
in the urban core, as influenced by the proposed parking-lot
selection approach. Proxy agents support the communication
of data from Internet-connected components, which in this
case consist of smart-pole and parking-lot mounted-sensors.
This assumption allows the algorithm to use standard APIs
to query proxy-agents for IoT data. The proposed algorithm
operates within the boundaries of a parking-area, and thus
any parking-lot within that area is a plausible solution
candidate. This assumption allows the algorithm to utilize
all parking lots in the parking area as part of the solution
domain.

The main problem addressed in this paper is how to
choose the best parking-lot in a given parking area to
maximize a utility function involving some weighted criteria.
We contribute an algorithm of a parking-lot selection that
takes into account the current traffic situation, so that the
parking selection problem does not contribute to exacerbate
a traffic-congestion problem. The main problem can be fur-
ther decomposed into some research questions investigated
throughout this paper. How to integrate parking selection
and traffic congestion problems? How to predict the future
state of a parking-lot when the request is triggered at an
entry point of the parking-area? How to navigate vehicles
separately across separate routes, although possibly destined
to the same parking lot? How to exploit IoT-data to produce
analytical insights that support congestion-aware parking
selection algorithms?

For each triggered parking-request, the proposed algo-
rithm strives to achieve some objectives, including predicting
parking availability in lots within the parking area, that are
deemed to fulfil motorists’ destination requirements. This
parking-lot selection involves a vehicle routing approach that
maximizes the utility of the selected parking lot considering
a multicriteria decision-making process.

B. Multicriteria decision-making

How to choose the best parking lot in a given parking-area
is generally subject to a range of criteria that may include
user, municipality and parking-operator preferences. Users
may have some preferences with respect to walking distance
to destination. Municipalities prefer to spread the traffic
to reduce congestion in the urban core. Parking-operators
seek to maximize parking-lots utilization in order to in-
crease profits on real-estate investments. Fig. 2 illustrates
the combined optimization process involving data sources
from these stakeholders as input. Different stakeholders may
influence the outcome of the parking and routing outcomes.
The generic expression of the optimization formula may be
contextually instantiated to exhibit some relevant criteria and
corresponding weights to guide the selection of parking-lots
and the navigation towards them. For example, municipali-

ties may prioritize congestion. On the other hand, parking-
lot operators may wish to raise parking-lots occupancy. And
finally, users may trade walking-time to destination with
corresponding parking-fees. Different functions may have
preset criteria and weights according to different parking-
areas.

Fig. 2. Utility function for a given parking-area

A cloud-based service receives data sources and related
weighted values to optimize parking-selection and vehicle-
navigation decisions through SmartPark algorithm discussed
later in this paper. Despite the generic formulation of the
utility-function, the scope of this paper emphasizes these
two latter criteria. User preferences are already integrated
in some existing mobile and in-vehicle parking system
applications, where the focus has been on the vehicle and
its passengers.

III. BACKGROUND AND RELATED WORKS

The current smart city trend stemmed essentially from
unleashing new data sources used to improve inhabiting
citizens and housed businesses [9]. Ubiquitous computing
frameworks involving a plethora of technological devices are
incorporated across the urban environments’ fabric, leading
to diverse emerging-applications, which in turn generate
massive data that await effective utilization [10]. Urban
mobility is one of the major beneficiary of this evolution,
particularly in metropolitan cities due to the foreseeable
proliferation of connected vehicles, which are equipped
with Internet connectivity [11], and smart-poles that are
equipped with sensors to enable intelligent transportation
systems [12]. Subsequently, a wealth of fertile research
opportunities emerged in urban-traffic ecosystems, including
parking solutions [13].

Some of the advantages of data unleashed from IoT-
embedded urban infrastructures, is the opportunity to en-
gage into predictive analytics to forecast traffic and parking
dynamics that tune decision-making processes [14]. There
are two mainstream bodies of literature to represent state-
variables of interest for predictive analysis: continuous and
discrete models. The difference tells about the amount of
state-variable instances or measurements that need to be
collected or represented to perform the predictive analysis.



Continuous measurements enable state-variables to take any
value on a number line, whereas discrete measurements
are confined to integer instances. Since predictive analysis
is often probabilistic, this distinction results in different
distributions. Discrete instances are described through a
probability distribution which lists all potential instances
and the associated probability of occurrence. Continuous
predictors however, can take unlimited instances between
lowest and highest measurement points, and thus are not
restricted to specific instances. The multi-attributes parking
selection problem was addressed under both considerations
to predict the availability-state instances in a parking lot.
Continuous queuing-theory approaches [15, 16, 17], as well
machine-learning approaches [18, 19, 20, 21] including
deep-learning approaches [22, 23, 24] have been reported,
with varying degrees of effectiveness and considerations
for both parking-lot and traffic dynamics, simultaneously.
Discrete approaches to the parking-selection problem like
our proposed approach, have been more active to quantify
uncertainty over future parking-lot states, as discussed next.

Discrete approaches to the parking-selection problem have
been quite extensively investigated, and can be summarised
into three main categories. Earlier studies focused on the
parking-type selection addressed issues such as off-street vs.
on-street parking with respect to pricing dynamics [25, 26].
Subsequent research thrust combines travel experience and
parking issues, such as park-and-ride optimization prac-
tices [27, 28, 29]. Finally, contemporary research directions
combine navigation and parking information to alleviate
congestion-issues associated with the cruising process to-
wards a designated parking lot. Our work is positioned
within this scope to investigate decision-making approaches
for parking-selection that includes the routing process. The
targeted issues varied between cruising time [30, 31, 32],
parking-search space [33, 34] and the incurred search com-
plexity [35, 36, 37]. We propose a stochastic process centred
on parking-availability expectations within an actual urban
area and using parking-dynamics data aggregated from IoT-
enabled parking-gateway platforms.

IV. COLLABORATIVE PATH-FINDING

Parking is a distributed search problem to find the best
parking-lot in the parking area. As illustrated in Fig. 3, a
parking area is represented as a directed graph, where nodes
represent junctions and edges represent road lanes. Each
junction is linked to other junctions or parking lots by a sin-
gle or a double-lane road. Each smart-pole collects conges-
tion data via traffic-sensors, while parking-lots accessed via
dedicated junctions are equipped with availability-sensors
of parking-lot spots. Each parking lot detects and reports
parking occupancy state by accessing smart parking-spot
gateways. IoT-enabled components in a parking-area interact
together to collaborate in the path-finding process. Proxy
agents are associated with junctions and parking-lots to

facilitate a distributed decision-making approach in an IoT
network context [38].

The decentralized system design provided by IoT enable
junctions and parking lots to sense, compute and com-
municate to collaborate in the fulfilment of path-finding
requirements.The agent-based computing paradigm has been
widely advocated to support IoT systems to develop smart
environments of varying scale degrees [38, 39, 40]. Our
agent-based collaborative path-finding methodology is a
follow-up to our previous IoT enabling by sensing research
to guide software architects realizing IoT applications [41].
Hence the middleware and related technological aspects of
this enablement are beyond the scope of the present paper.
Within this environment, several agents can be integrated
to provide a framework for agents to communicate and
collaborate.

Fig. 3. Parking area

A. Parking-area representation
Each IoT component of the parking area is managed

by an autonomous agent. The goal of the search process
is to locate a parking junction and then to compute the
expected arrival time considering the traffic congestion from
a given entry point. The search is carried out along two
processes. A forward search starts from the entry point node
which scouts the parking area for an available parking lot.
When found, the predicted availability of the corresponding
parking is calculated, considering the estimated arrival time.
A backtracking process carries back the availability-rate and
congestion attributes to the entry node. While doing so, the
utility of the parking lot is re-evaluated at each junction point
and the maximum utility is relayed back to antecedent node,
until it reaches back the vehicle at the entry point node.

To illustrate the above process, Fig. 4 shows an example
of vehicles being routed to designated parking lots upon
entering a congested parking area. We adopted a simplified
congestion model that is consistent with the conventional
traffic-flow theory [42]. Each road edge between two junc-
tions is directed and has a capacity of vehicles driven over



the edge lanes. Entering vehicles onto an edge i of the
road are captured by junctions’ smart-poles to determine
the density di of the traffic, formulated as di = N/Ki,
where N is the number of vehicles driven over the road
edge, and Ki is the maximum number of vehicles that could
be accommodated over that edge, expressed as percentages
in the graph-based representation of the parking area in Fig.
4. This local information is worked out in real-time by smart
poles and communicated to the search process triggered by
a vehicle entering a parking area to figure out a global
congestion rate. The congestion model is generalized over
the parking area with a global value C =

∑j
i=1 di/L, where

L is the total number of road edges in the parking area. This
global congestion rate estimate is used later by the parking-
state prediction algorithm to infer parking states, considering
expected arrival time.

Fig. 4. Routing vehicles to parking-lots in a congested
parking-area

B. Vehicle routing
Given a parking lot, the path-finding problem consists in

finding the best path to that lot from a given entry point,
in terms of driving time in order to derive the expected
arrival time to the parking lot. The search space consists of
a graph where the root node represents the entry point, and
the nodes at the next level represent all junctions that could
be visited first from the entry point, whereas the nodes at the
following level represent all junctions that could be visited
from outgoing junctions in the previous level, etc. In this
tree-like view of the graph traversal, the maximum depth is
the number of junctions, and the candidate parking junction
occur at this level of depth. Dijkstra algorithm guarantees
to find an optimal path which minimizes travelling time
to a given parking-lot. However, this suggests that multiple
vehicles coming through the same entry point and heading
for the same parking lot, may not follow the same "shortest"
path. This is because a query to smart-poles junctions enable
the algorithm to work out a new path for each parking-
request considering the new di values of congestion-rates

returned by smart-poles, resulting in a new estimate of
the parking-area’s congestion rate C. For illustration, Fig.
5 shows near real-time congestion-rates worked-out from
smart-poles for different vehicles entering a parking-area.
At time t1, an entering vehicle receives Congestion-rate
C1, whereas a following vehicle which enters the same
parking-area, receives a compiled Congestion-rate C2. The
differences in congestion-rates result in different shortest-
paths to a given parking-lot, since edge-weights of the road-
map graph changed.

Fig. 5. Example of congestion–rates worked-out from IoT-
enabled smart-poles across time

Algorithm 1 depicts the path-finding search process trig-
gered initially by SmartPark algorithm to obtain optimal
paths to given parking lots considering a list of congestion-
rate inputs from smart-poles’ traffic sensors. The algorithm
is executed upon each vehicle invocation for a promising
parking-lot, and thus a subsequent invocation implicitly
collaborates with a previous invocation considering the con-
tribution to congestion each entering vehicle makes within
the parking area.

Algorithm 1 SmartPark - Path-finding
1: procedure FINDROUTE(E, p, PA,LC)

. E is the entry point to parking area PA where there is a parking
lot p and a list of edge congestion-rates LC

2: G← ConvertToGraph(PA)
3: G← AddWeights(G,LC)
4: return ShortestPath(G,E, p)

. Returns the shortest-path in the weighted graph G,
from Node E to Node p

5: end procedure

V. PREDICTIVE ANALYTICS

Data analytics predictive models’ accuracy rely on fed
data, which may increase their effectiveness overtime. One
way to effectively monitor prediction [43], is accumulate
data from historical repositories, run it through existing
situations with predictive analytics algorithms and visualize
the results. If results deviate from expectations, parameters



within the algorithms may need to be adjusted further and/or
additional historical/current data is sought out. First data
across historical repositories need to be consolidated into
a format suitable to the employed analytics approach. This
step includes data cleaning and accumulating sufficient data
for analytical inferences. Parking data is usually available
in transactional databases format, that is converted into a
flattened view which emphasizes predictor variables used to
make actionable decisions. The "available parking spots"
in a parking lot is the variable of interest here, which is
captured at periodical seasons and time snapshots, to infer a
state-transition matrix showing the transformation of avail-
able spots in a lot over a short period of time. This matrix
is employed to figure out the vacancy probability of a lot
when moving from one state to another. Transition matrices
with different input parameters but across adjacent time-
periods are multiplied to represent the parking dynamics
over an extended time-span duration, and determine trends
and patterns. Subsequently, the transition matrix is used to
guide parking requests to lead vehicles to the most promising
lot, given the anticipated arrival-time expectation.

Fig. 6. Predictive analytics process

A. Historical data representation

There exists a number of applications currently used to
simplify the quest for an available parking spot, which
use publicly available data [44]. User-provided data or
parking-lot sensors are potential source of information used
by these applications. Low-power, water-resistant and high
communication-range sensors can be affixed to the ground
of parking spots, providing an affordable and highly accurate
technology to connect physical real-estate parking areas to a
cloud-based application or end-user mobile apps. ParkoPedia
is an example of user-provided parking data [45]. Contem-
porary trends promote connected and automated parking
solutions [46, 47]. Connected services support the search
for parking by guiding vehicles straight to available parking
spots.

Connectivity technologies or users make it possible to
generate and store historic data of parking occupancy. Using
this data repository, a categorisation based on seasonal
periods across several instances of historical data, is inferred.
This categorisation is used to match current parking consid-
erations with similar historical situations for a given parking
lot. The seasonal classification aims at capturing similar
periods, which is chosen to be small enough to reduce varia-
tions in parking dynamics. This data representation is meant
to model the randomly changing parking’s available spots
whereby a future state depends only on the current state, and

does not depend on any event that may have occurred before
it. This property is called the Markov property whereby we
can assume a stochastic model based on a Markov process
to describe parking dynamics. Hence, it is the availability
of a particular parking lot that is the variable of interest
here, and Fig. 7 illustrates averaged values of such variable
over a number of similar instances. The parking availability
variable is averaged over multiple historical one-minute
period observations across similar seasons. The time period
is chosen sufficiently small to assume discrete state changes
of a parking lot modelled over a time-span of 5 minutes
during which arrival and departure rates are assumed fixed.
The next 5-minutes cycle uses a similar discrete states
change model, but with different arrival and departure rate
values. The small 5-minutes interval assumes a stationary
arrival/departure rates Poisson process with fixed mean value
of entering λi and departing µi vehicles to/from parking lot
Pi over a single observation period. The Poisson distribution
is used in our simulation to represent the arrival process into
parking lots. The simulation uses the arrival times generated
by this distribution to fill parking lots at run-time. The
Poisson process changes dynamically the availability status
of parking lots following the arrival of vehicles to parking-
area lots.

Fig. 7. Parking data sample over a single observation period

B. State modelling

Based on the availability distribution collected from his-
torical data classified over observation periods as illustrated
in the previous section, parking states are derived for each
parking lot Pi of a certain capacity Ci. A state represents the
parking availability range. Following Kendal’s notation, the
classic Markov chain model with exponentially distributed
inter-arrival times and and parking durations M/M/C
queue is used to predict the future availability state of a
parking lot Si given that the current state is Sj , and denoted
P (Si|Sj). A fixed arrival rate λi of vehicles entering Pi

lot with maximum capacity C = Ci, and departure rate µi,
are used to describe Pi’s queueing model, over a 5-minutes
observation period. Arrival/departure rates variation is han-
dled across observation windows but considered fixed within
each observation window that is deliberately chosen small



enough to justify this assumption. Each state corresponds
to an availability-rate range. Fig. 8a illustrates a 6-states
model within some availability-ranges for a sample parking
lot with capacity Ci = 1000. Subsequently, a frequency
matrix is elaborated from similar periods across historical
data illustrated in Fig. 7 to the currently 5-minutes observed
period. A dummy-data example of the frequency matrix is
sketched in Fig. 8b which for example says that the transition
from State S0 to State S1 occurred 30 times during the
observed-window period in a parking lot across the available
historical data. A normalized version of the frequency matrix
is inferred in Fig. 8c, which sketches the parking dynamic
availability patterns within the observed period in terms of
probabilistic weights.

C. Decision inference

The previous illustrations show our methodology to de-
sign a Markov Chain to forcast future parking states using
past information from historical data. Subsequently, the
state that displays the highest transition probability from
the current state is forecasted as the next state of the
corresponding lot. Our proposed model employs 6 states:
S = {S0, S1, S2, S3, S4, S5}, ranging from the highly-
occupied state S0 to the highly-available state S5 of a
parking lot. The collected historical data facilitate the elab-
oration of the transition probabilities relationship between
states as depicted in the process of Fig. 8. Diagonal values
account the number of times the same availability range has
been registered within the same observation window, across
several similar intervals (e.g. Mondays) of past observation
windows (e.g. 8:00 AM to 8:05 AM). Parking availability
of a lot fluctuates from state State Si as a vehicle enters
a parking area to State Sj as the vehicle is expected to
reach that parking lot. The likelihood of a sequence of
states’ fluctuation in a lot can be computed using the Markov
property (where Sk ∈ S):

P (Si, ..., Sj) =

j∏
k=i

P (Sk|Sk−1), i, j ∈ {0.1, .., 5}

The Markov model provides an inference approach
through connecting the dependencies of current period infor-
mation (in this case, parking-lot availability) with historical
information (previous availabilities in similar periods). For
each parking lot Pq , and a current observation time-window
wr, an arrival rate λqr, a departure rate µqr and a state
transition-matrix Aqr are established as follows:

Aqr =


a00 a01 . . . a0n
a10 a11 . . . a1n
. . . . . .
. . . . . .
. . . . . .
an0 an1 . . . ann



where aij = P (St = Sj |St−1 = Si), in which St

designates the observed state at time t that falls within
the time-window wr. That is aij represents the transition
probability from State Si to State Sj for a given lot in
a given time-window. Given an observation-window set
W = {w1, ..., wk}, we generate transition-matrices Aqr, 1 ≤
r ≤ k, for each parking lot Pq in the parking area following
the approach discussed earlier in the previous subsection.
When entering a parking area at time t0 that falls within
period wl, the expected arrival-time t1 to a targeted parking-
lot is computed and the corresponding arrival period wl+m

is identified, m shifts forward the entering period wl. If
the trip time exceeds the duration of a single observation-
window period (i.e. wi 6= wj), the corresponding transition
matrices for each window since t0 and up to the arrival
time t1 are multiplied to figure out the state of the targeted
parking lot Pq . Hence, using the multi-step transition matrix
Aq,l→n =

∏n
r=lAqr, we can look-up P (St1 = Sj |St0 = Si)

where n = l + m is the distance in m steps between the
periods spanning t0 to t1, and Si, Sj ∈ S. Aq,l→n represents
the transition states of lot Pq when the expected arrival time
spans a sequence of observation-windows wk, 1 ≤ k ≤ n.
However, under short periods of time which fit within a
single observation window size (i.e. 5 minutes), a single
states-transition matrix holds the parking dynamics infor-
mation. First, the state with highest transition probability
is predicted as the forthcoming availability of each parking
lot Pq , and then the parking with the highest forthcoming
availability state, or the equivalent lowest failure rate is the
selected parking lot with the most promising vacant spots.

Algorithm 2 shows the driver framework of our parking-
selection approach while Algorithm 3 reproduces into steps
the above state-prediction process of the selected parking lot.
The parking selection process is triggered once a vehicle
enters a parking area from a given entry-point E. The
geographical map of the parking area PA is an input to
the parking-selection algorithm as well as the list of parking
lots and their related attributes, such as capacity and current
availabilities. The traffic data returned by smart-pole sensors
within the parking area is conveyed to the algorithm in the
form of congestion rates compiled in a list LC. Algorithm 2
figures out the parking-lot with the least chances of failing to
find a vacant spot once the vehicle entering Area PA reaches
the selected lot. The best route to reach each parking lot in
Area PA is searched considering Entry-Point E, and the list
of current congestion-rates for road edges LC. The search
process delivers a route for which the expected arrival time
T is worked out in the next step of the algorithm. Next,
the algorithm queries the parking lot for which Route R has
been chosen to retrieve the current parking state CS. The
future state of the parking lot by the expected arrival-time is
forecasted considering Algorithm 3. The availability rate is
computed out of the forecasted stated and the corresponding
failure-rate is inferred. After compiling every parking-lot’s



(a) Parking states (b) Occurrence frequency matrix (c) Transition matrix

Fig. 8. Markov model from historical data

failure rate in Area PA, the lot with minimum chances to fail
including a vacant spot upon the arrival-time of the vehicle
controlled by Algorithm 2 is returned.

Algorithm 2 SmartPark - Parking-lot selection
1: procedure FINDPARK(E,P, PA)

. E is the entry point to parking area PA where there is a list of
parking lots P

2: LC ← TrafficSensors(PA)
. LC is the list of congestion rates in Parking Area PA

3: for each p ∈ P do
4: R← FindRoute(E, p, PA,LC)
5: T ← GetArrivalT ime(R,LC)
6: CS ← GetCurrentState(p)

. Query current state of Parking lot p

7: FS ← ForecastFutureState(T, p, CS)
8: p.FailureRate← 1− p.AvailabilityRate[FS]

. The availability rate of Lot p in State FS is averaged
from past historical instances

9: end for
10: return ArgMin(P, FailureRate)

. Returns the parking-lot index corresponding to the
lowest failure rate

11: end procedure

To forecast the state of a parking lot, Algorithm 3 matches
a current state with similar historical situations for a target
parking lot q. Given the time-sliced segmentation of a
parking lot into periods mapped to discrete states as shown
earlier, the length of a period is first set to 5 minutes which
is used to figure out the actual forecasted period n. The
transition matrix Al for the current period l is retrieved from
at a similar past period using historical data as illustrated in
the process of Fig. 8, and then multiplied by the sequence of
transition matrices up to the one corresponding to the future
period n where the vehicle is expected to reach the parking
lot. Using the resulting transition matrix Aq,l→n, the future
state of parking q is predicted as the argument of the column
that maximizes the availability of the current state row S.

Algorithm 3 SmartPark - Parking state prediction
1: Parameter
2: PeriodLength = 5
3: end Parameter
4: procedure FORECASTFUTURESTATE(S, T, q)

. T is the future time duration in minutes starting form
the entry-time to parking area, at which the state of
parking-lot q is sought given current state is S

5: n← T mod PeriodLength
. n is the observation window for the expected arrival

time T

6: Aql ← TransitionMatrix(q, l)
. Al is the transition matrix of parking lot q in a

past period that is similar to the current-period index
labelled l

7: Aq,l→n ←
∏n

r=l Aqr

. An is the transition matrix of parking lot q for the
future period n corresponding to the vehicle’s arrival
time T

8: return ArgMax(Aq,l→n, S)
. From the current state S, return the next state that

maximises the availability of parking-lot q, using the
trend matrix Aq,l→n

9: end procedure

VI. EXPERIMENT AND EVALUATION

A. Simulation environment

We developed a simulation environment made up of three
modules as illustrated in Fig. 9. A driver Python code posi-
tions parking lots in a city road-network defined by NetEdit
utility of the traffic simulator SUMO [48]. While NetEdit
is used to describe road junctions and edges on a map, it
receives a variable list of parking lots that are randomly
placed on particular junctions to evaluate SmartPark ability
to scale its performance within varying parking resource
situations.

A parking area is subsequently generated by NetEdit
to zoom on a snapshot of a road-network and related
infrastructure within a city area of interest, hereby labelled



Fig. 9. Simulation architecture

as parking area. Any parking lot in the parking area is a valid
candidate to park a given vehicle that enters the parking area.
This spatial view of the urban core defined by the parking
area shapes the road topology in an experimental setting that
is to be investigated in a particular vehicular-traffic context.
The driver code supplies traffic and parking parameters
to evaluate the performance of candidate algorithms under
varying traffic-density degrees and parking-lot instances. We
captured an actual city area using OpenStreetMap [49] and
imported it into NetEdit. Kista is busy hub district of Stock-
holm with a variety of business and shopping outlets as well
as a booming science and innovation cluster. Fig. 10 shows
the parking area of interest in this experimental evaluation
of the candidate algorithms, as a simplified snapshot of
the actual Kista’s road-network. The list of parking lots
is incrementally augmented and sparsely distributed across
locations in the parking area as featured in Fig. 10. In
this experimental study, each parking lot has a maximum
capacity of 200 spots, with arrival and departure rates set to
10 and 5 vehicles per minute. A parking lot is deemed full if
its occupancy threshold exceeds 80%. The simulation driver
injects a varying degree of traffic density to evaluate the
performance of candidate algorithms under different traffic
considerations. Models used to generate data sets for parking
dynamics and traffic flows are described further next.

B. Data sets

To run the experiment, two sources of data are generated,
namely parking and traffic data. The first data set simulates
the parking dynamics in terms of historical and current
activity within a given parking-lot. The second data set
models the traffic-flow over the parking-area.

1) Parking dynamics: While historical data could be
made available from proprietary parking service providers,
in this experiment historical data is artificially crafted as
follows. Parking availability data reflect a parking lot state
minute by minute over, over a period of 5 minutes. Sub-
sequently, the parking-dynamics process follows a 6-states
discrete Markov model State S0 to State S5, where S0

Fig. 10. Parking area: Kista district of Stockholm

designates the initial state of a parking lot, labelled in Fig. 10
as Initial Parking Availability. The available spots for each
state is averaged from 10 instances of historical parking-
data simulating 10 similar observation periods. For example,
8:00 AM to 8:05 AM on Mondays. The resulting data set
is illustrated in Fig. 11, where Sample0 represents a 5-
minutes observation period with minute by minute available
spots in a parking lot. In the context of our experiment, the
initial availability is randomly generated following a uniform
distribution, but upper-bounded by 90% maximum initial
availability. Each data sample of Fig. 11 represents the park-
ing dynamics over successive temporal states, where State
S0 represents the initial availability state, S1, represents the
availability rate after 1 minute, etc.

Fig. 11. Historical parking-dynamics data-set sample

2) Traffic dynamics: All routes in the parking area net-
work are subject to congestion, and congestion on a route
translates into a time delay to traverse it. This delay is
simulated by increasing the total number of vehicles in the
parking area. The congestion rate represents the proportion
of vehicles that is injected into the road network of the
parking area. Vehicles enter the parking area at a mean



rate representing the congestion rate parameter used in this
experiment. The mean rate is the average number of vehicles
that enter the parking area per minute. Given a total-vehicles
threshold that can be accommodated by the parking area,
the congestion rate in this experiment ranges from 10% to
90% of that threshold. Fig. 12 shows an averaged number of
injected vehicles normally distributed around the congestion-
rate mean, into the parking area when the total vehicle
threshold is set to 100.

Fig. 12. Traffic dynamics data set

C. Candidate algorithms

SmartPark is compared to a base case algorithm labelled
BlindPark which is illustrated in the flowchart of Fig. 13.
This base-case algorithm imitates an instinctive parking
search procedures drivers commonly adopt by seeking the
nearest lot, hoping to reduce driving-time. Since any lot is
deemed suitable once entering the parking area, the nearest
lot appears a natural choice. However, it may turn out to
be full, and thus the path is augmented with a new segment
leading to the following nearest lot, starting from the current
vehicle location.

Fig. 13. BlindPark: Base-case parking algorithm

SmartPark and BlindPark are compared with varying
parking-lot instances in the parking area, and under varying

congestion rate situations. To create a controlled experimen-
tal environment, by studying the scalability of the candidate
algorithms when parking resources increase on one hand,
and the ability to adjust to varying traffic considerations on
the other hand, the entry point to parking area is fixed.

D. Performance metrics

Two prominent metrics are targeted in the proposed
experimental setup. The failure rate and arrival time. The
failure rate reflects the blocking probability, which is the
chance that a vehicle finds a designated lot, by the candidate
algorithm full. This metric reveals the rate by which the
algorithm fails to lead vehicles to a parking lot with available
spots. The parking dynamics model described earlier, is
used to determine the available spots in the designated lot.
Subsequently, the blocking probability or failure rate for
each parking lot is obtained from the availability rate, as
follows:

FailureRate = 1−AvailabilityRate = 1− V acantSpots

TotalSpots

V acantSpots is retrieved from the corresponding state at
which the parking lot is found upon arrival of the vehicle
controlled by the candidate algorithms, and TotalSpots is
the parking lot capacity.

The arrival-time metric used also in our experiments,
measures the time duration a vehicle controlled by candidate
algorithms, spends within the parking-area since entry till it
reaches an available parking-lot. Vehicles may pass through
unavailable parking lots until a successful one is found.
A clock is maintained throughout the simulation to pick
vehicles’ arrival time to a parking-lot, which availability
rate falls below a common threshold, that reflects the lot’s
exhaustive use parameter.

E. Experiment results

1) Parking scalability: In this experiment, we investigate
the scalability performance of the candidate algorithms
to decrease the failure rate when taking advantage of an
increasing instances of parking lots in the parking area. The
injected traffic in this experiment is fixed at a high rate of
0.8, while parking-lot instances range from 1 to 9. Fig. 14
shows the average result of 20 simulation runs, with error-
bars showing the deviation of the sample means. The figure
shows that SmartPark takes better advantage of the available
lots in the parking area, scaling down gracefully the failure
rate as more parking lots are provided. The clairvoyant
SmartPark outperforms the greedy BlindPark, which routes
vehicles naively to the nearest parking lots, while facing
consistently high failure probabilities.

2) Routes congestion: This experiment compares Smart-
Park and BlindPark failure rate performance with a varying
degree of congestion rates in the parking area. Hence, the
performance metric is still the probability to find an available
spot in the designated lot when the vehicle controlled by



Fig. 14. Parking scalability performance with congestion rate
fixed at 0.8

the candidate algorithms reach the designated parking lot.
In this experiment, the number of parking lots is fixed to a
high value of 8 lots in the parking area. Fig. 15 shows the
average result of 20 simulation runs, with error-bars showing
the deviation of the sample means. The figure shows that
SmartPark is not sensitive to congestion fluctuations due to
its ability to use real-time traffic data from sensors across
smart-poles in the parking area junctions when planning a
route to an available parking lot. BlindPark on the other
hand, is unaware about the traffic situation, driving cars to
the nearest but highly occupied lots.

Fig. 15. Routes congestion performance with parking-lot
instances fixed at 8

3) Arrival time: Another metric of interest is the arrival-
time to parking-lots. While varying the instances of parking
lots, SmartPark’s quest for the "best" parking lot with
higher availability-rate, incurs a lower arrival-time cost as
illustrated in Fig. 16. The figure reveals the arrival times in
seconds since entering the parking area, while the dots in
the curves show the failure-rate of the parking lot, once the
vehicle arrives there. SmartPark consistently leads vehicles
to a parking lot with lower failure rates, yet those vehicles
arrive earlier than the ones led by BlindPark to promised
lots. With only one parking lot in the parking area, both

algorithms have no choice but to lead vehicles to the same
lot, but the arrival-times gap expands as more parking
lots are made available. In this experiment, the congestion
rate is fixed at a high value of 0.8, which allows parking
dynamics to fluctuate into blocking states faced by BlindPark
roaming around full parking lots. Eventually, as parking
resources increase, chances to blindly fall into an available
parking lot increase too, allowing BlindPark to lower arrival
times, after a peak of about 20 minutes delay difference
compared to SmartPark. The arrival times gap narrows as
further lots are provided, yet SmartPark always keeps a
lower failure rate, which means even-though arrival times
converge with increasing parking lots, the probability to
find available spots in a lot chosen by SmartPark is always
higher than BlindPark. SmartPark cars consistently arrive
earlier to the designated lot, yet with a lower failure rate
(at most 0.42), whereas BlindPark failure rate appears to be
consistently higher than SmartPark counterparts. The figure
shows the average result of 20 runs, with error-bars showing
the deviation of the sample means. BlindPark error-bars are
much wider than SmartPark ones, which indicate the degree
of arrival-times variation is much higher across multiple
simulation runs for BlindPark, whereas SmartPark appears to
be more predictive ensuring the arrival-time remains within
a narrower interval.

Fig. 16. Arrival time to parking lot with varying parking
resources while congestion rate is fixed at 0.8

Another dimension of the arrival time is the influence
of congestion rates. Fig. 17 shows that the arrival times
generally increase within an increasingly congested park-
ing area. Traffic congestion data are captured by real-time
sensors in junction smart-poles and used by SmartPark
search algorithm to derive an optimal parking lot. Smart-
Park’s integration of traffic data trades routing and parking-
allocation problems in a way that vehicles reach a highly
promising parking lot with failure rates ranging from 0.34
to 0.41. However BlindPark vehicles arrive later to parking



lots with failure rates ranging from 0.5 to 0.65. While
parking-availability chances are always in the advantage of
SmartPark-led vehicles, the arrival-time gap narrows further
with congestion rates, making it difficult for both algorithms
to move vehicles at a higher-speed as the parking area
becomes packed.

Fig. 17. Arrival time to parking lot with varying congestion
rates while parking instances is fixed at 8

VII. CONCLUSION

We described an approach to the parking selection and
related navigation problems, considering real-time traffic
situation within a delimited scope of a busy CBD area.
Entering vehicles within the area controlled by the proposed
SmartPark algorithm and requesting a parking-spot trigger
the search process which first estimates the arrival time
to all parking-lots within the area. The estimated arrival
times are used to predict the parking-lot states using a
discrete Markov-chain model that utlizes historical data from
past and similar seasonal instances. Using that prediction
model, we project the current parking-state to infer the
future parking-state considering the expected arrival time
to each parking lot. The best parking lot is then picked,
followed by a routing process which makes use of smart-
pole data collected earlier. The performance results applied
to an actual busy area of Stockholm CBD show improved
parking-availability expectations when using our proposed
SmartPark algorithm compared to intuitive BlindPark that
consistently attempts the nearest parking lot. The simulation
results collected from standard traffic-simulation APIs, show
also higher scalability of parking-resource utilization, and
lower cruising-time in favour of SmartPark.

Future research considers incorporating machine-learning
approaches to further learn from newly emerging data
streams enabled by IoT immersion into urban landscapes
to optimize further parking-utility, while incorporating addi-
tional criteria, such as user-profiled preferences.
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Solving the k-centre problem as a method for sup-
porting the park and ride facilities location decision.
In 2016 Federated Conference on Computer Science
and Information Systems (FedCSIS), pages 1223–1228,
Sep. 2016.

[28] Zhiyuan Liu and Qiang Meng. Bus-based park-and-
ride system: a stochastic model on multimodal network
with congestion pricing schemes. International Journal
of Systems Science, 45(5):994–1006, Dec 2012.

[29] Olsen M. On the complexity of computing optimal
private park-and-ride plans. Pacino D., Voß S., Jensen
R.M. (eds) Computational Logistics. ICCL 2013. Lec-
ture Notes in Computer Science, Springer, Berlin, Hei-
delberg, 8197, 2013.

[30] Jinwoo (Brian) Lee, Duzgun Agdas, and Douglas
Baker. Cruising for parking: New empirical evidence
and influential factors on cruising time. Journal of
Transport and Land Use, 10(1), Oct 2017.

[31] M. U. Rehman, M. A. Shah, M. Khan, and S. Ahmad.
A vanet based smart car parking system to minimize
searching time, fuel consumption and co2 emission. In
2018 24th International Conference on Automation and
Computing (ICAC), pages 1–6, Sep. 2018.

[32] M. Rybarsch, M. Aschermann, F. Bock, A. Goralzik,
F. Köster, M. Ringhand, and A. Trifunović. Coopera-
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