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ABSTRACT
This study investigates the advantages and potentials of the metamodel-
based multi-objective optimization (MOO) of a turning operation through
the application of finite element simulations and evolutionary algorithms
to ametal cutting process. The objectives areminimizing the interface tem-
perature and toolwear depth obtained fromFE simulations usingDEFORM-
2D software, and maximizing the material removal rate. Tool geometry
and process parameters are considered as the input variables. Sevenmeta-
modelling methods are employed and evaluated, based on accuracy and
suitability. Radial basis functionswith apriori bias and Kriging are chosen to
model tool–chip interface temperature and tool wear depth, respectively.
The non-dominated solutions are found using the strength Pareto evo-
lutionary algorithm SPEA2 and compared with the non-dominated front
obtained from pure simulation-based MOO. The metamodel-based MOO
method is not only advantageous in terms of reducing the computational
time by 70%, but is also able to discover 31 new non-dominated solutions
over simulation-based MOO.
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1. Introduction

The optimization of metal cutting processes in turning operations has been studied extensively in
the literature. However, optimization studies including two or more objectives, i.e. multi-objective
optimizations (MOOs), are limited. The approaches towards solving a multi-objective optimization
problem (MOOP) were divided into two groups by Deb (2001). The first group of methods use the
a priori approach. In this approach, the MOOP is transformed into a single-objective optimization
by adopting a preference vector, generated by some higher-level information. The a priori approach
has been employed in multiple studies (Aggarwal et al. 2008; Bhushan 2013; Bouacha et al. 2014;
Chabbi et al. 2017; Khamel, Ouelaa, and Bouacha 2012; Tebassi et al. 2016), where a desirability
function transforms multi-response turning problems into a single-objective optimization problem.
Alternatively, several researchers adopted the theories of grey relational analysis (GRA) to solve mul-
tiple performance characteristics optimization problems based on the a priori technique (Bouzid
et al. 2014; Gok 2015; Kazancoglu et al. 2011; Pawade and Joshi 2011).

The second group of methods use the a posteriori approach. This approach involves obtaining a
set of solutions in the form of a trade-off front, where the desired solution is selected according to
some higher-level information concerning the problem. In this approach, the decision maker can
gain a better understanding of the decision variables and objectives, and the relations between the
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two. In addition, it provides the freedom to analyse the results before selecting the optimal solution.
Evolutionary algorithms (EAs), owing to their characteristic of using a population of solutions that
evolve in each generation, are well suited for the a posteriori approach in solving MOOPs.

To the best of the present authors’ knowledge, there are only a limited number of studies on the
MOO of turning operations. Most of the research is focused on single-objective optimization, or
where an MOO is converted to a single objective by following the a priori method, as mentioned
earlier. Researchers often perform a limited number of turning experiments designed by methods
such as factorial, Taguchi, etc.The cutting parameters are optimizedwith statistical tools e.g.ANOVA,
based on the experiments. Moreover, in some literature the experiments are approximated by using
basic metamodelling methods, such as the response surface method (RSM), and the optimization is
carried out on the metamodels instead.

Recent applications (2007–2011) of evolutionary optimization techniques in the optimization of
machining parameters have been reviewed by Yusup, Zain, and Hashim (2012). Out of all the arti-
cles reviewed in Yusup, Zain, and Hashim (2012), only seven studies focus on theMOO of turning or
multi-pass turning operations using evolutionary algorithms (Raja and Baskar 2010, 2011; Cus, Balic,
and Zuperl 2009; Durán, Barrientos, and Consalter 2007; Srinivas, Giri, and Yang 2009; Sultana and
Dhar 2010; Xi and Liao 2009). They all incorporate mathematical models of the turning operation
or an approximate model from a limited number of experiments and only two studies optimize the
objectives simultaneously based on the a posteriori approach. In one study by Durán, Barrientos, and
Consalter (2007), the production rate and production cost of turning operations were optimized by
using genetic algorithms, and a Pareto-optimal front was obtained. Sultana and Dhar (2010) mini-
mized cutting temperature and cutting force in turning AISI-4320 steel by using an MOO algorithm
based on genetic algorithms (GAs), subject to keeping the surface roughness less than a constant
value. An experimental study along with predictive models were implemented using the response
surface method. The cutting variables considered were cutting speed, feed rate, pressure and the flow
rate of high pressure coolant. In a study by Pytlak (2010), which was not included in the aforemen-
tioned review article, unit production cost, time per unit, and the resultant cutting force of hard finish
turning operations of hardened 18HGT steel were optimized. Themodified distancemethod (MDM)
is based on evolutionary computations generated the Pareto-optimal front from the objective func-
tion equations. The best solution from the non-dominated set was selected by using the hierarchical
optimization method.

Reviewing the literature from 2012, a number of studies considering the MOO of turning oper-
ations are found. Metamodel-based optimization of surface roughness and tool wear rate in the
turning of titanium metal matrix composites was conducted in Aramesh et al. (2013). Experi-
ments using a three level factorial method having three variables were incorporated to build a
metamodel using Kriging. The strength Pareto evolutionary algorithm was used for optimization.
A non-dominated sorted genetic algorithm (NSGA-II) was employed in Ganesan and Mohanku-
mar (2013) to find the optimal cutting parameters in CNC turning by optimizing three objective
functions, minimum operating time, minimum production cost and minimum tool wear, expressed
with mathematical equations. In a study by Thepsonthi and Özel (2014), the cutting force and tool
wear of a high performance micro-milling process were generated by running 2D finite element
simulations (in DEFORM-2D software). They were used as inputs for optimizing tool path and pro-
cess parameters along with burr formation and surface roughness data extracted from experiments.
The multi-objective particle swarm optimization (MOPSO) technique was employed for performing
optimization. Santos et al. (2015) simultaneously optimized the machining force and chip thickness
ratio when turning aluminium alloys by building second-order polynomial approximation models
from a central composite experimental design. The genetic algorithm available in MATLABő soft-
ware was used for optimization. Satyanarayana et al. (2015) used Taguchi’s full factorial to design 27
experiments for turning a super alloy Inconel 718. The experiments were adopted to find two math-
ematical expressions for material removal rate and surface roughness, where NSGA-II obtained the
optimal solutions in terms of cutting parameters. A later study (Satyanarayana, Reddy, and Ruthvik
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Nitin 2017) optimized tool wear and tool temperature by conducting a three level full factorial (27
experiments). Using regressionmodels, two analytical expressions were formed as the objective func-
tions, and a genetic algorithm was used for optimization. Abbas et al. (2016) performed an MOO
study of cutting parameters in a turning operation. Surface quality andmaterial removal rate were the
objectives, while speed, feed rate and depth of cut were the variables. The Pareto-optimal front was
obtained from the non-dominated solutions of a five level factorial experiment (125 experiments).
In addition, the results were compared with a metamodel-based MOO (EGO) with a total of 80
experiments (64 initial and 16 validation experiments). In Klancnik et al. (2016), optimal surface
roughness, cutting forces and tool resistance time were obtained by optimizing three mathematical
models constructed with a gravitational search algorithm from 15 experiments.

In all the aforementioned sources, mathematical models, experimental work or metamodels that
were built on experiments formed the basis of the study. On the other hand, research work in which
FE simulations are coupled to MOO algorithms are very rare. Umer et al. (2014) minimized cut-
ting force and tool–chip interface temperature by using three different surrogate models—RSM,
radial basis functions (RBFs) and neural networks—and a multi-objective optimization genetic
algorithm (MOGA2) implemented inMODEFRONTIER. The objectives were obtained bymodelling
the oblique turning process in ABAQUS FEM software. Recently, Sadeghifar et al. (2018) performed
an MOO on radial turning operation by using the a priori approach (a weighted sum method). A
hybrid optimization, coupling genetic algorithm and sequential quadratic programming, optimized
a combined function of tool temperature, cutting force and residual stresses. The FE model was
approximated by RSM and used in the optimization process.

The present authors’ review of the literature shows that multi-objective optimization of turning
operations based on FE simulations, built on the a posteriori approach by employing EAs, is a rela-
tively new research topic. This is more noticeable when the optimization is based on metamodels. In
almost all existing studies, the metamodels represent the experiments and the Pareto-optimal fronts
are obtained from a metamodel-based MOO. The first drawback is that there is no proof that the
metamodels employed in the previous studies represent the experiments accurately. Yet, the exper-
iments are complex and time consuming. Hence it is not possible to perform a posteriori EA-based
MOOwith the actual experiments and find the true Pareto-optimal front. Therefore the second draw-
back, or a gap in the existing literature, is that the accuracy of the non-dominated solutions obtained
from the metamodel-based MOO cannot be easily assessed, since the true Pareto-optimal front is
unknown.

In the present research work, the intention is to fill this gap by analysing the performance and
advantages of ametamodel-basedMOOof a turning operation in comparisonwith an FE simulation-
based MOO of the same operation. A recent study by Amouzgar et al. (2018a) developed a new
framework for the automatedMOOof amachining process based on FE simulations. The framework
was demonstrated by optimizing ametal cutting process in turningAISI-1045, using an uncoatedK10
tungsten carbide tool. The aim of theMOOwas tominimize tool–chip interface temperature and tool
wear depth, which are obtained from FE simulations, while maximizing the material removal rate.
The optimization was based on five variables, including three geometrical variables (clearance angle,
rake angle and tool cutting edge radius) and two process variables (feed rate and cutting speed). The
strength Pareto evolutionary algorithm SPEA2 was employed as the multi-objective optimizer and
the Pareto-optimal front was found after 17 generations.Without the use of the metamodel proposed
in the current work, the optimization process took about two weeks.

In this work, the MOO of the same turning operation (cutting AISI-1045 with an uncoated car-
bide tool) is performed by approximating the FE simulations with metamodels. For this purpose, the
Latin hypercube sampling method is utilized to create 100 designs of experiments (DoEs) with the
same five variables: clearance angle, rake angle, tool cutting edge radius, feed rate and cutting speed.
FE simulations of the turning operation in DEFORM-2D software are run to find the responses for
the DoEs. Thereafter, seven different well-known metamodelling methods are constructed for two
of the objectives (tool–chip interface temperature and tool wear depth). The best metamodelling
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method for each objective is selected by using two performance metrics. The MOO is performed on
the selected metamodels with the same algorithm (SPEA2) and the trade-off front is obtained. The
potential of metamodel-based MOO is discussed by analysing and comparing the non-dominated
solutions on the front with the trade-off front of the simulation-based MOO. Thus, this work differs
from the existing literature in the following ways: (i) multi-objective optimization without combin-
ing the objectives, (ii) multiple metamodelling methods with parameter tuning for finding optimum
parameters, (iii) objective functions that are obtained by FE simulation rather than empirical for-
mulae, (iv) validation of optimal solutions by simulation, and (v) a real-world turning operation
simulated by state-of-the-art FE software.

In the next section, a brief overview of FE simulation of the turning operation in DEFORM-2D
is presented. Then, Section 3 is dedicated to defining the seven metamodelling methods and formu-
lating the performance metrics that are used to select the best method. In Section 4, the SPEA2 and
the parameters in the algorithm are presented and the overall MOOP is formulated. In Section 5,
parameter settings for the metamodelling methods are described and the results are presented and
discussed. Finally, the concluding remarks are presented in Section 6.

2. FE simulation of the turning process

The FE model is based on the Lagrangian method. Figure 1 illustrates a schematic diagram of a 2D
cutting operation. The variables considered in the study are the tool geometry parameters including
clearance angle γ , rake angle α and tool cutting edge radius r, and process parameters including
cutting speed ν and feed rate f , which are indicated in Figure 1. Three objectives are considered,
which are extracted from the simulation after 7mm of cut length, i.e. minimizing tool wear depth,
minimizing the tool–chip interfacemaximum temperature andmaximizing thematerial removal rate
(MRR). MRR is calculated by

MRR = νfd, (1)

where ν (mm/sec) is the cutting speed, f (mm/rev) is the feed rate and d (mm) is the depth of cut.
The depth of cut is in the third dimension; thus, it is kept constant. The variables and objectives are
shown in Table 1, and Table 2 shows the upper and lower limits of the variables.

2.1. Boundary conditions

The tool is fixed and the cutting is done by the movement of the workpiece towards the tool. The
vertical speed of the workpiece is set to zero (fixed in the y-direction), and horizontal speed (in the

Figure 1. Schematic diagram of turning operation.
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Table 1. Variables and objectives.

Variables Clearance Rake Cutting edge Cutting speed, Feed rate,
angle, γ (◦) angle, α (◦) radius, r (μm) ν (m/min) f (mm/rev)

Objectives Maximize Minimize Minimize
material wear maximum
removal depth (ω) interface
rate (MRR) temperature (Tint)

Table 2. Lower and upper bounds of the variables.

Variable γ (◦) α (◦) r (μm) ν (m/min) f (mm/rev)

Range 2–15 0–15 10–100 100–300 0.05–0.4

Table 3. Material properties for the workpiece and the tool.

Material properties Density (g/cm3) Young’s modulus (GPa) Poisson’s ratio Hardness (HRC)

AISI-1045 7.85 f (temp) 0.3 7

Table 4. The Johnson–Cook (JC) material parameters for AISI-1045 (Jaspers 1999).

JC parameters A (MPa) B (MPa) C n m ε̇0 T0 (◦C) Tm (◦C)

AISI-1045 553.1 600.8 0.0134 0.234 1 1 20 1500

x-direction) is assigned to the nodes on the bottom edge of the workpiece. The two edges of the work-
piece that are in contact with the tool have heat exchange with the environment and the temperature
of the nodes in the two other edges are kept constant at 20◦C. In the same way, heat exchange for the
tool is defined for the two edges in contact with the workpiece. The temperature of the nodes on the
other two edges is set to room temperature.

2.2. Material properties

The turning process simulates the cutting of a plain carbon steel workpiece (AISI-1045) by an
uncoated tungsten carbide (K10) cutting tool. The tool is assumed to be rigid and thematerial proper-
ties of theworkpiece are shown in Table 3. The JC constitutivemodel is used to simulate theworkpiece
material behaviour within the range of strain rate, strain and temperature during the process by

σ = (
A + Bεn

) [
1 + C ln

(
ε̇

ε̇0

)][
1 −

(
T − T0

Tm − T0

)m]
, (2)

where σ is the flow stress, ε is the true strain, ε̇ is the true strain rate, ε̇0 is the reference true strain rate,
T is the workpiece temperature, T0 is the ambient temperature, Tm is the workpiece material melting
temperature and A, B, C, n and m are the model constants. The material model data for AISI-1045
are taken from Jaspers (1999), wherein the calibration of the JC constitutive model was carried out by
using the SHPB high strain rate test. Table 4 shows the JC parameters for the workpiece incorporated
in this study.

2.3. Thermal properties

The thermal properties of AISI-1045 taken from Halim and Maria (2008) and K10 acquired from
Klocke (2011) are shown in Table 5. In order to reach the thermal steady state condition during the
7mm of cut length used in this study, an ideal contact condition is assumed. This is accomplished by
setting the heat transfer coefficient in DEFORM-2D to a high value (hint = 100, 000 kW/m2◦C).



1266 K. AMOUZGAR ET AL.

Table 5. Thermal properties of the workpiece and the tool material.

Thermal parameters λ (W/m K) ρ × Cp (J/cm3 K)

AISI-1045 (Halim and Maria 2008) 25◦C < T < 600◦C: 3.91 × 10−8T3 25◦C < T < 600◦C: 4.685 × 10−6

−4.74 × 10−5T2T2 + 1.527 × 10−3T −0.0121T + 46.1 + 3.664
T > 600◦C: 26 T > 600◦C: 6.28

K10 (Klocke 2011) 80 5.7

2.4. Contact and frictionmodel

The contact between the chip and workpiece is assumed to be governed by the sliding model, i.e.
τ = μσn, whereμ = 0.8 is theCoulomb friction coefficient (sliding coefficient) andσn is the interface
normal pressure. The tool and workpiece are assumed to undergo a hybrid contact consisting of two
friction models, namely the sticking–sliding model defined by

τ =
{

μσn μσn < mk (Lst ≤ x ≤ Lsl)
mk μσn ≥ mk (0 ≤ x ≤ Lst) ,

(3)

where Lst and Lsl are the sticking and sliding contact lengths, respectively. The constant sticking and
sliding coefficients assigned for this study arem= 1.0 and μ = 0.6, respectively.

2.5. Tool wearmodel

Usui’s wear rate model (Usui, Shirakashi, and Kitagawa 1984) is adopted in this study. The model is
defined by

ω̇ = D1σnVSe−(D2/T), (4)

where σn is the normal stress,T is the temperature andVs is the sliding velocity of the predicted nodal
data of the tool contact surface. The wear constantsD1 andD2 are given in Maekawa et al. (1989) for
plain carbon steels and uncoated tungsten tools:

D1 = 7.8 × 10−9, D2 = 5.302 × 103. (5)

Tool wear depth andmaximum nodal temperature is extracted from simulations after more than half
of the workpiece length has been cut by the tool, e.g. 7mm of cut length. The FE step length, number
of steps and total simulation time are defined accordingly for each simulation. The third objective,
e.g.MRR, is calculated by using Equation (1).

2.6. Mesh convergence

In FEmodelling, the size of the mesh affects the accuracy considerably. Therefore, based on the result
of a mesh convergence study with six different mesh sizes and numbers of elements, a suitable mesh
is selected and shown in Table 6. The simulation time for this mesh size varies between 250 and
600min. The large variation of computational time is caused by different variable combinations for
each simulation. Thus, by considering the capability of running several simulations at the same time
within the developed framework in Amouzgar et al. (2018a), the computation time for obtaining the
responses of the 100 DoEs, used for constructing the metamodel, was less than 48 hours.

Table 6. The simulation’s mesh data.

Mesh data Minimum element size (mm) Number of elements Simulation time (min)

0.01,176 3202 335
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3. Metamodelling

In this study, seven different methods are employed to construct metamodels of total tool wear depth
and tool–chip interface temperature. The metamodels are evaluated by two performance metrics and
the best method is chosen as the solver for MOO.

3.1. Metamodellingmethods

The recently developed radial basis functions with a priori bias (RBFpri) along with the conven-
tional RBF (RBFpos), the response surface method (RSM), Kriging (KG), support vector regression
(SVR), neural networks (NNs) and multivariate adaptive regression (MARS) are used. A summary
of each method is described in the Supplemental Data for this article, which can be accessed at
https://doi.org/10.1080/0305215X.2019.1639050

3.2. Performancemetrics

The two error metrics used to evaluate the metamodelling accuracy are as follows.

(1) Normalized root mean squared error (NRMSE) is given by

NRMSE = 1√
nt

√∑nt
i=1

(
f̂i − fi

)2
fmax − fmin

, (6)

where fmax = max(f1, f2, . . . , fns), fmin = min(f1, f2, . . . , fns), f and f̂ are the true and predicted
function values, ns and nt are the numbers of sample and test points. Root mean squared error
(RMSE) indicates the deviation of the metamodel output from the actual function response and
provides an overall indication of the global accuracy. RMSE is typically of the same order as the
actual function values and indicates the relative performance of the methods across different
functions independently. Therefore, to compare the methods over different test functions, the
normalized value NRMSE is used.

(2) Rank error (RE) is defined in Joachims (2005) and given by

RE = SwappedPairs
n2t

, (7)

where SwappedPairs = |{(i, j) : (fi − fj) × (f̂i − f̂j) < 0}|.

When metamodels are used in evolutionary optimization algorithms, the ranking among pairs of
solutions is crucial, rather than the actual function values. Therefore, rank error will demonstrate the
performance of the metamodelling methods in this regard.

The two performance measures are compared by adopting the k-fold (in this study k = 10) cross-
validation method. The sample points are divided into k sets, and surrogate models are trained
multiple times using samples in k − 1 sets, while leaving out the samples in one set as test points.
This process is repeated k times for each metamodel and the median of each set of k performance
metrics is used for comparison study.

4. Multi-objective optimization

MOO requires several evaluations of multiple objectives. There are several methods for solving
MOOPs; however, evolutionary algorithms (EAs) are one of the most popular methods and have
been applied in different fields (Das et al. 2011; Reddy, Abhyankar, and Bijwe 2011; Reddy, Bijwe, and

https://doi.org/10.1080/0305215X.2019.1639050
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Abhyankar 2014). EA methods start with a population that evolves through iterations by employ-
ing evolutionary operators, namely selection, crossover and mutation, that mimic the evolutionary
mechanisms observed in nature. In this study, an in-house implementation is employed of the well-
known strength Pareto EA (SPEA2) (Zitzler, Laumanns, and Thiele 2001) as the MOO solver with
the following parameter values:

• Initial population size: 300
• External set population size: 300
• Crossover probability: [0.7, 0.95]
• SBX crossover distribution index (Deb and Kumar 1995):[2, 15]

To cope with the stochastic nature of evolutionary algorithms like SPEA2, each optimization run
was replicated 10 times, each replicated run conducted with randomly chosen parameter values
within the ranges mentioned above. Next, all 10 sets of non-dominated solutions were combined
and the best set of non-dominated solutions, with a population of 300 solutions, was found and
reported as the Pareto-optimal set of the problem. The SPEA2 method has been shown to have some
advantages compared with other existing techniques for problems with more than two objectives
(Zitzler, Laumanns, and Thiele 2001). The method has previously been used for optimizing real-
world engineering problems (Amouzgar, Cenanovic, and Salomonsson 2015; Amouzgar, Rashid, and
Strömberg 2013).

The overall formulation of the optimization problem is

Max MRR(ν, f ),

Min ω(x),

Min Tint(x),

xL ≤ x ≤ xU, (8)

where x = [γ ,α, r, ν, f ] is the vector of design variables and xL and xU are the lower and upper bounds
of the design variables as defined in Table 2. The first objective function value is calculated by using
Equation (1) and the second and third objectives are obtained through FE simulations of the turning
process as described in Section 2.

5. Results and discussion

5.1. Comparison ofmetamodellingmethods

The iterative Latin hypercube sampling method is used to create a total of 100 DoEs. The FE simula-
tion of the cutting process is run for all DoEs to find the corresponding tool wear depth andmaximum
tool–chip interface temperature. Three out of the total 100 simulations aborted before reaching the
stopping criterion, which was the length of cut (7mm). Therefore, 97 DoEs and their responses are
employed to evaluate the performance of each metamodel with the aim of finding the best method
to integrate with the SPEA2 algorithm. However, to perform an unbiased comparison, a parameter
tuning process should be performed for all metamodelling techniques.

The parameters that have to be specified by the user for each metamodelling method have a great
impact on the accuracy of the models. Therefore, a parameter selection procedure should be applied
to all methods. Hold-out validation, which is an effective and simple method, is used for tuning the
parameters. The sampling data are grouped into two subsets, e.g. training and testing sample sets. Each
metamodelling technique is trained by using the training set for different parameter combinations.
The testing set is used to find the optimal parameters, which are the parameter combination that
produce the lowestNRMSE for the validation set. The parameter combinations are generated by using
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Table 7. Metamodels’ parameter tuning settings.

Method Parameter Range

RBFpri Polynomial {poly0, poly1, poly2}
Basis function {Linear, Cubic, Gaussian, Multiquadratic}

RBFpos Shape parameter {10i|i = −4,−3,−2,−1, 0, 0.3, 0.5, 0.7, 0.9, 1, 2, 3}
RSM No free parameters to be tuned –

Regression function {poly0, poly1, poly2}
KG Correlation function {Exponential, Gaussian, Linear, Spherical, Cubic}

Initial value of θ {10i|i = −4,−3,−2,−1, 0, 0.3, 0.5, 0.7, 0.9, 1, 2, 3}
Regularization parameter (C) {10i|i = −4,−3,−2,−1, 0, 0.3, 0.5, 0.7, 0.9, 1, 2, 3}

SVR Insensitive loss (ε) {10i|i = −4,−3,−2,−1, 0, 0.3, 0.5, 0.7, 0.9, 1, 2, 3}
Kernel width (δ) {10i|i = −4,−3,−2,−1, 0, 0.3, 0.5, 0.7, 0.9, 1, 2, 3}

NN Activation function {Linear, Tan-Sigmoid, Log-Sigmoid}
Number of hidden layers {n = 1, 2, 3, . . . , 10}

MARS Cost penalty factor (c) {10i|i = −4,−3,−2,−1, 0, 0.3, 0.5, 0.7, 0.9, 1, 2, 3}

grid search to explore the entire parameter space. This procedure is done for both objectives, i.e. tool
wear depth and interface temperature.

The parameters needing to be tuned for each metamodelling technique and their related ranges
for the grid search are shown in Table 7. In general, there are two types of parameter requiring to
be tuned, namely continuous and categorical parameters. The continuous parameters are taken from
the range

{10i|i = −4,−3,−2,−1, 0, 0.3, 0.5, 0.7, 0.9, 1, 2, 3}.

The polynomial and the regression function in RBFpri and KG are selected from polynomials of order
zero, one and two, represented respectively by poly0, poly1 and poly2. The most common type of
categorical parameter is adopted for the basis functions in RBFpri, the correlation function in Kriging
and the activation function in neural networks. The number of hidden nodes in the hidden layer of
NN is given by an integer in the range [1, 10]

After determining the optimal parameter configurations, the performance metrics of all meta-
modelling methods with their corresponding optimal parameters are calculated by using k-fold
cross-validation. The results are shown in Tables 8 and 9 for the tool wear depth and tool–chip
interface temperature.

The RBF approaches and Kriging are the best methods with regards to RE for both objectives. In
the NRMSE case, the RBFs and Kriging performed better than the other three methods (SVR, NN
andMARS). However, for tool wear depth, RBFpri is the most accurate method, and Kriging predicts
the interface temperature with the lowest error. Thus, to construct the metamodels employed in the
MOO study, RBFpri is selected for tool wear depth and Kriging is selected for interface temperature.

RBF and Kriging are methods that use both integration and interpolation for fitting the meta-
model. Based on the LibSVM documentation (Hsu, Chang, and Lin 2003), SVR requires a rigorous
two-step parameter tuning process which, for the sake of a fair comparison, is not implemented in
the parameter setting procedure of this study. Neural networks are known to be very sensitive to the
parameters, especially the number of hidden layers. On the other hand, each additional hidden layer
drastically increases the number of free parameters (weights) of the network to be learned through
back-propagation. This makes the learning algorithm susceptible to getting stuck at sub-optimal
parameters. MARS uses several parameters, and attempting to tune all of them is a rigorous study
in itself. Hence, all parameters except for the cost penalty factor (c) are fixed to their recommended
values.

The aforementioned results are consistent with the results obtained in a detailed comparison study
by Amouzgar et al. (2018b) of the samemetamodellingmethods on several benchmark functions and
a turning operation.
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Table 8. Error values of the 10 folds for all metamodelling methods for tool wear depth.

NRMSE RE

Fold ID RBFpri RBFpos RSM KG SVR NN MARS RBFpri RBFpos RSM KG SVR NN MARS

1 0.0391 0.0376 0.0321 0.0402 0.1661 0.2886 0.0628 0.0000 0.0000 0.0000 0.0000 0.0833 0.3056 0.0278
2 0.0389 0.0401 0.0223 0.0495 0.1343 0.3787 0.0531 0.0278 0.0278 0.0278 0.0278 0.0833 0.5000 0.0833
3 0.0334 0.0349 0.0394 0.0399 0.1922 0.4370 0.0270 0.0278 0.0278 0.0556 0.0278 0.2778 0.1944 0.0556
4 0.0325 0.0315 0.0567 0.0406 0.1081 0.9552 0.0518 0.1111 0.1111 0.1111 0.1111 0.2500 0.8611 0.1667
5 0.0254 0.0242 0.0594 0.0317 0.0748 0.7624 0.0239 0.0278 0.0278 0.1944 0.0278 0.0833 0.8056 0.0278
6 0.0241 0.0227 0.0170 0.0333 0.1547 0.3990 0.0554 0.0000 0.0000 0.0000 0.0000 0.1111 0.4444 0.0556
7 0.0271 0.0274 0.0411 0.0171 0.1803 0.8281 0.0290 0.0833 0.0833 0.0833 0.0278 0.1667 0.6389 0.0556
8 0.0512 0.0515 0.0500 0.0517 0.0812 0.4762 0.0556 0.0833 0.0833 0.0833 0.0833 0.1389 0.5000 0.0833
9 0.0450 0.0454 0.0247 0.0502 0.1026 0.5910 0.0309 0.0000 0.0000 0.0000 0.0556 0.0278 0.4167 0.0278
10 0.0313 0.0312 0.0619 0.0394 0.0757 0.4193 0.0945 0.0278 0.0278 0.0278 0.0278 0.0556 0.4167 0.0278
Median 0.0330 0.0332 0.0402 0.0401 0.1212 0.4566 0.0525 0.0278 0.0278 0.0417 0.0278 0.0972 0.4722 0.0556

Table 9. Error values of the 10 folds for all metamodelling methods for interface temperature.

NRMSE RE

Fold ID RBFpri RBFpos RSM KG SVR NN MARS RBFpri RBFpos RSM KG SVR NN MARS

1 0.0157 0.0175 0.0177 0.0173 0.1635 0.0220 0.0174 0.0000 0.0000 0.0000 0.0000 0.1389 0.0278 0.0278
2 0.0426 0.0413 0.0169 0.0479 0.2329 0.0437 0.1080 0.0278 0.0278 0.0278 0.0556 0.1111 0.1111 0.1667
3 0.0996 0.1001 0.0328 0.0967 0.2572 0.1254 0.1134 0.0000 0.0000 0.0556 0.0000 0.0556 0.0278 0.0278
4 0.0298 0.0311 0.0949 0.0277 0.1190 0.3169 0.0339 0.1389 0.1667 0.0833 0.1111 0.1667 0.4722 0.1389
5 0.0309 0.0308 0.0321 0.0257 0.1847 0.0430 0.0357 0.0000 0.0556 0.0556 0.0278 0.0000 0.0556 0.0000
6 0.0275 0.0276 0.0363 0.0322 0.2304 0.0854 0.0336 0.0000 0.0000 0.1111 0.0000 0.1389 0.0833 0.0278
7 0.0479 0.0495 0.0348 0.0495 0.2850 0.0538 0.0467 0.0556 0.0278 0.0556 0.0278 0.0556 0.1389 0.1111
8 0.0349 0.0371 0.0386 0.0536 0.1629 0.0694 0.0301 0.0556 0.0556 0.0833 0.0833 0.1111 0.1389 0.0556
9 0.0191 0.0191 0.0204 0.0236 0.3161 0.0421 0.0493 0.0278 0.0278 0.0000 0.0278 0.0278 0.0000 0.0278
10 0.0325 0.0330 0.0322 0.0274 0.1932 0.0420 0.0269 0.0278 0.0556 0.0556 0.0278 0.1667 0.1944 0.0278
Median 0.0317 0.0320 0.0325 0.0299 0.2118 0.0488 0.0348 0.0278 0.0278 0.0556 0.0278 0.1111 0.0972 0.0278
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Figure 2. Pareto-optimal front in objective space obtained from simulation and metamodel-based MOO.

5.2. Comparison of simulation-MOO andmetamodel-MOO

A simulation-based MOO on the same problem with identical settings was carried out to find the
Pareto-optimal front in a recent study by Amouzgar et al. (2018a). In that study, the optimization
algorithm converged after 17 generations. The non-dominated solutions of generation 17 reported
as the Pareto-optimal front are shown in Figure 2 with * and called ‘Simulation-MOO’ in the leg-
end. Each generation of the study was completed in around 20 hours (40 FE simulations in each
generation) and the 17 generations, i.e. a total of 680 simulations (17 × 40), were executed in two
weeks.

In this study, the metamodel-based MOO process is run with Equation (1) as the expression for
MRR (the first objective) and RBFpri and Kriging as metamodels for tool wear depth and interface
temperature (the second and third objectives), respectively. The final Pareto-optimal set contain-
ing the 300 non-dominated solutions was obtained from the overall 3000 non-dominated solutions
generated from the 10 MOO runs, each running for 500 generations. The final 300 non-dominated
solutions that create the Pareto-optimal front obtained from metamodelling-based MOO are also
shown in Figure 2. By comparing the two fronts, the accuracy of the metamodels in capturing the
true Pareto-optimal front (simulation) is evident. However, there are two regions in the front where
the metamodels were relatively inaccurate. First, the solutions betweenMRR values of 500 to 800 and
second region is the lower end of the front, where the metamodels predicted negative values of tool
wear depth.

To validate the metamodel-based Pareto-optimal front, 100 non-dominated solutions (the valida-
tion set) are selected from the total 300 solutions based on a nearest neighbour density estimation
technique (Zitzler, Laumanns, and Thiele 2001). The true second and third objective values of the
validation set are obtained by running FE simulations, where 97 out of the 100 solutions were valid
and they are depicted in Figure 3. The first region of the front mentioned above is still not covered by
the validated metamodel-based Pareto-optimal front. However, the second region is now rectified by
the updated metamodel-based front, where the solutions with negative ω values have shifted to the
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Figure 3. Pareto-optimal front obtained from simulation-MOO and non-dominated solutions discovered by metamodel-MOO
(non-validated and validated by FE simulations).

Table 10. Error values of the validation set.

NRMSE RE

Tool wear depth (RBFpri) 0.0448 0.0346
Interface temperature (KG) 0.0296 0.0434

positive side of the tool wear depth axis. Now, the validation set can be used as test samples to calculate
the performance metrics for RBFpri and Kriging, which are shown in Table 10. Higher error values
in Table 10 compared with the error measures obtained from the k-fold method in Tables 8 and 9
are observed. However, the errors still confirm a relatively good accuracy of the two metamodelling
methods.

An outcome of a metamodel-based MOO is the ability to discover new non-dominated solutions
or find solutions that dominate the results obtained from simulation-based MOO. To investigate this
aspect, the non-dominated population from simulation-based MOO (60 solutions) are combined
with the validated solutions obtained from the metamodel-based MOO (97 solutions). The fast non-
dominated sorting algorithm is applied to the set to find the solutions with rank one in the front. The
updated Pareto-optimal front along with the simulation-based MOO front is depicted in Figure 4.

Figure 5 illustrates the relationships between the variables and objectives of the simulation-based
MOO solutions and the newly discovered solutions by using metamodel-based MOO. The results
are promising because 31 new non-dominated solutions are discovered of which 9 dominate the
solutions obtained from the simulation-based MOO and the other 22 are completely new optimal
solutions. This is more intriguing when the noticeable reduction in the computation time is consid-
ered. The original study required 680 FE simulations (the population size of 40 × 17 generations)
while this study was carried out with 200 FE simulations, reducing the total computation time from
two weeks to four days. The saved computational time can be employed in advancing the process,
by using the adaptive metamodel-based design optimization as described in Wang and Shan (2007).
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Figure 4. Pareto-front from simulation-MOO and non-dominated solutions from the combined set of simulation-MOO and
metamodel-MOO (validated by FE simulations).

Figure 5. Matrix plot of non-dominated solutions from simulation-MOO and metamodel-MOO (validated by FE simulations)
between variables and objectives.

The metamodels can be trained with the new combined set of solutions and their response values.
Thenceforth, the integrated MOO with the updated metamodels can generate a new front. Again,
the selected solutions on the front can be validated by running FE simulations and hopefully a new
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Figure 6. Hypervolume for minimization of a two objective problem, with Nadir point as reference.

Figure 7. Hypervolume indicator plot for the non-dominated solutions of simulation and metamodel-based MOO in each
generation.

set of non-dominated solutions will be discovered. The process can continue with the intention of
exploring more and better solutions.

The advantage of utilizing metamodels in MOO can also be assessed by calculating the hyper-
volume indicator (Zitzler et al. 2003). The hypervolume indicator is a measure to compare the
non-dominated sets in each generation of optimization, or between two optimization methods. The
hypervolume indicator gives the hyper-volume between the solutions in the Pareto-optimal front and
a reference point. Figure 6 shows the hypervolume for the minimization of a two-objective problem.
It is obvious that a front with higher hypervolume is closer to the true Pareto-optimal front, when the
nadir point (Deb, Miettinen, and Chaudhuri 2010) is selected as the reference point. Comparison of
hypervolume in each generation of both simulation andmetamodel-basedMOO, plotted in Figure 7,
shows consistently higher values for solutions obtained by metamodel-based MOO. The graph of
simulation-based MOO shows that the run was terminated after 17 generations because there was
very little improvement in the hypervolume value. At the time of termination, the simulation-MOO
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had used 680 simulations. On the other hand,metamodel-basedMOO (which usedmetamodels built
using only 200 simulations) continued to improve the hypervolume up to 30 generations. The reduc-
tion in runtime due to the use of fewer simulations is far greater than the time required for running
13 (= 30 − 17) additional generations.

6. Concluding remarks

Metamodel-based MOO of cutting AISI-1045 with an uncoated carbide tool in a turning operation
with three objective functions and five variables was performed. Two of the objectives were evaluated
by finite element simulations. RBFpri and Kriging among a total of seven metamodelling methods
were selected, based on a performance study, to approximate the objective functions. The metamod-
els were updated by validating a set of selected solutions with FE simulations from the Pareto-optimal
front obtained after running the SPEA2 algorithm. Afterwards, the solutions in the combined set
consisting of the initial DoE and the validation set were ranked and the non-dominated solutions
obtained. The comparison of these solutions with the Pareto-optimal front created in the recent
simulation-based MOO disclosed the benefits of using metamodels in multi-objective optimization
studies of computationally expensive and complex simulations of turning operations. The optimiza-
tion method based on metamodelling was able to find more non-dominated solutions in a fraction
of the time when compared with optimization methods that are based entirely on FE simulations.

In conclusion, employing metamodels in MOO studies of turning operations with FE simulations
and even experimental work is efficient (giving time reduction) and effective (giving better solu-
tions). Combining physical experiments, FE simulations and metamodels in performing MOO of
more complex machining operations is an area of interest for future work. Furthermore, metamodel-
based MOO of other manufacturing processes such as drilling and metal casting is in the present
authors’ future plans.
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