
I 

 

 

  

Utilization of Cancer-Specific Genome-
Scale Metabolic Models in Pancreatic 
Ductal Adenocarcinomas for 
Biomarkers Discovery and Patient 
Stratification  

 

Master Degree Project in Systems Biology A2E 
60 credits/ECTS  
Spring term 2019 
 
 
 
Mohamed Al Shobky  

a15mohel@student.his.se 

 

Supervisor: Adil Mardinoglu, 

Professor of Systems Biology 

King’s College London, UK 

adil.mardinoglu@kcl.ac.uk 

 

Examiner: Andreas Tilevik, 

Senior Lecturer in Bioscience  
School of Bioscience, Skovde university 

andreas.tilevik@his.se 

mailto:a15mohel@student.his.se
mailto:adil.mardinoglu@kcl.ac.uk
mailto:andreas.tilevik@his.se


II 

 

Abstract  
Pancreatic Ductal Adenocarcinomas initiates in the exocrine part of the pancreatic tissue and 

represents over 90% of all the pancreatic cancers. Pancreatic Ductal Adenocarcinomas are extremely 

aggressive and are one of the most lethal malignant neoplasms. The five-year relative survival is 

currently less than 8% of the patients.  The main reason behind such a low survival rate is that most 

of the cases are diagnosed at a very late stage.  Although substantial advancement in pancreatic cancer 

research has been done, there has not been any remarkable significance in the mortality to incidence 

ratio. This is mainly a result of the scarce of early diagnostic characteristic symptoms and reliable 

biomarkers besides the unresponsiveness to the treatments. In this study, transcriptomics and 

proteomics data were used for the construction of a genome-scale metabolic model that was used in 

the detection of altered metabolic pathways, genes and metabolites using gene set analysis and 

reporter metabolites analysis. As a result, altered metabolic pathways in PDAC tumours were detected 

including the lipid metabolism-related pathways as well as carbohydrate metabolism, in addition to 

nucleotide metabolism, which are considered as potential candidates for diagnostic biomarkers. 

Moreover, classification of the filtered DIRAC tightly regulated network genes, based on their 

prognostic values from the pathology atlas, detected two groups of PDAC patients that have a 

significantly different survival outcome. The differential expression analysis of the two groups showed 

that six of the eight genes used in clustering were showing significantly altered expression, which 

suggests their importance in PDAC patient stratification. As a conclusion, this study shows the valuable 

outcome of the GEM reconstructions and other systems-level analyses for elucidating the underlying 

altered metabolic mechanisms of PDAC. Such analyses results should provide more insights into the 

biomarker discovery and developing of potential treatments. 
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Popular scientific abstract 

Cancer is a collective term for a large group of diseases that target any organ in the body. A well-

known feature of cancer is its ability to create abnormal cells rapidly and grow outside their normal 

boundaries, which can then invade adjacent body parts and spread to distant organs. These 

abnormalities occur due to the interactions between the individual’s genetic factors and external 

agents, including physical, chemical, and biological carcinogens. To give indications on cancer 

hazardousness, it is the second leading cause of death worldwide, with an estimated 9.6 million deaths 

in 2018, according to the world health organisation (WHO). Furthermore, the most common cancer 

types include the lung, breast, colorectal, prostate, skin, and stomach cancers and the lung, colorectal, 

stomach, liver and breast cancers are the most associated with cancer deaths. The cancer cell 

metabolism was found to be reprogrammed in order to support their rapid proliferation. That is why 

the metabolic rewiring, also referred to as metabolic alteration, is now considered as one of the cancer 

hallmarks that initially included the traits of evading growth suppressors, activating invasion and 

metastasis, limitless replicative potential, resisting cell death and sustained angiogenesis.  

The pancreas is an organ located within the abdomen and is about 15.24 cm long, flat and oblong, 

with an essential rule in digestion and blood sugar regulation. The pancreas as a gland has both 

exocrine and endocrine functions. The exocrine activity is shown in the production of enzymes called 

pancreatic juice that digest fats, proteins and carbohydrates in the intestine. Those digestive fluids 

travel through the pancreatic duct to the bile duct that takes the fluids to the gallbladder and mixes 

with bile acid to help in the digestion process. The endocrine activity is the represented in its secretion 

to the insulin that decreases the concentration of blood glucose and glucagon raises the blood glucose 

levels, and the combination of the two hormones maintain a normal level of blood sugar in the human 

body. There are three primary diseases associated with the pancreas malfunction, and they are 

pancreatitis, diabetes and pancreatic cancer. The pancreatic ductal adenocarcinoma is a highly lethal 

cancer associated with a very poor survival rate as the five-year relative survival is currently less than 

8% of the patients. The cytotoxic chemotherapies that are now being used in the treatment regimen, 

unfortunately, are accompanied by significant side effects with a minimal therapeutic outcome. The 

FDA approved drugs that are used rely on the DNA metabolism and DNA integrity as their primary 

target, and for that reason, researchers thought of finding alternative metabolic targets that might 

allow for a higher efficacy and tumour eradication rate. Pancreatic ductal adenocarcinomas are 

capable of living in a harsh microenvironment with hypoxia and nutrient deprivation, which means 

that they attain biochemical flexibility, allowing them to adapt in such conditions. For that reason, a 

full understanding of the metabolic nature can ravel metabolic vulnerabilities that could be targeted 

as biomarkers for diagnoses or prognosis and as a novel drug target for developing an effective 

treatment. In this study, different systems biology methods including genome-scale metabolic 

modelling, differential expression analysis, gene set enrichment analysis, survival analysis and more 

were used to detect genetic and metabolic alterations specific to pancreatic cancer. The results 

revealed that pancreatic tumours possess altered metabolism in the lipid metabolism, carbohydrate 

metabolism as well as nucleotide metabolism pathways that can be targeted as potential candidates 

of diagnostic biomarkers. In addition, the analysis managed to detect a list of 6 genes that have altered 

expression between patient groups suggesting their importance in pancreatic patient stratification 

which can help in determining the cancer stage and the subsequent adequate and effective treatment. 
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Introduction  

As the fundamental building unit of the human body, cells are capable of both extracting and providing 

energy to carry out various vital processes and synthesising new organic materials that are essential 

for performing activates such as movement, growth, development, and reproduction. Metabolism is 

a crucial process for the utilisation of nutrients and preserving the balance between energy 

consumption and production by a collection of a set of biochemical reactions which in turn are 

maintaining the healthy living state of the cells and the body as a whole (Lazar and Birnbaum, 2012). 

With the mutual impact between the metabolism and every other cellular process; there is a piece of 

apparent evidence showing the fundamental role of the metabolic pathways collection that influences 

every single cellular function and extends to whole-body level (McKnight, 2010). To this end, along 

with a more profound medically-oriented research in metabolism, it became more evident that the 

abnormal metabolic states considered as the primary cause or outcome of a myriad of human 

disorders including diabetes, liver and renal disorders, and cancer (DeBerardinis and Thompson, 

2012). 

Cancer is a remarkably heterogeneous and sophisticated collection of diseases and considered as an 

outstanding example of human disorder with hereditarily-derived pathological metabolic 

perturbations (Greaves and Maley, 2012). Hanahan and Weinberg  (Hanahan and Weinberg, 2000) 

managed to set six major cancer hallmarks in an attempt to organise the cancer discrepancy in its 

underlying biology that represents the physiological alteration in a cell which eventually drives the 

growth and development of the malignancy. Those hallmarks are represented in the tumour ability to 

generate its own growth signals, showing a noticeable reduction in its dependence on the exogenous 

growth stimulation from the surrounding normal tissue microenvironment. Another acquired trait by 

the tumour cells is the insensitivity to the antigrowth signals, which is mainly caused by the disruption 

of the retinoblastoma protein (pRb) and its two relatives, p107 and p130 that release E2F transcription 

factors that allow the cell proliferation. One more critical mechanism is the ability of the tumour cells 

to evade apoptosis that has a very prominent influence on the expansion of the tumour cell population 

that works side by side with its ability to increase the rate of cell proliferation by acquiring insensitivity 

to the antigrowth signals. Independent from the cell-to-cell signalling disruption in favour of tumour 

growth to be isolated from the surrounding environment, the deregulation of the intrinsic, cell-

autonomous program that operates independently from the cell-to-cell signalling pathways, are 

crucial to ensure the uncontrolled expansion of the tumour growth. The availability of the oxygen and 

nutrients by the blood vessels to the tumour cells is also crucial to keep the tumour expansion and 

increase in size. For that particular reason, the tumour develops a sustained angiogenic ability that 

guarantees a constant supply from oxygen and nutrients. The last hallmark they introduced was the 

ability of the cancer cells to invade adjacent tissues and move to remote sites to start new colonies to 

escape from the limited supplies in the primary tumours. 

Later an updated review by the same authors (Hanahan and Weinberg, 2011) added to the list two 

more emerging hallmarks based on observations from the significant advancement in cancer research 

and that included the of energy metabolism reprogramming and evading immune destruction. 

Metabolic reprogramming as a cancer hallmark has the capability to promote the malignant cell 
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proliferation, survival, and metastasis by altering metabolic pathways and mainly those related to 

energy metabolism, aiming for maintaining the cell growth and division. That was first observed by 

Warburg where cancer cells showed an abnormal behaviour from healthy cells in terms of energy 

metabolism (Warburg, 1956, Warburg et al., 1927). In other words, within aerobic conditions, the 

abnormal cells alter the metabolism of glucose where the energy metabolism is shifted mainly towards 

glycolysis in what so-called “aerobic glycolysis” (Warburg, 1956, Warburg et al., 1927). While that was 

such an outstanding discovery, but the idea of the total impairment of the oxidative phosphorylation 

process in cancer cells respiration was controversial (Weinhouse, 1956). That was supported by 

carrying out an isotope-tracing experiment that showed results of the ability of cancer cells to oxidise 

oxygen and generate CO2 with the same rate as a normal cell. The only exception was during tumour 

growth where the core cells of a tumour become hypoxic, and that would decrease the oxidative 

phosphorylation rate in comparison to glycolysis (Weinhouse, 1951, Weinhouse, 1972). 

Recently, the tumour associated metabolic rewiring was intensely reviewed and showed its profound 

advantage to initiate the tumour growth and development as well as maintaining its survival. In 

addition to that, it became more evident that this metabolic reprogramming could be a result of 

genetic mutations or could even induce posttranscriptional modifications (DeBerardinis and Chandel, 

2016, Cairns and Mak, 2016). In an attempt to organise these metabolic alterations, Pavlova and 

Thompson managed to group them into six hallmarks (Pavlova and Thompson, 2016). The list included 

the deregulation of the glucose and amino acids, increased nitrogen demand, the tumour utilisation 

for the opportunistic modes of nutrient acquisition and the ability to interact with its surrounding 

microenvironment metabolically. Moreover, the utilisation of the intermediates of the glycolysis\TCA 

cycle for the biosynthesis and NADPH production and alterations in metabolite-driven gene regulation 

that acts as active influencers on tumorigenesis were among those hallmarks (Pavlova and Thompson, 

2016).  

In general, pancreatic cancers can be divided into two subtypes as endocrine or exocrine tumours. 

Pancreatic Ductal Adenocarcinomas (PDAC) initiates in the exocrine part of the pancreatic tissue and 

represents over 90% of all the pancreatic cancers. The most typical non-invasive neoplastic precourse 

to PDAC is pancreatic intraepithelial neoplasias (PanIN). Those lesions harbour genetic and epigenetic 

alterations that are considered as primary drivers of the invasive adenocarcinoma of the pancreatic 

tissue (Vincent et al., 2011). PDACs are extremely aggressive, and one of the most lethal malignant 

neoplasms with five-year relative survival is currently less than 8% of the patients.  The main reason 

behind such a low survival rate is that most of the cases are diagnosed at a very late stage, where the 

five-year rate of survival reaches 2% (Siegel et al., 2016). Based on GLOBOCAN 2012 worldwide 

estimates, the pancreatic cancer was responsible for the death of 330391 patients per year, 

accounting for 4.0% of all cancer deaths, and also 337872 per year estimated incidence which is 

accounting for 2.4% of all new cancer cases (Ferlay et al., 2015). With the fact that the PDAC 

considered the seventh most common cause of cancer mortality with an inferior prognosis, it is 

predicted that this cancer-related mortality rate is going to even more increase reaching to be ranked 

as second in the next decade if no actions will be taken against such deadly cancer (Rahib et al., 2014). 

Although the substantial advancement in pancreatic cancer research there has not been any 

remarkable significance in the mortality to incidence ratio. That is mainly a result of the scarce of early 

diagnostic characteristic symptoms and reliable biomarkers besides the unresponsiveness to the 
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treatments due to the tumour heterogeneity, plasticity and the aggressive metastasis that presents in 

more than 50% of the diagnosed patients (Adamska et al., 2017). Previously, several studies pointed 

out the most prominent genetic features of the PDAC such as oncogenic activation of K-RAS that is a 

standard feature in more than 90% of the patients and with the early onset mutation of that gene, it 

is considered as a critical driver of PDAC initiation and progression (Lohr et al., 2005). Along with the 

oncogenic activation, inactivating mutations of the tumour suppressor gene CDKN2A/2B are also 

observed in more than 80% of the early stage lesions, while later stages of cancer exhibit inactivating 

mutations and deletions of tumour suppressor genes most prominently include TP53and SMAD4 

(Bardeesy and DePinho, 2002). Moreover, another feature that reflects the PDAC aggressiveness and 

chemoresistance is the desmoplastic reactions induced by immune cells, stromal cells, neural cells and 

extracellular matrix that forms the tumour mass bulk. Altogether, with the tumour hypo 

vascularisation, the delivery of the needed oxygen and nutrients is diminished due to the vascular 

network deficiency. In such hypoxic and acidic microenvironment in addition to the nutrient 

deficiency, a direct impact on the drug delivery mechanisms is common, and more importantly, the 

tumour microenvironment maintains its survival and growth by altering its metabolism (Sousa and 

Kimmelman, 2014, Liang et al., 2016). The downstream events of metabolic reprogramming are 

considered as prominent hallmarks of PDAC. Therefore tackling this aggressive cancer through 

establishing a clear understanding regarding its metabolism has been a dominant challenge to the 

scientific and medical communities (Perera and Bardeesy, 2015). Recent studies have shown the 

crucial role of both glucose and glutamine metabolism in the progression of the PDAC tumours that 

are regulated by the K-RAS oncogene to maintain the tumour growth (Le et al., 2010, Ying et al., 2012, 

Son et al., 2013). Inducible oncogenic K-RAS mouse model of PDAC showed in addition to being a key 

driver of PDAC initiation that it plays a central role in rewiring the tumour glucose metabolism by 

stimulating the glucose uptake and drives glycolysis intermediates towards non-oxidative pentose 

phosphate pathways (PPP) (Ying et al., 2012).  Another study reported that the PDAC cells maintain 

the tumour growth by relying on the distinct pathway of glutamine metabolism and that this 

reprogramming is mediated by the oncogenic K-RAS (Son et al., 2013). 

One of the fundamental purposes of the human systems biology studies is to accomplish an explicit 

knowledge about human metabolism and its relation to various diseases. With the frequently arising 

challenges regarding cancer diagnosis and treatment - mainly due to its complex pathogenic landscape 

and cellular heterogeneity - the systems biology holistic view allowed for having a global 

understanding of the disease mechanism and gain more insight towards biomarkers and drug target 

discovery (Westerhoff and Palsson, 2004, Tian et al., 2012). Metabolic network reconstructions 

became an essential tool for exploring the systems biology of metabolism and the generation of 

genome-scale metabolic models (GEMs). These models along with the massive advancement in high-

throughput omics data production has significantly contributed to metabolism studying on a genome-

scale by providing a computational platform for integrating and analysing this data as well as 

investigating more thoroughly into these networks by simulations (Thiele and Palsson, 2010, Bordbar 

and Palsson, 2012, Fondi and Lio, 2015). 

GEMs are a mathematical representation of the current knowledge of metabolism where biochemical 

and physiological data on protein-encoding genes and their interactions with other bioactive 

compounds and associated reactions are integrated. These metabolic reconstructions harbour a set 

of annotated stoichiometric chemical reactions as well as enzymes associated with those reactions in 
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a particular cell or tissue (Mardinoglu and Nielsen, 2012, Mardinoglu et al., 2013, Mardinoglu and 

Nielsen, 2015). In the past, two literature based GEMs of human metabolism were constructed, which 

were built to be generic. The reconstruction based on an extensive evaluation of genomic and 

bibliomic data, which are known as Recon1 (Duarte et al., 2007) and the Edinburg Human Metabolic 

Network (EHMN) (Ma et al., 2007), which showed a great significance in revealing the gaps in 

understanding the human metabolism. With the aim of extending the knowledge, included within 

such reconstructions, these generic networks were integrated with the human metabolism-related 

reactions in the Kyoto Encyclopaedia of Genes and Genomics (KEGG) (Kanehisa and Goto, 2000) for 

the creation of the Human Metabolic Reaction (HMR) database (Agren et al., 2012). This was followed 

by updating the contents of the HMR to HMR2 database (Mardinoglu et al., 2013) by integrating lipids 

and lipoprotein metabolomics from the Reactome database (Croft et al., 2011) and a manually 

constructed Hepatocytes GEM, HepatoNet 1 (Gille et al., 2010). Also, the lipid metabolism was more 

extensively curated using the lipidomics Gateway (Sud et al., 2007) and HumanCyc database (Romero 

et al., 2005). Those generic GEMs lack information related to the cell or disease-specific metabolic 

states. For that reason, many algorithms have been published that can reconstruct a cell or disease-

specific GEM by reducing the generic ones using cell or diseases specific omics data (Schmidt et al., 

2013). 

By the time the Genome-Scale Metabolic network was reconstructed, it was ready to be paired with 

various constraint-based modelling approaches for its transformation to mathematical models for the 

analysis of the cell or tissue-specific genotype-phenotype relationships. Concerning the current 

network knowledge, the constraint-based modelling constrains its predications allowing for 

phenotype simulations (Price et al., 2004). The constraint-based modelling, in contrast to the 

traditional kinetic modelling techniques, does not need detailed information on kinetic constants or 

the associated metabolites and enzyme. Instead, it counts on a set of constraints including 

thermodynamic constraints, mass-balance constraints and enzyme capacity constraints that applied 

for analysing Genome-scale metabolic models by transforming it into a mathematical model (Lewis et 

al., 2012). For the purpose of genome-scale metabolism simulations, Flux Balance Analysis (FBA) 

considered as the primary and most common method of the constraint-based modelling, allows for in 

silico prediction of flux that is optimised to a defined set of objectives despite the need for 

experimental measurements (Orth et al., 2010). Cancer-related applications of the reconstructed 

GEMs includes networks comparison between healthy and diseased cells; physiological analysis 

including essentiality and lethality analysis and growth simulation; integrative analysis of omics data, 

in which the GEM is used as a scaffold for identifying reporter pathways and reporter metabolites 

(Yizhak et al., 2015, Nilsson and Nielsen, 2017, Ghaffari et al., 2015). 

Aim 

With the high heterogeneity, aggressiveness and low survival rates of pancreatic adenocarcinomas; 

early diagnosis along with appropriate personalised treatment protocols are crucial for tackling such 

lethal tumours. For that reason, this project aims to integrate the pancreatic cancer-specific 

proteomics and transcriptomics data with Genome-scale metabolic modelling in a systematic manner. 

Moreover, the aim is to perform transcriptomic and network-based analyses, as illustrated in figure 1, 

to discover potential biomarker candidates and stratify PDAC patients that eventually will be 

significant for the diagnosis and development of effective treatment strategies. 
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Figure 1. Illustration of the workflow of the thesis project. TCGA mRNA-seq data and HPA proteomics data were 
integrated and introduced to the tINIT algorithm along with 57 metabolic tasks and HMR2 as a template model 
for the reconstruction of PDAC-specific GEM. For the diagnostic biomarkers discovery, differential expression 
(DE) analysis was performed, and the results were used to perform gene set analysis (GSA) and reporter 
metabolites analysis using the network topology of the reconstructed GEM. For the PDAC patients’ stratification, 
Differential Rank Conservation (DIRAC) analysis followed by consensus clustering analysis and survival analysis 
was performed. DE analysis was then performed between the two groups.
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Materials and Methods  

2.1 DATA 

2.1.1 Proteomics   

Staining profiles for proteins in pancreatic ductal adenocarcinomas tissue based on 

immunohistochemistry using tissue microarrays were retrieved from the Human Protein Atlas (HPA) 

version 16.1 (Uhlén et al., 2015) (http://www.proteinatlas.org). The proteomics data were used as the 

bases for the Genome-scale metabolic model reconstruction. 

2.1.2 Transcriptomics 

The mRNA-Seq profiles and clinical metadata of 181 samples composed of 177 primary pancreatic 

ductal adenocarcinomas and four matched tumour-adjacent normal tissues were used for the GEM 

reconstruction and mRNA expression, DIRAC, clustering and survival analyses. The harmonised data 

were retrieved from The Cancer Genome Atlas (TCGA) project within the Genomic Data Commons 

(GDC) Data Portal Version 9.0 (https://portal.gdc.cancer.gov/) (Grossman et al., 2016), using the 

TCGAbiolinks 2.5.7 R/Bioconductor package (Colaprico et al., 2016). The retrieved harmonised mRNA-

Seq gene expression was in the form of raw HT-Seq Read Counts data, and Fragments per Kilobase of 

transcript per Million mapped reads (FPKM) data. 

2.1.3 Generic human model, Human Metabolic Reaction database 2 (HMR2) 

The reference human GEM HMR2 (Uhlen et al., 2017) is a genome-scale metabolic model that 

represents the generic human cell. It contains 2892 genes associated with 7762 reactions 5566 

metabolites. The generic GEM was used as the reference model for the tINIT algorithm during the 

process of PDAC-specific GEM reconstruction. 

2.2 The RAVEN Toolbox  

RAVEN (Reconstruction, Analysis, and Visualization of Metabolic Networks) is a toolbox that runs 

within MATLAB and presents a complete environment to perform GEMs reconstruction, with the 

ability to analyse, simulate and visualise those reconstructed models. It is capable of integrating 

different omics data for automated reconstruction of the GEMs. The reconstruction was followed by 

an analysis of the networks and simulation results, also visualising the GEMs based on another 

published network maps (Agren et al., 2013). 

2.3 PDAC-specific GEM Reconstruction 

A functional PDAC-specific GEM was reconstructed based on both proteomic and transcriptomic data, 

using HMR2 as a reference model and a list of 57 predefined metabolic tasks (Agren et al., 2014) as an 

input to the tINIT (Task‐driven Integrative Network Inference for Tissues) algorithm (Agren et al., 2014) 

and Mosek solver version 8  within the RAVEN Toolbox Version 1.9 in MATLAB R2016b. Scoring for 

evidence of a reaction to be occurring was based on HPA protein profiles integrated with mRNAseq 

FPKM data. mRNA-seq data were filtered using the criterion of median expression value ≥1 FPKM to 

be added to HPA protein abundance score file with the Level “Low”. Such reconstruction method was 

http://www.proteinatlas.org/
https://portal.gdc.cancer.gov/
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performed in many projects; for example, one group integrated myocyte-specific RNA seq data with 

proteomic data for the reconstruction of a comprehensive myocyte-specific GEM (Varemo et al., 

2015). The maximisation of biomass production was considered as an objective function for PDAC-

specific GEM to assess model feasibility. In brief, the tINIT algorithm is a developed version from the 

older INIT (Agren et al., 2012) that allows for direct automated and semi-automated reconstruction of 

functional GEMs based on proteomics and transcriptomics evidence and a novel task‐driven 

reconstruction approach. The INIT algorithm was also used for generating a cell or cancer-specific 

GEMs that were lacking the functionality to allow performing the simulations. On the other hand, tINIT 

takes as an input, in addition to the integrated proteomics and transcriptomics evidence score and a 

Generic model, a list of predefined metabolic tasks including biomass growth for cancer cells as an 

additional metabolic task. These tasks should be performed by the reconstructed model to be 

functional as they are applying constraints on the reconstruction functionality and representing 

metabolic functions that are common in all cell types (Agren et al., 2014). 

2.4 The Differential Rank Conservation (DIRAC) analysis  

DIRAC is a network-based approach and was implemented within MATLAB for analysing gene order 

within the pathways of the reconstructed model along with another gene sets. The central concept of 

the algorithm is mainly based on the relative expression ranks of the participating genes. The results 

should show a  quantitative measurement of how pathway rankings differ both within and between 

phenotypes (Eddy et al., 2010). Pathways of the reconstructed GEM, as well as KEGG pathways, were 

used as gene set input to the algorithm with minimum genes set size was set to 3 and FPKMs were 

filtered by removing genes that had a row median less than one. 

2.5 Unsupervised clustering 

To find hidden patterns in the transcriptomics data that could be used for the PDAC stratification, 

unsupervised class discovery using the R/Bioconductor package "ConsensusClusterPlus" has proven 

its efficacy in revealing those groups that share common biological characteristics (Wilkerson and 

Hayes, 2010). First, the transcriptomics data in the form of FPKMs were filtered based on median 

FPKM > one will be included. Then, the list of 152 unique genes from the four tightly regulated 

pathways was further filtered based on their significance as prognostic genes from the pathology atlas 

dataset of pancreatic cancer prognostic genes (Uhlen et al., 2017). The FPKMs were median centred, 

and the following parameters were used: 80% item resampling (pItem), and 80% gene resampling 

(pFeature), a maximum evaluated k of 12 and 1000 resampling, agglomerative hierarchical clustering 

algorithm (clustering) upon 1- spearman correlation distances (distance) and ward.D2 as the linkage 

method. 

2.6 Survival analysis    

Based on the clinical data from the TCGA of the two PDAC groups defined by the unsupervised 

consensus clustering, the survival analysis was performed, and the log-rank test was calculated. 

Kaplan-Meier curves were derived according to the survival of the patients, and the days occurred 

until death after diagnosis. The Survival R package (Therneau and Lumley, 2018) was used for this 

analysis. 
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2.7 Differential Gene expression analysis and gene set analysis (GSA) 

The mRNA-seq raw count data were analysed for the detection of differentially expressed genes 

(DEGs) and obtain a quantitative and statistical inference to the changes between the two conditions 

as well as between the generated cancer subgroups from clustering. The R/Bioconductor package 

DESeq2 version 1.18.1 (Love et al., 2014) was used for that purpose. Benjamini and Hochberg false 

discovery rate (FDR) was conducted for multiple hypothesis correction. The FDR adjusted p-

value < 0.05 and Fold-change cut-off of >1 or <-1 was applied to determine up- and down-regulated 

genes. 

Gene set analysis using R/Bioconductor package “Piano” (Varemo et al., 2013), was performed to gain 

a better understanding to the results of the differential expression analysis, and its underlying 

biological processes. In this study, three gene set collections including the constructed PDAC specific 

GEM, the Gene Ontology biological processes (BP) “GOTERM_BP_5” and KEGG metabolic pathways 

(both were retrieved from MSigDB (Liberzon et al., 2015) were used. The statistical GSA method used 

was: Reporter features, Theoretical null distribution as the Significance method, FDR as the Multiple 

hypothesis correction method <0.05 and 1000 permutations to use for gene sampling 

2.8 Reporter metabolites  

By using the network topology of the reconstructed model, the reporter metabolite algorithm 

impeded inside the RAVEN toolbox was employed to allow for identifying the network metabolites 

that are significantly enriched based on its association with the gene expression changes. Those 

metabolites can be then used for identifying central parts of the metabolic network that has significant 

perturbation between the examined conditions (Patil and Nielsen, 2005). The network topology of the 

reconstructed PDAC-specific GEM in addition to the log2 fold changes and p-values from the 

differential expression analysis were imported to the reporter metabolites function in the RAVEN 

toolbox and a p-value < 0.005 was determed as the significance level. 



 

Page | 9  

 

Results 

3.1 Integrated proteomics and transcriptomics data for a refined protein 
abundance scores 

The concept behind integrating both of the proteomics and transcriptomics data is to complement the 

proteomics data and get a piece of refined and more robust information that could overcome the 

heterogeneous nature of pancreatic cancer tumours. The protein level data serves as the main source 

of protein evidence, while the mRNA expression profiles purpose is to fill in the gaps and reduce the 

probability of having potential false negatives. 

The retrieved PDAC proteomics data from the HPA project v16.1 was trimmed down to show the 

protein abundance levels (high, medium, low or not detected) of 15297 protein-encoding genes that 

are associated with the highest patients count. As a result, the data unveiled that 1566 (10.2%)  genes 

had high staining level, 1835 (12%) genes had low staining level, 5368 (35.1%) genes had medium 

staining level, while 6528 (42.7%) genes were not detected on the protein level (Figure 2A). 

The TCGA transcriptomics data for 177 PDAC patients and four matched tumour-adjacent normal 

tissues in the form of FPKMs were filtered to comprise only protein-encoding genes, and that yielded 

in total 19363 putative protein-coding genes. Based on various studies of the correlation between 

transcriptome and proteome, the low abundance transcripts of the mRNA expression with median 

FPKM values less than one was interpreted as not being translated to the corresponding proteins 

(Fagerberg et al., 2014, Varemo et al., 2015). By applying a cut-off of median FPKM equal to or above 

one as the protein detection level, a total of 12134 (62.7%) were identified as detected, while 7229 ( 

37.3%) of the putative protein-coding genes were not being translated to their corresponding protein 

(Figure 2B). 

Besides, comparing the two datasets revealed that a total of 6890 (49.2% of all protein-coding genes) 

genes were consistently present in PDAC tumours at both the proteomic and transcriptomic levels 

(Figure 2C). Moreover, a total of 5244 (37.4%) protein-coding genes were unique to the transcriptomic 

data, while 1879 (13.4%) protein-coding genes were only present in the proteomics data (Figure 2C). 

With that being concluded, the integrated data represented all the protein-coding genes (14013 

genes) that are evaluated as present on the protein level in PDAC tumours. Based on this, 3557 genes 

from the HPA data with non-detected protein abundance level but had an FPKM level more than or 

equal to one were reassigned as detected with low level. In addition, 1687 genes were absent from 

the HPA data and found to have an FPKM level more than or equal to one. These genes were also 

added to the final updated protein abundance scores with the level defined as low. 
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Figure 2: Coverage of gene expression in transcriptomic and proteomic analysis of the PDAC data. (A) The pie 
chart shows the coverage of protein-coding genes in the Human Protein Atlas (HPA). (B) The pie chart shows the 
coverage of protein-coding genes in the TCGA FPKM data after applying the median cutoff FPKM <1. (C) All 
protein-coding genes that are evaluated as present in PDAC based on TCGA transcriptomics data (Red) and HPA 
proteomics data (Green), which were used during the reconstruction of the PDAC GEM. (D) The overall 
distribution of Genes in PDAC GEM are included in the model based on the high-quality proteome, 
transcriptome, as well as the connectivity. 

3.2 Reconstructed PDAC-specific GEM constitutes individual transcriptome 
and tissue-specific proteome data  

The high heterogeneity is a prominent trait of the pancreatic ductal adenocarcinoma tumours that 

obstruct the process of detecting individual variations within the tumours and the global biological 

differences between cancerous and non-cancerous pancreatic tissues. In this context, a population-

based PDAC-specific GEM was reconstructed that comprise the individual variations among the PDAC 
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tumours and can be further employed for analysing high throughput omics data and simulating the 

metabolic differences between cancer and healthy patients.  

The reconstruction process mainly relied on the updated protein abundance levels that were 

generated from the integration of both the proteomics and transcriptomics data (Figure 2C) and used 

to score the HMR2 reactions to be included in the reconstruction if at least one of its associated genes 

was detected as present in PDAC tumours. The model functionality was determined based on the 57 

metabolic tasks and the objective function (see methods), and as a result, 459 reactions associated 

with 492 genes were essential for performing the introduced biological tasks. In addition, the final 

gap-filling step added eleven reactions that allow the final model to perform the rest of the tasks. The 

resulting PDAC- specific GEM is a functional model including 5750 reactions associated with 2242 

genes and 4415 metabolites within eight different subcellular compartments. By inspecting the gene 

content of the reconstructed model and its correlation with the introduced proteomics and 

transcriptomics data, it showed that the majority of model gene content (1189 genes) were derived 

from both of the –omics data, while a considerable number (846 genes) of genes were specific to the 

transcriptomics data and only 169 genes were unique to the HPA proteomics data. In addition, a few 

numbers of genes (38 genes) were found to be included in the model from the HMR2 database for 

enhancing the model connectivity (Table Appendix .1). The source of evidence for the GEM gene 

content is shown in Figure 2D. 

3.3 RNA-seq and Network-based analyses of PDAC metabolism 

In order to uncover the underlying biological differences between PDAC tumours and noncancerous 

pancreatic tissues, transcriptomics data were analysed for the identification of the differentially 

expressed genes (DEGs) using the DEseq 2 R package (Love et al., 2014). As a result, a total of 540 

genes were found to be differentially expressed (FDR adj. p-value < 0.05) in primary tumours in 

comparison to non-cancerous pancreatic tissue, of which 305 genes were upregulated, and 235 genes 

were downregulated. A complete list of all the 540 genes that were differentially expressed is shown 

in table Appendix 2. 

The results of the differential expression analysis (more specifically the log-fold changes along with 

the p-values) for the protein-coding genes were used to perform gene set analysis (GSA) for  Gene 

Ontology biological processes (BP) “GOTERM_BP_5”,  KEGG metabolic pathways and the network 

structure of the PDAC-specific GEM using the Piano R/Bioconductor package (Varemo et al., 2013). 

The results for the GO biological processes gene set analysis showed that 584 biological processes 

were associated with upregulated genes in PDAC while 379 were associated with downregulated 

genes in PDAC. Among the significantly upregulated processes are mitotic cell cycle, cell cycle process, 

cell division, DNA replication, DNA repair, DNA metabolic process, cellular respiration, cytoplasmic 

translation and cell development. Also several metabolic processes including oxidative 

phosphorylation, one carbon metabolic process, carbohydrate metabolic and biosynthetic processes, 

amino acid metabolic processes including aspartate and glutamate metabolism, extensive lipid 

metabolic and biosynthetic processes like arachidonic acid, fatty acid, fatty acid derivatives, steroids 

and ether metabolic processes. Whereas immune-related biological processes, such as activation of 

immune response, inflammatory response, alpha and beta T-cell activation and differentiation, 

macrophage activation and cellular defence response, were associated with significantly 

downregulated genes in PDAC.  
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In the same manner, results of gene set analysis for both KEGG pathways and PDAC-specific GEM 

subsystems showed similar significance levels (FDR adj.pval<0.05) for the perturbed gene sets. The 

former resulted in 27 pathways showing patterns of downregulation due to its association to 

downregulated genes while 40 pathways were enriched by upregulated genes; the later showed that 

35 subsystems were associated with upregulated genes and none of the rest subsystems found to be 

significantly enriched with downregulated genes. Noticeably, pathways including type 1 diabetes 

mellitus, primary immunodeficiency, natural killer cell mediated cytotoxicity, T cell receptor signalling, 

B cell receptor signalling, chemokine signalling, jak stat signalling, neurotrophin signalling 

autoimmune thyroid disease and acute myeloid leukaemia were among the highly significantly KEGG 

pathways enriched with downregulated genes. Moreover, the results showed that among the highly 

enriched metabolic pathways with upregulated genes are the lipid metabolism pathways including 

arachidonic acid, acylglycerides, glycerophospholipid, steroid, ether, glycosphingolipid metabolisms 

and bile acid biosynthesis and recycling.  In addition, it comes in the same category as the amino acid 

metabolism pathways such as alanine, aspartate and glutamate metabolism, glycine, serine and 

threonine metabolism, cysteine and methionine metabolism, and arginine and proline metabolism. 

Along with that energy metabolism related pathways such as oxidative phosphorylation as well as 

carbohydrate, nucleotide and cofactors and vitamins metabolism pathways were also among the 

highly enriched with upregulated genes. Those pathways are shown in details in table 1, along with 

the associated differentially expressed genes for each pathway. Noticeably, although most of the 

genes were showing upregulated expression in PDAC tumours, a small amount of them was found to 

be downregulated, which did not affect the overall outcome. 

Table1: Common significant Pathways (padj<0.05) identified through DE and “PIANO” GSA analyses (based on 
KEGG and/or PDAC GEM), as well as significantly changed genes in each pathway. The genes of each pathway 
are arranged by the degree of significance of differential expression within each pathway. The gene symbol, the 
log2 fold change, LFC standard error, p-values, and FDR adj. p-values are presented for each gene. Genes in (Red) 
are downregulated genes in PDAC. 

Metabolic Pathway Gene 
symbol 

log2Fold
Change 

lfcSE p-value padj 

Lipid Metabolism 
     

Arachidonic acid metabolism PLA2G10 2.967035 0.8093 0.00024 0.0238  
SLC27A2 2.242737 0.6604 0.00068 0.0402  
ALOXE3 2.499564 0.7524 0.00089 0.0456 

Acylglycerides metabolism AADAC 3.701064 0.9176 0.00005 0.0104  
MOGAT3 4.445076 1.1197 0.00007 0.0119  
MOGAT2 4.313961 1.0967 0.00008 0.0129 

Glycerophospholipid metabolism PLA2G4F 2.894178 0.7679 0.00016 0.0187 

(Dysregulated) PLA2G10 2.967035 0.8093 0.00024 0.0238  
CDS1 1.388428 0.3925 0.0004 0.0309  
GPCPD1 -0.96369 0.2875 0.0008 0.0443 

Steroid metabolism FABP6 4.422514 1.0898 0.00004 0.0102  
UGT1A1 5.423705 1.3737 0.00007 0.0124  
LIPA -1.31671 0.3399 0.0001 0.0147  
SLCO1B3 5.378489 1.3883 0.0001 0.0147  
CYP3A4 4.066282 1.0721 0.00014 0.0177  
AKR1C4 3.64445 0.9716 0.00017 0.0196  
CETP -2.29904 0.6137 0.00017 0.0199  
SLC27A2 2.242737 0.6604 0.00068 0.0402  
APOA4 7.120314 2.1282 0.00082 0.0447  
CLN8 -0.80028 0.2413 0.00091 0.0459 
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Bile acid biosynthesis and recycling SLCO1B3 5.378489 1.3883 0.0001 0.0147  
CYP3A4 4.066282 1.0721 0.00014 0.0177  
AKR1C4 3.64445 0.9716 0.00017 0.0196  
SDR16C5 2.777176 0.8121 0.00062 0.0385  
SLC27A2 2.242737 0.6604 0.00068 0.0402 

Ehter lipid metabolism PLA2G4F 2.894178 0.7679 0.00016 0.0187  
PLA2G10 2.967035 0.8093 0.00024 0.0238 

Glycosphingolipid metabolism B3GNT3 2.636525 0.5695 0.000003 0.0023  
ALG1L 3.187208 0.7907 0.00005 0.0104  
FUT2 1.923234 0.5739 0.0008 0.0443  
UGT8 1.594161 0.4832 0.00096 0.0478  
ABO 2.275606 0.6935 0.00103 0.0492 

Energy metabolism 
     

Oxydative phosphorylation ENTPD8 3.229628 0.8303 0.0001 0.0143 

Nitrogren metabolism CA9 3.593014 1.0369 0.00053 0.0355  
CA13 1.457664 0.434 0.00078 0.0437 

Carbohydrate metabolism 
     

Glycolysis / gluconeogenesis ALDH3A1 3.900533 0.9499 0.00004 0.009  
HK3 -2.33905 0.6521 0.000335 0.02827 

Tricarboxylic acid cycle and 
glyoxylate/dicarboxylate metabolism 
 

ALDH3A1 3.900533 0.9499 0.00004 0.009 

Fructose and mannose metabolism HK3 -2.33905 0.6521 0.00033 0.0282 

Ascorbate and aldarate metabolism UGT1A1 5.423705 1.3737 0.00007 0.0124 

      

Nucleotide metabolism   NQO1 2.306245 0.5791 0.00006 0.0117  
ENTPD8 3.229628 0.8304 0.0001 0.0143  
PDE2A -1.94998 0.5045 0.00011 0.0149  
PDE7A -1.37634 0.4019 0.00061 0.0384 

Amino acid metabolism 
     

Alanine aspartate and glutamate metabolism GFPT1 1.028761 0.3017 0.00065 0.0391  
IL4I1 -2.04549 0.6086 0.00077 0.0434 

Glycine, serine and threonine metabolism CKMT1A 2.587723 0.6042 0.00001 0.0054  
CKMT1B 2.533683 0.6274 0.00005 0.0103 

Arginine and proline metabolism CKMT1A 2.587723 0.6042 0.00001 0.0054  
CKMT1B 2.533683 0.6274 0.00005 0.0103 

Histidine metabolism DDC 3.974158 0.8558 0.00003 0.0023  
ALDH3A1 3.900533 0.9499 0.00004 0.009  
ELOVL6 1.335621 0.4073 0.00104 0.0492 

Tyrosine metabolism DDC 3.974158 0.8558 0.000003 0.0023  
ALDH3A1 3.900533 0.9499 0.00004 0.009  
IL4I1 -2.04549 0.6086 0.00077 0.0434 

      

Amino sugar and nucleotide sugar metabolism 
     

(dysregulation) NAGK -0.77096 0.1904 0.000051 0.01028 
 

MANSC1 1.292456 0.3528 0.000249 0.02402 
 

HK3 -2.33904 0.6521 0.000334 0.02826 
 

CHI3L1 -2.62272 0.7549 0.000512 0.03467 
 

GFPT1 1.028760 0.3017 0.000650 0.03919 

      

Cofactors and vitamins metabolism 
     

Porphyrin and chlorophyll metabolism HMOX1 -1.88894 0.4378 0.00001 0.0051  
UGT1A1 5.423705 1.3737 0.00007 0.0124 
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Retinol metabolism AADAC 3.701064 0.9176 0.00005 0.0104  
UGT1A1 5.423705 1.3737 0.00007 0.0124  
CYP3A4 4.066282 1.0721 0.00014 0.0177  
SDR16C5 2.777176 0.8121 0.00062 0.0385 

Alternatively, the reporter metabolite algorithm (Patil and Nielsen, 2005) within the raven toolbox 

was used to uncover the metabolic alterations accompanied by the PDAC tumours. The algorithm 

benefits from the network topology provided by the reconstructed PDAC-specific GEM to recognise 

metabolic hotspots (Reporter Metabolites) associated with upregulated or downregulated genes in 

PDAC tumours. As a result, the algorithm detected 76 upregulated reporter metabolites and 35 

downregulated reporter metabolites (P<0.005) regardless of their compartmentalisation.   

Among the upregulated reporter metabolites were metabolites of the lipid metabolism such as 

arachidonic acid and its products like 19(S)-HETE, 16(R)-HETE, which takes part in the arachidonic acid 

metabolism. Also, the cytosolic acyl-CoA-LD-TG3 pool, fatty acid-LD-PC pool and fatty acid-LD-PE pool 

metabolites of the acyl glyceride metabolism were associated with upregulated genes. In the ether 

lipid metabolism, the O-1-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine, 1-Organyl-2-lyso-sn-

glycero-3-phosphocholine and 1-(1-alkenyl)-sn-glycero-3-phosphoethanolamine metabolites also 

demonstrated a significant association with upregulated genes. Reporter metabolites were also found 

in the amino acid metabolism as mitochondrial creatine and creatine-phosphate were also associated 

with upregulation of gene expression.  

On the other hand, metabolites related to the carbohydrate metabolism showed association to gene 

expression downregulation. As an example, metabolites of the glycolysis and gluconeogenesis, which 

are beta D-glucose-6-phosphate and beta-D-glucose and metabolites of amino sugar and nucleotide 

sugar metabolism, and N-acetylglucosamine and N-acetylglucosamine-6-phosphate, respectively. 

Moreover, metabolites of the nucleotide metabolism showed different behaviour as the extracellular 

metabolites like UMP, IDP, IMP and UDP demonstrated an association to upregulated genes, while the 

metabolites like GMP, AMP,cyclic-AMP and cyclic-GMP showed their depletion in the nuclease and 

golgi apparatus. 
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Figure 3: Reporter metabolites results. Reporter metabolites with its associated subsystems in PDAC GEM for 
PDAC tumours n= 177 compared to noncancerous pancreas samples n=4. P-values for each reporter metabolite 
were calculated for up- and downregulated genes (student's t-test p-val <0.005), and the negative logarithm of 
the p-values are represented. 
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3.3 Implementation of DIRAC analysis and unsupervised clustering towards 
the stratification of PDAC patients 

In order to find tightly regulated parts of the metabolism in PDAC, the DIRAC was used to analyse the 

normalised FPKM gene expression data using both of KEGG pathways and the PDAC-specific GEM 

subsystems. The population-level analysis was applied to find the rank conservation index for each 

network in the tumour phenotype which is a representative value for the degree of conservation in 

the rankings of the genes of the network expression value that is averaged over the phenotype 

samples. As a result, four pathways showed close levels of tight regulation in both of the used gene 

sets and those were oxidative phosphorylation, Cysteine and methionine metabolism, Beta-alanine 

metabolism and Riboflavin metabolism (table 2).  

Table 2: Results from the DIRAC analysis. Four shared pathways between KEGG and PDAC GEM showed a close 
degree of tight regulation. The table shows the number of genes, gene pairs, average variance and the rank 
conservation index (mu_R) for each pathway across the used gene set collections. 

 KEGG metabolic pathways PDAC GEM subsystems 

pathway name Num. 

genes 

Num. 

pairs 

Avg. 

variance 

mu_R Num. 

genes 

Num. 

pairs 

Avg. 

variance 

mu_R 

Oxidative 

phosphorylation 

116 6670 2034.41 0.936 230 2633 1546.545 0.921 

Cysteine and methionine 

metabolism 

34 561 567.229 0.933 30 435 346.143 0.916 

Beta alanine metabolism 22 231 433.489 0.932 11 55 660.701 0.875 

Riboflavin metabolism 16 120 192.022 0.942 8 28 376.250 0.899 

By extracting the four tightly regulated pathway gene content out of KEGG gene sets, a list of 152 

unique genes was generated. Using the information about prognostic genes of pancreatic cancer from 

the pathology atlas of human cancer (Uhlen et al., 2017), the pathways genes were filtered based on 

their prognostic capability and out of the 152 genes, 14 genes were prognostic. Furthermore, using 

the top eight significantly prognostic genes in the consensus clustering of the 177 PDAC tumour 

samples applying the parameters mentioned in material and methods was accompanied by the best 

clustering consensus. The genes were: LDHA, ATP6VOD1, COX6B2, DNMT3A, UQCR11, ATP6VOA1, 

ATP6VOB and MTMR2. The analysis revealed that the best clustering of samples is into two groups, 

the first group (PDAC 1) consists of 88 patients and the second group (PDAC 2) consists of 89 patients 

with clustering consensus values 0.8774 and 0.8452 respectively (Appendix figure 1). 

Next, survival analysis was performed on the two groups of the clustering analysis using clinical data 

of the 177 PDAC samples. The clinical data displayed information about the samples such as that the 

vital status of the patients was 85 alive and 92 dead until the last time the clinical data has been taken, 

and 21 samples were in the 1st stage, 146 in the 2nd stage, 3 in the 3rd stage, 4 in the 4th stage, while 

3 were not reported. As a result, of the survival analysis, the p-value for the log-rank test between the 

two clusters was significant (p-val<0.001). The PDAC 1 group showed a significantly longer median 

survival time (913 days) in comparison to the PDAC 2 group (498 days) (figure 4A). 
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In order to gain more insight about the genetic alteration between the two cancer groups, differential 

expression analysis was performed using raw count data of the two groups as an input to the DEseq 2 

R package. As a result, the analysis revealed that 1461 genes were expressed differentially (FDR adj. 

p-value < 0.05, log fold change cutoff > 1 or <-1). 330 of the DEGs were downregulated, and 1131 DEGs 

were upregulated based on their log fold change. By comparing those DEGs to the list of the prognostic 

genes from the pathology atlas, it was found that both data sets shared 139 genes. Finally, by looking 

into the differentially expressed genes within the list of eight genes used in the consensus clustering, 

six out of the eight were found to be DE, which included LDHA, ATP6VOD1, COX6B2, DNMT3A, 

ATP6VOA1, and MTMR2 (figure 4B). 

 
Figure 4: PDAC stratification analyses results. A) Overall survival analysis for the two PDAC groups resulted from 
the consensus clustering analysis.  Kaplan-Meier plot showing the overall survival rate for patients of two cancer 
groups PDAC 1 (n=88) and PDAC 2 (N=89). The plot showed a significant difference in the median survival time 
(log-rank p-value=4.38e-05) (solid line) with 95% confidence intervals (dashed lines for upper and lower bounds). 
B) Box plots for the distribution of FPKM values of the 8 genes used in the clustering analysis between the two 
PDAC groups n=88 and 89, respectively. Statistical significance determined by Wilcoxon test followed by FDR 
adjustment. * p<0.05. 
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Discussion 

Genome-scale metabolic models are a mathematical representation of the current knowledge of 

metabolism where biochemical and physiological data on protein-encoding genes and their 

interactions with other bioactive compounds and associated reactions are integrated. These 

metabolic reconstructions were extensively used to study cancer metabolism and the underlying 

genetic alterations (Mardinoglu et al., 2018). The Availability of GEMs and its integration with a high-

throughput omics data and methods of data analysis may enable increased understanding of the 

altered metabolism in cancer. In addition, the implementation of differential expression analysis, gene 

set analysis and differential rank conservation (DIRAC) analysis provides different information from 

gene expression data that can complement each other. 

In line with the observed acylglycerides metabolism enrichment associated to the upregulation of 

Monoacylglycerol O-acyltransferase 2 and 3 (MOGAT2, MOGAT3) and Arylacetamide deacetylase 

(AADAC) in the pathway analysis (table1), the reporter metabolite results (figure 3) showed a 

significantly upregulated uptake of the cytosolic acyl-CoA-LD-TG3 pool and increased production of 

fatty acid-LD-PC pool and fatty acid-LD-PE pool. These are metabolites of the acylglecrides subsystem 

in the PDAC-specific reconstructed GEM. Both MOGAT2 and  MOGAT3 genes are encoding for 

enzymes that catalyse the terminal step of the synthesis of triacylglycerol by using fatty acyl-CoA 

(cytosolic acyl-CoA-LD-TG3 pool) and diacylglycerol as substrates (Cheng et al., 2003, Brandt et al., 

2016), which explains the increased uptake behaviour of the metabolite acyl-CoA-LD-TG3 pool  (figure 

3) in PDAC tumours. Moreover, the upregulated AADAC gene that encodes for a triacylglycerol lipase,  

an enzyme that catalyses the hydrolysis of the tri and diacylglycerols to increase the level of 

intracellular fatty acids (Nourbakhsh et al., 2013), suggests the reason behind the increased 

production levels of the fatty acid-LD-PC pool and fatty acid-LD-PE pool metabolites.  

Another lipid metabolism-related pathway that was found to be associated with upregulated genes is 

the ether lipid metabolism (table1). The phospholipase A2 group X, Phospholipase A2 Group IVF 

(PLA2G4F, PLA2G10) are genes encoding for the enzyme phospholipase A2 that hydrolyse the 

glycerophospholipids in the sn-2 position and produce free fatty acids and lysophospholipids 

(Cupillard et al., 1997). Noticeably, this increase in the phospholipase A2 enzyme activity was clearly 

showing its effect at the metabolite level in the form of highly upregulated reporter metabolites that 

were associated with the ether lipid metabolism as shown in figure 3. Those reporter metabolites 

were O-1-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine and 1-(1-alkenyl)-sn-glycero-3-

phosphoethanolamine. These are the reactants that responded to the increased enzyme activity by 

increasing their levels and that lead to an increase in the fatty acid-LD-TG2 pool and 1-Organyl-2-lyso-

sn-glycero-3-phosphocholine the products of the corresponding reactions. In a similar manner, the 

upregulated PLA2G10 demonstrated its powerful ability in the releasing of the arachidonic acid from 

the process of hydrolysing of phosphatidylcholine (Cupillard et al., 1997). That ability was shown by 

its relative increase in level from the results of the reporter metabolites along with other substrates 

of the metabolism of the arachidonic acid like 19(S)-HETE 16(R)-HETE were also found to be 

upregulated (figure 3). 

Some of the analysed pathways did not show a clear association to upregulated or down genes, and 

those were considered as significantly dysregulated pathways within the gene set analysis.  Amino 

sugar and nucleotide sugar metabolism, a part of the carbohydrate metabolism pathway, is an 
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example of the dysregulated pathways (table1), where genes like MANSC domain-containing protein 

1 and Glutamine--fructose-6-phosphate aminotransferase [isomerising] 1 (MANSC1, GFPT1) were 

significantly upregulated.  Contrarily, amino sugar and nucleotide sugar metabolism also had 

significantly downregulated genes. Among those genes was the N-acetyl-D-glucosamine kinase 

(NAGK) gene encoding the enzyme that degrades the N-acetylglucosamine to N-acetylglucosamine-6-

phosphate (Bergfeld et al., 2012). Another gene was the Hexokinase-3 (HK3) glucose-phosphorylating 

isoenzyme that catalyses the phosphorylation of glucosamine to glucosamine-6-phosphate (Griffin et 

al., 1991). Also Chitinase-3-like protein 1 (CHI3L1) that encodes the enzyme which catalyses the 

hydrolysis of the β-1,4-N-acetyl-D-glucosamine linkages in chitin polymers and produces N-

acetylglucosamine (Flach et al., 1992). This dysregulation was translated at the metabolite level by the 

decrease in the level of both N-acetylglucosamine and N-acetylglucosamine-6-phosphate in PDAC 

during the amino sugar and nucleotide sugar metabolism as presented by the reporter metabolite 

analysis (figure 3). 

Glycolysis and Gluconeogenesis metabolism was one of the significantly altered pathways from the 

gene set analysis in PDAC that takes a part of the carbohydrate metabolism, and it showed an overall 

association to upregulated genes. Noticeably, only two genes were significantly differentially 

expressed in PDAC tumours as a result of the DE analysis, and they showed opposite levels of 

expression (table1). The first is aldehyde dehydrogenase 3 family member A1 (ALDH3A1), a gene that 

encodes for the aldehyde dehydrogenase [NAD(P)+] enzyme that catalyses the conversion between 

the acetate and acetaldehyde (Khanna et al., 2011), which was significantly upregulated in PDAC 

tumours. While the second gene is the previously mentioned Hexokinase-3 (HK3) glucose-

phosphorylating isoenzyme and its role in this pathway is catalysing the phosphorylation of glucose to 

glucose-6-phosphate (Griffin et al., 1991).  This gene was significantly downregulated in PDAC 

tumours. The significant downregulation of Hexokinase-3 can explain the appearance of both beta-D-

glucose-6-phosphate and beta-D-glucose as a downregulated reporter metabolite. Noticeably, the 

upregulation of ALDH3A1 did not show a significant alteration on the metabolite level, which can 

partially be explained by it being affecting a peripheral reaction in this pathway. 

A previous study of the altered metabolism of PDAC investigated the gene-metabolite interactions by 

utilising both transcriptomics and metabolomics to detect the tumour potential biomarkers and 

altered metabolic pathways (An et al., 2018). The study revealed pyrimidine metabolism as the most 

significant pathway and that Ectonucleoside Triphosphate diphosphohydrolase 8 (ENTPD8) is 

differentially downregulated in PDAC.  ENTPD8 encodes the enzyme that catalyses the hydrolysis of 

gamma- and beta-phosphate residues of nucleotides, playing a central role in the concentration of 

extracellular nucleotides (Knowles and Li, 2006). Interestingly, in terms of pyrimidine metabolism 

significance and its association with ENTPD8, it matched the results of the GSA showed in our study. 

However, it did not match in terms of downregulation of the ENTPD8 (table1) as the DE analysis result 

here showed a significant upregulation of the gene. Notably, the survival analysis performed within 

the human pathology atlas study (Uhlen et al., 2017) based on the ENTPD8 expression showed a trend 

(not significant) towards that a shorter overall survival rate accompanies the increased gene 

expression. Concluding that the pathology atlas results supports the idea of overexpression of ENTPD8 

is a pancreatic cancer trait, as shown in our study. In addition, the altered expression of the ENTPD8 

can partially explain the accumulation of metabolites of the nucleotide metabolism like extracellular 

UMP, IDP, IMP and UDP and depletion in GMP, AMP,cyclic-AMP and cyclic-GMP in the nuclease and 

Golgi apparatus, that was demonstrated in the reporter metabolite analysis (figure2). 
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In order to detect PDAC metabolic networks that have significant alterations which maintain the 

cancer growth and spread, DIRAC analysis was performed. The algorithm can take into account the 

combinatorial differences in the tumour gene expression, which might have a critical impact on 

cellular behaviour. Briefly, for a specific gene set, the algorithm calculates the gene expression order 

and build a rank template based on the average ordering in each phenotype. Subsequently, it 

calculates the matching degree of each sample to the rank template that is termed the rank matching 

score and averaging this score across all samples yields the rank conservation index that measures the 

degree of entropy in a gene set. The network with low entropy is said to be tightly regulated while the 

one with high entropy is said to be loosely regulated (Eddy et al., 2010). 

This algorithm has been used in several studies in order to find an underlying metabolic alteration in 

cancer. One study used the Dirac analysis and GEM reconstruction to find metabolic process required 

for the Hepatocellular carcinoma cell proliferation and showed a tight regulation of the fatty acid 

biosynthesis and deregulation of fatty acid oxidation (Bjornson et al., 2015). Another study applied 

the algorithm to study the metabolic alteration that is accompanied by prostate cancer. That study 

revealed significant metabolic alterations in the lipid metabolism including glycosphingolipid 

biosynthesis, ether lipid metabolism and steroid biosynthesis and pointed out changes in the 

metabolism of the pentose phosphate pathway as well as riboflavin metabolism (Turanli et al., 2019). 

In this project, the Algorithm used the network construction of the reconstructed PDAC-specific GEM 

in addition to the KEGG pathways and revealed the close results in the tight regulation of four 

metabolic pathways namely, oxidative phosphorylation, Cysteine and methionine metabolism, Beta-

alanine metabolism and Riboflavin metabolism (table 2). Subsequently, the gene content of the four 

pathways was extracted and filtered based on its prognostic effect. Such information was derived from 

the results of the pathology atlas of the human cancer transcriptome, where the effect of the gene 

expression in the patient's survival rates was provided (Uhlen et al., 2017). 

To find hidden patterns in the transcriptomics data that could be used for the PDAC stratification, the 

unsupervised class discovery has proven its efficacy in revealing PDAC groups that share common 

biological characteristics. The analysis was performed based on the top eight prognostic genes in the 

tightly regulated pathways as it detected two groups that showed genetic alterations between them 

(appendix figure 1). Moreover, to assess the results of the clustering, a survival analysis was performed 

using the clinical data for the 177 patients, which showed a significant difference in the survival 

outcome between the two groups of PDAC patients where the group PDAC1 had a significantly longer 

survival time compared to the PDAC2 group (figure 4A). Consequently, differential expression analysis 

was performed to detect the underlying genetic differences between the two PDAC groups. The 

analysis successfully detected 1461 genes that have possessed significantly altered expression with 

1131 of them demonstrated an upregulated state while 330 were downregulated. 

Interestingly, 139 of the differentially expressed genes between the PDAC groups were defined as 

prognostic genes in the pathology atlas. In addition, six out of the eight genes used in the classification 

process were differentially expressed, and they are LDHA, ATP6VOD1, COX6B2, DNMT3A, ATP6VOA1, 

and MTMR2. The L-lactate dehydrogenase A chain (LDHA) is a gene that encodes an enzyme that 

catalyses the reaction responsible for the production of the pyruvate and NADH from L-lactate and 

NAD (Adams et al., 1973). A previous study demonstrated the overexpression of the LDHA in 

pancreatic cancer and its ability to induce pancreatic cancer cell growth (Rong et al., 2013). In addition, 

knocking down the LDHA in the pancreatic cancer cells significantly inhibited the cell growth revealing 
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the oncogenic trait of LDHA and its association with poor prognosis (Rong et al., 2013). That was in 

parallel with the results introduced here where LDHA was significantly upregulated in the PDAC group 

with the poor survival rate. Another recent study evaluated the expression of LDHA by 

immunohistochemistry and correlated the results with clinicopathological characteristics and patient 

survival. Also, LDHA expression was assessed in 10 human pancreatic cancer cells and detected the 

significant overexpression of the gene and its association with the poor survival outcome (Mohammad 

et al., 2016).  Those genes could be the basis for a potential gene signature that could be used for 

PDAC patients’ stratification. 

Conclusion and Future perspectives 

In conclusion, this study has shed light on the undeniable value of using GEMs in deciphering the 

genetic and metabolic nature of cancer and overcome the heterogenic nature of some of the tumours. 

Here, the integration of both the transcriptomics and proteomics data represented a great added 

value as it allowed to include more information about PDAC and prevented potential false negatives 

that could be included during the GEM reconstruction. This significant value of integration was shown 

by the added 5244 genes from the TCGA data to the HPA data. The reconstructed PDAC specific GEM 

showed its ability to define metabolic alterations that were found in PDAC and provided consistent 

results with other gene sets like KEGG and GO biological processes during the GSA. The differentially 

expressed genes and reporter metabolites associated with the altered metabolic pathways in PDAC 

tumours  including the lipid metabolism-related pathways (Ether lipid metabolism, Arachidonic acid 

metabolism, Acylglycerides metabolism) as well as carbohydrate metabolism (Ascorbate and aldarate 

metabolism, Glycolysis / Gluconeogenesis) in addition to Nucleotide metabolism are considered 

potential candidates as diagnostic biomarkers. Classification of the filtered DIRAC tightly regulated 

network genes based on their prognostic values from the pathology atlas managed to detect two 

groups of PDAC patients. The detected groups had a significantly different survival outcome, and the 

differential expression analysis showed that six of the eight genes used in clustering were showing 

significantly altered expression and suggesting their high value in PDAC patient stratification. One 

major wekanes of the study was the highly unbalanced data. For the future perspective, generating a 

more sufficient and balanced data is greatly desirable and with the fact that GEM is a great platform 

for data integration, starting to use more types of data is of great significance. Such data could be 

metabolomics that can provide a new aspect to the investigation,  but it comes with the limitation 

that the prediction of the level of the metabolites intracellularly requires previous knowledge of 

thermodynamics and kinetics which is not clearly defined (Yizhak et al., 2010). Lastly, the systems-

level analysis results allow for elucidating the undelaying altered metabolic mechanisms of PDAC that 

could provide more insights for the biomarker discovery and developing potential treatments. 
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Ethical aspects and impact of the research on society  

The systems biology discipline is considered as a rapidly growing and interdisciplinary field 

(Westerhoff and Palsson, 2004). With the tremendous advances made by genomics and the massively 

produced high-throughput data, the role of systems biology comes to light for integrating this massive 

amount of data into a more comprehensive mathematical representation. Those mathematical 

models have more holistic predictions of the biological process that occurs in the living organisms. 

Due to the systems complex nature, the attempts to conceptualise the ethical, social and legal issues 

raised by systems biology faced a considerable proportion of complications. For that fact and despite 

its widespread practice, there has not been a concentration on the systems biology bioethical nor to 

its potential social consequences. The reason for the systems biology field to be exempt from the 

social and ethical considerations is mainly because of the vague nature of the questioned scientific 

object compared to other disciplines such as genomics.  As one of the most attractive features of the 

systems biology approaches to the industry is the fact that it reduces experimental studies on living 

organisms and compensates that by the utilisation of the computer simulations (O'Malley et al., 2007). 

Such an attractive trait of the systems biology approach can be demonstrated in the in silico drug 

testing that can allow for exhaustive knowledge of side-effects and beneficial impact of drug usage 

before entering the clinical trial phase. Applying the systems biology approach plays a crucial rule in 

the cost reduction of the drug development process, which makes it attractive to the pharmaceutical 

companies. During the project, no ethical approval was needed. However, it is worth to notice that all 

the used datasets during in silico analysis were retrieved from public repositories where informed 

consents were obtained from patients who are involved in the research. 
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 Appendix 

 
Table Appendix 1: the connectivity genes in the PDAC specific GEM. Details on the 38 genes incorporated to PDAC-
specific GEM for enhancing the model connectivity. Each gene is shown in the context of its associated reaction 
and subsystem in the PDAC-specific GEM. 

connectivity genes REACTION 
ID in HMR2 

REACTION EQUATION SUBSYSTEM 

ENSG00000185818 HMR_8626 acetyl-CoA[m] + aspartate[m] => CoA[m] + N-
acetyl-L-aspartate[m] 

Alanine, aspartate and 
glutamate metabolism 

ENSG00000122787 HMR_2014 4-androstene-3,17-dione[c] + H+[c] + 
NADPH[c] => 5alpha-androstane-3,17-
dione[c] + NADP+[c] 

Androgen metabolism 

ENSG00000172508 HMR_4606 4-aminobutyrate[c] + ATP[c] + histidine[c] => 
AMP[c] + homocarnosine[c] + PPi[c] 

Arginine and proline 
metabolism 

ENSG00000242110 HMR_3491 (2R)-pristanoyl-CoA[p] <=> (2S)-pristanoyl-
CoA[p] 

Beta oxidation of phytanic 
acid (peroxisomal) 

ENSG00000105398 HMR_1729 chenodiol[c] + H+[c] + PAPS[c] => PAP[c] + 
sulfochenodeoxycholate[c] 

Bile acid biosynthesis 

ENSG00000146233 HMR_1737 24-hydroxycholesterol[c] + H+[c] + NADPH[c] 
+ O2[c] => cholest-5-ene-3beta,7alpha,24(S)-
triol[c] + H2O[c] + NADP+[c] 

Bile acid biosynthesis 

ENSG00000167910 HMR_1581 cholesterol[r] + H+[r] + NADPH[r] + O2[r] => 
7alpha-hydroxycholesterol[r] + H2O[r] + 
NADP+[r] 

Bile acid biosynthesis 

ENSG00000180432 HMR_1590 7alpha-hydroxycholest-4-en-3-one[r] + H+[r] 
+ NADH[r] + O2[r] => 7alpha,12alpha-
dihydroxycholest-4-en-3-one[r] + H2O[r] + 
NAD+[r] 

Bile acid biosynthesis 

ENSG00000198610 HMR_1742 5beta-cholestan-7alpha,12alpha,24(S)-triol-3-
one[c] + H+[c] + NADPH[c] => 5beta-
cholestan-3alpha,7alpha,12alpha,24(S)-
tetrol[c] + NADP+[c] 

Bile acid biosynthesis 

ENSG00000111700 HMR_1881 cholate[s] + HCO3-[c] + S-glutathionyl-2-4-
dinitrobenzene[c] <=> cholate[c] + HCO3-[s] + 
S-glutathionyl-2-4-dinitrobenzene[s] 

Bile acid recycling 

ENSG00000160200 HMR_3879 homocysteine[c] + serine[c] => H2O[c] + L-
cystathionine[c] 

Cysteine and methionine 
metabolism 

ENSG00000160868 HMR_2046 estradiol-17beta[c] + H+[c] + NADPH[c] + 
O2[c] => 4-hydroxy-17beta-estradiol[c] + 
H2O[c] + NADP+[c] 

Estrogen metabolism 

ENSG00000116882 HMR_7703 glycolate[c] + O2[c] => glyoxalate[c] + H2O2[c] Glycine, serine and 
threonine metabolism 

ENSG00000124713 HMR_3901 glycine[c] + SAM[c] => SAH[c] + sarcosine[c] Glycine, serine and 
threonine metabolism 

ENSG00000172482 HMR_4198 pyruvate[m] + serine[m] => alanine[m] + 
hydroxypyruvate[m] 

Glycine, serine and 
threonine metabolism 

ENSG00000172461 HMR_0893 GDP-L-fucose[c] + nLc8Cer[c] => G00084[c] + 
GDP[c] 

Glycosphingolipid 
biosynthesis-lacto and 
neolacto series 

ENSG00000256062 HMR_0867 IV2Fuc-Lc4Cer[c] + UDP-N-acetyl-D-
galactosamine[c] => type I A glycolipid[c] + 
UDP[c] 

Glycosphingolipid 
biosynthesis-lacto and 
neolacto series 
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ENSG00000184886 HMR_7187 6-(alpha-D-glucosaminyl)-1-phosphatidyl-1D-
myo-inositol[r] + palmitoyl-CoA[r] => CoA[r] + 
glucosaminyl-acylphosphatidylinositol[r] 

Glycosylphosphatidylinosit
ol (GPI)-anchor 
biosynthesis 

ENSG00000127080 HMR_6576 1D-myo-inositol-1,3,4,5,6-
pentakisphosphate[c] + ATP[c] => ADP[c] + 
myo-inositol-hexakisphosphate[c] 

Inositol phosphate 
metabolism 

ENSG00000182621 HMR_8818 H2O[n] + phosphatidylinositol-4,5-
bisphosphate[n] => 1,2-diacylglycerol-LD-TAG 
pool[n] + D-myo-inositol-1,4,5-
trisphosphate[n] 

Inositol phosphate 
metabolism 

ENSG00000213316 HMR_1081 GSH[c] + leukotriene A4[c] => leukotriene 
C4[c] 

Leukotriene metabolism 

ENSG00000130649 HMR_7099 1,2-dibromoethane[c] + H+[c] + NADPH[c] + 
O2[c] => 2-bromoacetaldehyde[c] + H2O[c] + 
hydrobromic acid[c] + NADP+[c] 

Metabolism of xenobiotics 
by cytochrome P450 

ENSG00000140505 HMR_7018 aflatoxin B1[c] + H+[c] + NADPH[c] + O2[c] => 
aflatoxin M1[c] + H2O[c] + NADP+[c] 

Metabolism of xenobiotics 
by cytochrome P450 

ENSG00000198488 HMR_7174 Tn-antigen[g] + UDP-N-acetylglucosamine[g] 
=> core 3[g] + UDP[g] 

O-glycan metabolism 

ENSG00000132330 HMR_7133 alanine[c] + pyridoxal-phosphate[c] + 
selenide[c] <=> pyridoxine-phosphate[c] + 
selenocysteine[c] 

Other amino acid 

ENSG00000077498 HMR_6874 O2[c] + tyrosine[c] => H2O[c] + L-
dopaquinone[c] 

Phenylalanine, tyrosine 
and tryptophan 
biosynthesis 

ENSG00000117009 HMR_4220 H+[c] + kynurenine[c] + NADPH[c] + O2[c] => 
3-hydroxy-L-kynurenine[c] + H2O[c] + 
NADP+[c] 

Phenylalanine, tyrosine 
and tryptophan 
biosynthesis 

ENSG00000121053 HMR_6813 dopaminochrome[c] + 2 H+[c] + H2O[c] <=> 
dopamine-O-quinone[c] + H2O2[c] 

Phenylalanine, tyrosine 
and tryptophan 
biosynthesis 

ENSG00000158104 HMR_6772 4-hydroxyphenylpyruvate[c] + O2[c] => 
CO2[c] + homogentisate[c] 

Phenylalanine, tyrosine 
and tryptophan 
biosynthesis 

ENSG00000129673 HMR_4546 acetyl-CoA[c] + serotonin[c] => CoA[c] + N-
acetyl-serotonin[c] 

Serotonin and melatonin 
biosynthesis 

ENSG00000196433 HMR_4547 N-acetyl-serotonin[c] + SAM[c] => 
melatonin[c] + SAH[c] 

Serotonin and melatonin 
biosynthesis 

ENSG00000135454 HMR_8165 LacCer pool[g] + UDP-N-acetyl-D-
galactosamine[g] => GA2[g] + UDP[g] 

Sphingolipid metabolism 

ENSG00000140459 HMR_7935 cholesterol[m] + H+[m] + NADPH[m] + 2 
O2[m] => 2 H2O[m] + isocaproic-aldehyde[m] 
+ NADP+[m] + pregnenolone[m] 

Steroid metabolism 

ENSG00000203859 HMR_7930 NAD+[c] + pregnenolone[c] => H+[c] + 
NADH[c] + progesterone[c] 

Steroid metabolism 

ENSG00000081800 HMR_7904 Na+[s] + selenate[s] => Na+[c] + selenate[c] Transport, extracellular 
ENSG00000084453 HMR_6060 GSH[c] + HCO3-[c] + lithocholate[s] <=> 

GSH[s] + HCO3-[s] + lithocholate[c] 
Transport, extracellular 

ENSG00000132677 HMR_4873 NH3[c] <=> NH3[s] Transport, extracellular 
ENSG00000134538 HMR_6107 bilirubin-monoglucuronoside[s] + GSH[c] + 

HCO3-[c] <=> bilirubin-monoglucuronoside[c] 
+ GSH[s] + HCO3-[s] 

Transport, extracellular 
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Table Appendix 2: PDAC tumour vs matched normal tissues DE analysis results. The complete list of differentially 
expressed genes (FDR adj. p-value < 0.05, LFC cutoff >1or<-1) between PDAC tumours (n=177) and noncancerous 
Pancreas tissue(n=4) is provided. The significance level of differential expression sorts the genes: upregulated 
gene highlighted (green) and downregulated genes highlighted (red). 

Ensembl gene id gene name baseMean log2FoldChange lfcSE stat pvalue padj 

ENSG00000090402 SI 141.345332 23.78471401 2.11199 11.26176 2.03E-29 5.27E-25 
ENSG00000110245 APOC3 67.62635 22.13061296 2.164321 10.2252 1.53E-24 1.99E-20 
ENSG00000164816 DEFA5 21.4507779 20.90206495 3.111877 6.716867 1.86E-11 1.61E-07 
ENSG00000204019 CT83 37.0038532 16.96919279 2.618592 6.480274 9.16E-11 5.95E-07 
ENSG00000248115 AC023154.1 5.94421651 -4.485669972 0.703321 -6.37784 1.80E-10 8.75E-07 
ENSG00000233024 AC126755.2 3.29691156 -3.270036661 0.514163 -6.35993 2.02E-10 8.75E-07 
ENSG00000223668 EEF1A1P24 14.0243833 -3.025561254 0.511938 -5.91002 3.42E-09 1.27E-05 
ENSG00000136011 STAB2 92.1522949 -4.670613423 0.81512 -5.72997 1.00E-08 3.26E-05 
ENSG00000188375 H3F3C 14.7585402 -2.302268954 0.404053 -5.69794 1.21E-08 3.50E-05 
ENSG00000232656 IDI2-AS1 5.44854512 -3.343407724 0.589465 -5.67194 1.41E-08 3.67E-05 
ENSG00000167653 PSCA 10524.9959 6.527410466 1.171677 5.570999 2.53E-08 5.99E-05 
ENSG00000150045 KLRF1 34.4699128 -2.977961453 0.549679 -5.41764 6.04E-08 0.000131 
ENSG00000043355 ZIC2 62.6822428 7.784236227 1.485449 5.240324 1.60E-07 0.000321 
ENSG00000156886 ITGAD 32.7992677 -3.786719143 0.740467 -5.11396 3.15E-07 0.000513 
ENSG00000168356 SCN11A 23.3097779 -3.052050802 0.5941 -5.13726 2.79E-07 0.000513 
ENSG00000279166 AC009951.1 3.1877019 -2.646569926 0.517525 -5.11389 3.16E-07 0.000513 
ENSG00000272620 AFAP1-AS1 1796.26017 4.706809422 0.926917 5.077919 3.82E-07 0.000584 
ENSG00000163283 ALPP 147.250515 7.61589268 1.508226 5.049569 4.43E-07 0.00064 
ENSG00000237757 EEF1A1P30 5.71103293 -1.785992117 0.355126 -5.02918 4.93E-07 0.000674 
ENSG00000144452 ABCA12 190.506458 3.968519508 0.790979 5.017222 5.24E-07 0.000681 
ENSG00000137441 FGFBP2 23.3114674 -3.032674188 0.605756 -5.00643 5.54E-07 0.000686 
ENSG00000166143 PPP1R14D 352.463377 4.076930371 0.817742 4.985595 6.18E-07 0.00073 
ENSG00000130720 FIBCD1 479.081173 5.150278379 1.041302 4.946 7.58E-07 0.000856 
ENSG00000134539 KLRD1 159.585863 -2.804644666 0.570519 -4.91595 8.84E-07 0.000957 
ENSG00000274414 AL121772.1 67.7250691 3.290597025 0.679527 4.842483 1.28E-06 0.001334 
ENSG00000262406 MMP12 987.051742 -3.947561842 0.819322 -4.81809 1.45E-06 0.001415 
ENSG00000120907 ADRA1A 10.7737345 -3.499902786 0.731996 -4.78131 1.74E-06 0.001415 
ENSG00000124664 SPDEF 1616.11804 4.002164654 0.834495 4.795913 1.62E-06 0.001415 
ENSG00000179066 AC020907.1 42.4139843 4.695685884 0.980444 4.789345 1.67E-06 0.001415 
ENSG00000117983 MUC5B 18483.8027 4.901324538 1.024129 4.785847 1.70E-06 0.001415 
ENSG00000187908 DMBT1 12329.8325 5.254564648 1.091355 4.814717 1.47E-06 0.001415 
ENSG00000114248 LRRC31 208.91411 5.315928562 1.107096 4.801687 1.57E-06 0.001415 
ENSG00000143869 GDF7 120.850722 -3.154337737 0.662072 -4.76434 1.89E-06 0.001493 
ENSG00000261123 AC009065.5 184.534128 3.130674935 0.665795 4.702162 2.57E-06 0.001968 
ENSG00000173702 MUC13 10613.7685 3.661190535 0.785335 4.661949 3.13E-06 0.002262 
ENSG00000166535 A2ML1 480.922337 6.337481049 1.358428 4.665304 3.08E-06 0.002262 
ENSG00000226239 AL031658.1 7.84220364 -2.59639942 0.561347 -4.6253 3.74E-06 0.002372 
ENSG00000179913 B3GNT3 5039.07448 2.636525103 0.569543 4.629192 3.67E-06 0.002372 
ENSG00000089356 FXYD3 15639.807 3.025428617 0.653442 4.629988 3.66E-06 0.002372 
ENSG00000132437 DDC 527.009795 3.974157781 0.85582 4.643682 3.42E-06 0.002372 
ENSG00000198788 MUC2 880.374935 7.49819315 1.620295 4.627673 3.70E-06 0.002372 
ENSG00000225411 CR786580.1 3.02109358 -3.015185976 0.65504 -4.60306 4.16E-06 0.002577 
ENSG00000117472 TSPAN1 14204.5641 2.851790076 0.623609 4.573042 4.81E-06 0.00284 
ENSG00000173557 C2orf70 189.943985 3.266425838 0.713643 4.577114 4.71E-06 0.00284 
ENSG00000163286 ALPPL2 102.449133 6.426869896 1.411355 4.553687 5.27E-06 0.003046 
ENSG00000161640 SIGLEC11 52.8677664 -3.1914933 0.701739 -4.54798 5.42E-06 0.003061 
ENSG00000073861 TBX21 63.1456333 -2.817946451 0.624743 -4.51057 6.47E-06 0.003502 
ENSG00000241560 ZBTB20-AS1 4.6488207 -2.426332827 0.537665 -4.51272 6.40E-06 0.003502 
ENSG00000163687 DNASE1L3 110.211053 -3.810258276 0.851043 -4.47716 7.56E-06 0.003594 
ENSG00000261644 AC007728.2 14.0494759 -2.593900382 0.581884 -4.45776 8.28E-06 0.003594 
ENSG00000281103 TRG-AS1 74.2589396 -2.563085132 0.574825 -4.4589 8.24E-06 0.003594 
ENSG00000168010 ATG16L2 1233.66923 -1.721209253 0.383635 -4.48658 7.24E-06 0.003594 
ENSG00000104081 BMF 1397.96055 -1.517088945 0.33994 -4.46281 8.09E-06 0.003594 
ENSG00000060140 STYK1 568.879499 2.698522371 0.605399 4.457431 8.29E-06 0.003594 
ENSG00000151012 SLC7A11 870.646737 2.865690535 0.637561 4.494772 6.96E-06 0.003594 
ENSG00000203697 CAPN8 6864.3862 3.594674858 0.803667 4.47284 7.72E-06 0.003594 
ENSG00000134398 ERN2 4487.21877 3.795176065 0.843606 4.498756 6.84E-06 0.003594 
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ENSG00000224511 LINC00365 46.876301 3.821710493 0.852292 4.484037 7.32E-06 0.003594 
ENSG00000137440 FGFBP1 573.583081 4.505188902 1.010685 4.457558 8.29E-06 0.003594 
ENSG00000167656 LY6D 1834.48987 6.244928285 1.39536 4.475495 7.62E-06 0.003594 
ENSG00000104974 LILRA1 54.9944618 -2.528761528 0.568462 -4.44843 8.65E-06 0.003687 
ENSG00000242797 GLYCTK-AS1 7.52415936 -2.279388232 0.513846 -4.43594 9.17E-06 0.003788 
ENSG00000180251 SLC9A4 229.528154 5.754514238 1.297337 4.435637 9.18E-06 0.003788 
ENSG00000231483 AL365356.4 21.3270335 4.177177669 0.94678 4.411985 1.02E-05 0.004161 
ENSG00000157368 IL34 327.991253 -1.946747665 0.441887 -4.40553 1.06E-05 0.004169 
ENSG00000074211 PPP2R2C 723.361174 3.807549996 0.864387 4.404914 1.06E-05 0.004169 
ENSG00000169247 SH3TC2 183.248237 2.643710736 0.601279 4.396812 1.10E-05 0.004263 
ENSG00000143768 LEFTY2 20.0178496 -2.963590626 0.674639 -4.39285 1.12E-05 0.004277 
ENSG00000267432 DNAH17-AS1 11.1359669 -3.414411644 0.78098 -4.37196 1.23E-05 0.004574 
ENSG00000111679 PTPN6 3240.77592 -1.338651213 0.306148 -4.37256 1.23E-05 0.004574 
ENSG00000135723 FHOD1 1494.18231 -1.086342508 0.24877 -4.36686 1.26E-05 0.004616 
ENSG00000168229 PTGDR 44.4262708 -2.383962063 0.546389 -4.36312 1.28E-05 0.00463 
ENSG00000242136 AC093904.2 10.2039418 5.882498465 1.349461 4.359147 1.31E-05 0.00465 
ENSG00000172478 C2orf54 565.166382 3.01825455 0.693313 4.353379 1.34E-05 0.00471 
ENSG00000264345 LINC01894 2.8886384 -3.545013692 0.816673 -4.3408 1.42E-05 0.004879 
ENSG00000104369 JPH1 402.616228 2.517973309 0.580206 4.339789 1.43E-05 0.004879 
ENSG00000259933 AC009065.2 202.471089 2.890996472 0.666656 4.336567 1.45E-05 0.004887 
ENSG00000076356 PLXNA2 4102.81231 1.556734514 0.359902 4.325441 1.52E-05 0.00501 
ENSG00000164237 CMBL 2526.50731 1.878494589 0.434107 4.327259 1.51E-05 0.00501 
ENSG00000188993 LRRC66 435.363947 3.346997249 0.774853 4.319527 1.56E-05 0.005082 
ENSG00000100292 HMOX1 1836.03229 -1.88894292 0.437854 -4.31409 1.60E-05 0.005144 
ENSG00000279277 AC012020.1 12.5002665 -2.037484312 0.472844 -4.309 1.64E-05 0.0052 
ENSG00000257207 AC112229.3 32.4988241 -2.168500068 0.503835 -4.30399 1.68E-05 0.005215 
ENSG00000169684 CHRNA5 222.102281 2.465808472 0.57304 4.303028 1.68E-05 0.005215 
ENSG00000165828 PRAP1 590.486487 4.852541776 1.130666 4.291757 1.77E-05 0.005359 
ENSG00000249395 CASC9 97.3730375 7.032465879 1.637792 4.293871 1.76E-05 0.005359 
ENSG00000223572 CKMT1A 315.261322 2.587722621 0.60429 4.282254 1.85E-05 0.005466 
ENSG00000261857 MIA 704.146645 4.156903379 0.970401 4.283696 1.84E-05 0.005466 
ENSG00000180745 CLRN3 580.425345 3.681416126 0.860236 4.279543 1.87E-05 0.005471 
ENSG00000146094 DOK3 598.456549 -1.988011107 0.465352 -4.27206 1.94E-05 0.005595 
ENSG00000129226 CD68 112.641419 -1.986556347 0.467929 -4.24542 2.18E-05 0.006166 
ENSG00000158373 HIST1H2BD 736.99528 2.419690661 0.570662 4.240148 2.23E-05 0.006245 
ENSG00000182957 SPATA13 2106.01316 -1.005060973 0.237963 -4.2236 2.40E-05 0.00665 
ENSG00000117009 KMO 104.464246 -2.265222599 0.536702 -4.22064 2.44E-05 0.006667 
ENSG00000146192 FGD2 763.792602 -2.099754908 0.497909 -4.21715 2.47E-05 0.006701 
ENSG00000161798 AQP5 3625.03478 4.129864841 0.980887 4.210336 2.55E-05 0.006835 
ENSG00000133328 HRASLS2 240.935462 3.811522641 0.906221 4.205953 2.60E-05 0.006869 
ENSG00000168631 DPCR1 14579.8744 5.239457277 1.246129 4.204585 2.62E-05 0.006869 
ENSG00000180818 HOXC10 232.605163 5.467228174 1.302695 4.196858 2.71E-05 0.007036 
ENSG00000137251 TINAG 92.5880233 4.711004519 1.125603 4.185315 2.85E-05 0.007259 
ENSG00000248290 TNXA 9.20758171 -3.054045862 0.737888 -4.1389 3.49E-05 0.007959 
ENSG00000184293 CLECL1 44.4202899 -2.967861303 0.714907 -4.1514 3.30E-05 0.007959 
ENSG00000181036 FCRL6 51.7559835 -2.673890175 0.645552 -4.14202 3.44E-05 0.007959 
ENSG00000126838 PZP 11.5588575 -2.235180079 0.537826 -4.15595 3.24E-05 0.007959 
ENSG00000187808 SOWAHD 67.7182908 -1.906217533 0.460451 -4.13989 3.47E-05 0.007959 
ENSG00000228486 LINC01125 85.1103515 -1.645330136 0.396587 -4.14872 3.34E-05 0.007959 
ENSG00000180596 HIST1H2BC 167.249934 2.667238876 0.641955 4.154866 3.25E-05 0.007959 
ENSG00000128298 BAIAP2L2 2246.88028 2.876571362 0.693666 4.146909 3.37E-05 0.007959 
ENSG00000265763 ZNF488 185.642332 3.114559985 0.752284 4.140141 3.47E-05 0.007959 
ENSG00000103355 PRSS33 103.39512 4.879325984 1.174667 4.153793 3.27E-05 0.007959 
ENSG00000259439 LINC01833 78.6434202 5.253640528 1.266911 4.146811 3.37E-05 0.007959 
ENSG00000163295 ALPI 34.3053844 6.915729493 1.662547 4.159719 3.19E-05 0.007959 
ENSG00000000938 FGR 895.758467 -2.092645908 0.508675 -4.11392 3.89E-05 0.008795 
ENSG00000108602 ALDH3A1 849.53075 3.900533448 0.949919 4.106173 4.02E-05 0.009016 
ENSG00000180644 PRF1 394.645047 -2.085147275 0.51024 -4.0866 4.38E-05 0.009727 
ENSG00000182580 EPHB3 1856.08509 2.350324761 0.575458 4.084268 4.42E-05 0.009742 
ENSG00000253988 AC079015.1 3.83641219 -2.873850335 0.704132 -4.08141 4.48E-05 0.00978 
ENSG00000234750 AC012618.2 6.80765972 -2.101909178 0.515267 -4.07926 4.52E-05 0.009788 
ENSG00000184678 HIST2H2BE 1456.46891 2.213924543 0.543791 4.071278 4.68E-05 0.010046 
ENSG00000227467 LINC01537 16.4058457 -2.535227066 0.625173 -4.05524 5.01E-05 0.010284 
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ENSG00000237484 LINC01684 9.51490348 -2.523586183 0.622705 -4.05262 5.06E-05 0.010284 
ENSG00000008516 MMP25 131.716028 -1.788640432 0.441092 -4.05503 5.01E-05 0.010284 
ENSG00000103460 TOX3 1014.22833 2.262441731 0.558464 4.051184 5.10E-05 0.010284 
ENSG00000088836 SLC4A11 962.689374 2.587780324 0.639074 4.049268 5.14E-05 0.010284 
ENSG00000181378 CFAP65 86.7202328 3.457421405 0.852879 4.053825 5.04E-05 0.010284 
ENSG00000170231 FABP6 139.661567 4.422513922 1.089825 4.058002 4.95E-05 0.010284 
ENSG00000163586 FABP1 138.201088 6.136367016 1.512116 4.058132 4.95E-05 0.010284 
ENSG00000203499 IQANK1 888.950174 2.2445397 0.554979 4.04437 5.25E-05 0.010286 
ENSG00000278912 AC008870.5 61.3578295 3.928511162 0.9712 4.045008 5.23E-05 0.010286 
ENSG00000244280 ECEL1P2 37.1443897 4.887715489 1.208731 4.043674 5.26E-05 0.010286 
ENSG00000141232 TOB1 5280.88171 1.534596967 0.379854 4.039961 5.35E-05 0.010372 
ENSG00000237289 CKMT1B 389.916197 2.533683314 0.627466 4.037964 5.39E-05 0.010384 
ENSG00000172738 TMEM217 56.3864847 -1.976253521 0.490701 -4.02741 5.64E-05 0.010481 
ENSG00000166947 EPB42 8.78417289 -1.810668913 0.449606 -4.02724 5.64E-05 0.010481 
ENSG00000246228 CASC8 133.944913 3.179954207 0.789562 4.027489 5.64E-05 0.010481 
ENSG00000189366 ALG1L 119.448401 3.187208212 0.790741 4.030662 5.56E-05 0.010481 
ENSG00000114771 AADAC 508.738667 3.701064382 0.91767 4.033109 5.50E-05 0.010481 
ENSG00000135750 KCNK1 3020.15427 2.072060576 0.514833 4.02472 5.70E-05 0.010518 
ENSG00000269220 LINC00528 29.9174742 -2.42252816 0.60356 -4.01373 5.98E-05 0.010872 
ENSG00000254759 NAP1L1P1 17.2225061 -1.183797899 0.294946 -4.01361 5.98E-05 0.010872 
ENSG00000261583 AC012317.1 13.7603795 5.599952717 1.397923 4.00591 6.18E-05 0.011154 
ENSG00000270919 AC108451.2 14.0480994 5.619606928 1.403791 4.003164 6.25E-05 0.011207 
ENSG00000175311 ANKS4B 647.226072 3.145249216 0.787206 3.995458 6.46E-05 0.011498 
ENSG00000179546 HTR1D 308.874858 2.738626995 0.686537 3.989048 6.63E-05 0.011654 
ENSG00000101188 NTSR1 584.031283 4.577159136 1.147357 3.989308 6.63E-05 0.011654 
ENSG00000126759 CFP 213.313811 -2.560393896 0.642266 -3.9865 6.71E-05 0.0117 
ENSG00000255819 KLRC4-KLRK1 7.02125418 -2.790550781 0.701546 -3.97771 6.96E-05 0.011792 
ENSG00000136379 ABHD17C 3747.00138 2.188561321 0.549924 3.979754 6.90E-05 0.011792 
ENSG00000181019 NQO1 11060.3302 2.306244956 0.579129 3.982265 6.83E-05 0.011792 
ENSG00000111291 GPRC5D 68.2054583 2.627424194 0.660687 3.976804 6.98E-05 0.011792 
ENSG00000183128 CALHM3 195.957727 4.434633439 1.114364 3.97952 6.91E-05 0.011792 
ENSG00000115648 MLPH 9572.45931 2.226595362 0.560419 3.973089 7.09E-05 0.011866 
ENSG00000159263 SIM2 457.823733 2.662002348 0.670152 3.972237 7.12E-05 0.011866 
ENSG00000106384 MOGAT3 75.7620167 4.445075748 1.119759 3.969673 7.20E-05 0.011918 
ENSG00000178789 CD300LB 83.3587539 -2.196047586 0.554199 -3.96256 7.42E-05 0.012202 
ENSG00000160606 TLCD1 464.689713 1.687093137 0.42601 3.960215 7.49E-05 0.012244 
ENSG00000135218 CD36 1613.71898 -2.871027057 0.725603 -3.95675 7.60E-05 0.012256 
ENSG00000138964 PARVG 988.403024 -2.115214485 0.53445 -3.95774 7.57E-05 0.012256 
ENSG00000152689 RASGRP3 827.882121 -1.438525828 0.363676 -3.95552 7.64E-05 0.012256 
ENSG00000166839 ANKDD1A 281.156119 -1.172978374 0.29694 -3.95021 7.81E-05 0.012454 
ENSG00000241635 UGT1A1 53.5976523 5.423704953 1.373728 3.948165 7.88E-05 0.012485 
ENSG00000272789 AC010976.2 25.9839271 -2.523698606 0.639455 -3.94664 7.93E-05 0.012488 
ENSG00000158717 RNF166 968.791202 -1.19469148 0.30298 -3.94314 8.04E-05 0.012596 
ENSG00000262319 AC007952.6 2.9663061 -3.562839822 0.907557 -3.92575 8.65E-05 0.012991 
ENSG00000140955 ADAD2 10.7540728 -2.559485831 0.651925 -3.92604 8.64E-05 0.012991 
ENSG00000105374 NKG7 306.654941 -2.259943845 0.575611 -3.92617 8.63E-05 0.012991 
ENSG00000104972 LILRB1 349.601957 -2.181667745 0.554973 -3.93112 8.45E-05 0.012991 
ENSG00000177202 SPACA4 59.561175 3.098283756 0.788384 3.929916 8.50E-05 0.012991 
ENSG00000137860 SLC28A2 76.458182 4.296826661 1.093172 3.930603 8.47E-05 0.012991 
ENSG00000166391 MOGAT2 171.942415 4.313960552 1.096754 3.933388 8.38E-05 0.012991 
ENSG00000124102 PI3 1711.70421 3.703489245 0.944618 3.920622 8.83E-05 0.013121 
ENSG00000007264 MATK 201.276974 -2.047253232 0.522636 -3.91717 8.96E-05 0.013235 
ENSG00000178462 TUBAL3 22.8436988 4.520108337 1.156107 3.909766 9.24E-05 0.01357 
ENSG00000109255 NMU 444.162353 3.541490933 0.906162 3.908231 9.30E-05 0.01358 
ENSG00000161929 SCIMP 323.379616 -2.392541087 0.613742 -3.89829 9.69E-05 0.014071 
ENSG00000121210 TMEM131L 1007.79122 -1.807849321 0.464275 -3.89392 9.86E-05 0.014169 
ENSG00000163501 IHH 763.147275 3.587048893 0.920912 3.895104 9.82E-05 0.014169 
ENSG00000133710 SPINK5 467.779739 3.178739845 0.817416 3.888765 0.000101 0.014314 
ENSG00000188833 ENTPD8 574.064419 3.229628018 0.830397 3.889256 0.000101 0.014314 
ENSG00000235505 AP002004.1 158.597697 -1.763899206 0.454571 -3.88036 0.000104 0.014501 
ENSG00000115616 SLC9A2 478.314471 3.42637424 0.882873 3.880937 0.000104 0.014501 
ENSG00000166869 CHP2 68.7835382 6.286909036 1.619219 3.88268 0.000103 0.014501 
ENSG00000107798 LIPA 5077.46457 -1.316706992 0.339986 -3.87283 0.000108 0.014721 
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ENSG00000111700 SLCO1B3 102.19161 5.37848897 1.388354 3.874005 0.000107 0.014721 
ENSG00000163219 ARHGAP25 799.566121 -2.006030531 0.518896 -3.86596 0.000111 0.014967 
ENSG00000186642 PDE2A 562.661659 -1.949976116 0.504526 -3.86497 0.000111 0.014967 
ENSG00000261104 AC093904.4 31.150678 4.002221082 1.03547 3.865124 0.000111 0.014967 
ENSG00000179583 CIITA 1914.56773 -1.970386892 0.510214 -3.86188 0.000113 0.015037 
ENSG00000178597 PSAPL1 256.359416 5.529507198 1.432027 3.861314 0.000113 0.015037 
ENSG00000220412 AL356234.1 9.75702107 -2.658644326 0.689236 -3.85738 0.000115 0.015126 
ENSG00000173868 PHOSPHO1 37.9924854 -1.944861098 0.504121 -3.85792 0.000114 0.015126 
ENSG00000167851 CD300A 774.145799 -1.66217883 0.431324 -3.85367 0.000116 0.015279 
ENSG00000174837 ADGRE1 54.0257489 -2.28133016 0.59573 -3.82947 0.000128 0.016643 
ENSG00000158555 GDPD5 989.674316 -1.377526921 0.359659 -3.83009 0.000128 0.016643 
ENSG00000179292 TMEM151A 204.131952 3.370204665 0.88046 3.827778 0.000129 0.016643 
ENSG00000248996 AC145098.1 22.189718 -1.980254519 0.517914 -3.82352 0.000132 0.016768 
ENSG00000196420 S100A5 36.5992671 2.331618709 0.609811 3.823509 0.000132 0.016768 
ENSG00000204613 TRIM10 99.4383646 2.680715718 0.701435 3.821759 0.000133 0.016805 
ENSG00000105523 FAM83E 2490.47547 2.561435547 0.67111 3.816712 0.000135 0.017069 
ENSG00000151715 TMEM45B 2385.18774 2.388951024 0.626164 3.815219 0.000136 0.017089 
ENSG00000227039 ITGB2-AS1 265.816891 -2.55213807 0.671081 -3.80302 0.000143 0.017352 
ENSG00000251322 SHANK3 1451.96982 -1.397013076 0.367436 -3.80206 0.000143 0.017352 
ENSG00000168453 HR 933.524147 2.178521822 0.572683 3.804064 0.000142 0.017352 
ENSG00000183856 IQGAP3 1338.19046 2.293170701 0.602946 3.803276 0.000143 0.017352 
ENSG00000119946 CNNM1 406.205496 2.4017631 0.630804 3.807462 0.00014 0.017352 
ENSG00000166126 AMN 1506.80111 3.036079123 0.797926 3.804964 0.000142 0.017352 
ENSG00000253293 HOXA10 235.560755 3.58902979 0.943715 3.803087 0.000143 0.017352 
ENSG00000204614 TRIM40 14.3479982 5.657868956 1.486179 3.806989 0.000141 0.017352 
ENSG00000138162 TACC2 2786.27533 1.429319912 0.376893 3.792381 0.000149 0.01773 
ENSG00000280032 AP002800.1 70.9325281 3.008896263 0.793454 3.79215 0.000149 0.01773 
ENSG00000189280 GJB5 390.588077 3.581476954 0.944304 3.792717 0.000149 0.01773 
ENSG00000160868 CYP3A4 69.2575522 4.066281712 1.072147 3.792651 0.000149 0.01773 
ENSG00000122223 CD244 60.2049644 -2.148700119 0.567173 -3.78844 0.000152 0.017754 
ENSG00000107551 RASSF4 2509.705 -1.5389546 0.406121 -3.7894 0.000151 0.017754 
ENSG00000108798 ABI3 748.426276 -1.500577419 0.395989 -3.78944 0.000151 0.017754 
ENSG00000238057 ZEB2-AS1 11.8352676 -1.686583706 0.445569 -3.78524 0.000154 0.017808 
ENSG00000196754 S100A2 3791.51385 4.433680375 1.171365 3.785054 0.000154 0.017808 
ENSG00000215182 MUC5AC 20702.1678 4.51563206 1.193449 3.783682 0.000155 0.017808 
ENSG00000242207 HOXB-AS4 23.6040924 4.994398215 1.320137 3.783242 0.000155 0.017808 
ENSG00000028277 POU2F2 484.774945 -2.237780056 0.592397 -3.7775 0.000158 0.018143 
ENSG00000168907 PLA2G4F 199.953157 2.894177583 0.767936 3.768774 0.000164 0.018707 
ENSG00000115607 IL18RAP 76.716891 -2.17355608 0.57711 -3.76627 0.000166 0.018813 
ENSG00000240143 AL023653.1 6.5464776 -2.616176823 0.695223 -3.76307 0.000168 0.018876 
ENSG00000143850 PLEKHA6 5442.55153 1.492077514 0.396599 3.762186 0.000168 0.018876 
ENSG00000106789 CORO2A 3161.04782 1.932277883 0.513464 3.763219 0.000168 0.018876 
ENSG00000198610 AKR1C4 66.6444885 3.644450291 0.971663 3.750736 0.000176 0.019674 
ENSG00000087237 CETP 106.642614 -2.299043225 0.613729 -3.74602 0.00018 0.019961 
ENSG00000228952 LINC02041 51.6929628 2.846782166 0.760197 3.744797 0.000181 0.019974 
ENSG00000267731 AC005332.5 20.2406114 -2.222643261 0.594425 -3.73915 0.000185 0.020086 
ENSG00000197943 PLCG2 1561.49068 -1.646647617 0.440306 -3.73978 0.000184 0.020086 
ENSG00000099812 MISP 7174.10653 2.258671087 0.604017 3.739414 0.000184 0.020086 
ENSG00000104827 CGB3 19.4195724 6.815745029 1.822683 3.739403 0.000184 0.020086 
ENSG00000230882 AC005077.4 145.831081 2.866146027 0.767893 3.732483 0.00019 0.020539 
ENSG00000185332 TMEM105 119.025344 2.621034786 0.702851 3.729149 0.000192 0.020641 
ENSG00000257588 AC025154.2 153.721227 3.256621143 0.873069 3.730085 0.000191 0.020641 
ENSG00000100055 CYTH4 910.476704 -1.725355068 0.462975 -3.72667 0.000194 0.020759 
ENSG00000122133 PAEP 123.192067 4.460033946 1.198623 3.720963 0.000198 0.021147 
ENSG00000130812 ANGPTL6 33.0553968 -1.957941853 0.526572 -3.71828 0.000201 0.021286 
ENSG00000221968 FADS3 1042.66125 -1.27303874 0.34274 -3.7143 0.000204 0.021448 
ENSG00000238133 MAP3K20-AS1 196.234463 4.058350875 1.092453 3.714898 0.000203 0.021448 
ENSG00000245694 CRNDE 355.863147 2.141504368 0.577303 3.709497 0.000208 0.021771 
ENSG00000137101 CD72 478.580024 -2.227100881 0.601066 -3.70525 0.000211 0.021926 
ENSG00000160182 TFF1 21199.7615 4.236032239 1.14336 3.704899 0.000211 0.021926 
ENSG00000016490 CLCA1 314.325873 6.860356477 1.851819 3.704658 0.000212 0.021926 
ENSG00000211829 TRDC 42.5110414 -2.204799525 0.595789 -3.70064 0.000215 0.022013 
ENSG00000140968 IRF8 1923.85756 -2.091315754 0.565017 -3.70133 0.000214 0.022013 
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ENSG00000166959 MS4A8 919.335402 3.409001217 0.92071 3.70258 0.000213 0.022013 
ENSG00000114346 ECT2 1674.01072 1.658690489 0.448534 3.698024 0.000217 0.022154 
ENSG00000053747 LAMA3 12756.447 2.344485106 0.634856 3.692939 0.000222 0.022513 
ENSG00000213809 KLRK1 24.6990727 -2.536704812 0.688397 -3.68495 0.000229 0.02304 
ENSG00000251323 AP003086.1 6.79595243 -2.144046551 0.58213 -3.68311 0.00023 0.02304 
ENSG00000157214 STEAP2 2242.97579 1.330181552 0.361109 3.683605 0.00023 0.02304 
ENSG00000145681 HAPLN1 105.633947 3.47405567 0.942669 3.68534 0.000228 0.02304 
ENSG00000211689 TRGC1 24.6578434 -2.483456459 0.675448 -3.67675 0.000236 0.023088 
ENSG00000254760 AC008750.1 5.84544257 -2.23556026 0.607839 -3.67788 0.000235 0.023088 
ENSG00000229029 CDCA4P1 3.91596056 -2.159983701 0.586948 -3.68003 0.000233 0.023088 
ENSG00000093100 AC016026.1 7.54942003 -1.798142757 0.488805 -3.67865 0.000234 0.023088 
ENSG00000065413 ANKRD44 825.679707 -1.718191211 0.467305 -3.67681 0.000236 0.023088 
ENSG00000170545 SMAGP 1599.69568 1.642656196 0.446546 3.678582 0.000235 0.023088 
ENSG00000235111 Z97192.3 5.82804264 -2.4653049 0.671544 -3.6711 0.000242 0.023517 
ENSG00000234883 MIR155HG 71.9359182 -1.990005688 0.542433 -3.66867 0.000244 0.023653 
ENSG00000069764 PLA2G10 258.545215 2.967034647 0.809345 3.665972 0.000246 0.023815 
ENSG00000105609 LILRB5 228.381969 -2.456839915 0.671284 -3.65991 0.000252 0.024028 
ENSG00000117245 KIF17 95.7717088 -1.770880703 0.483697 -3.66113 0.000251 0.024028 
ENSG00000111261 MANSC1 2731.95269 1.292456118 0.352877 3.662625 0.00025 0.024028 
ENSG00000103269 RHBDL1 180.753124 2.342191945 0.639928 3.660084 0.000252 0.024028 
ENSG00000233532 LINC00460 104.377823 3.567854408 0.975143 3.6588 0.000253 0.024044 
ENSG00000164236 ANKRD33B 200.60836 -1.99045327 0.544913 -3.65279 0.000259 0.024425 
ENSG00000145416 1-Mar 623.538807 -1.737296058 0.475714 -3.65197 0.00026 0.024425 
ENSG00000162545 CAMK2N1 7328.62319 1.429770029 0.391483 3.652193 0.00026 0.024425 
ENSG00000173467 AGR3 1990.63261 2.997125171 0.821325 3.649133 0.000263 0.024608 
ENSG00000064270 ATP2C2 1080.25131 2.229371635 0.611996 3.642789 0.00027 0.025132 
ENSG00000142347 MYO1F 1444.00639 -1.63170336 0.448266 -3.64004 0.000273 0.025312 
ENSG00000237928 NFIA-AS2 22.0255813 -2.398770222 0.659717 -3.63606 0.000277 0.025433 
ENSG00000249661 TNRC18P1 4.18725364 -1.921707456 0.528412 -3.63676 0.000276 0.025433 
ENSG00000218227 AC136632.1 60.5531005 -1.610799685 0.442809 -3.63768 0.000275 0.025433 
ENSG00000144820 ADGRG7 148.449404 4.33104892 1.192787 3.631032 0.000282 0.025842 
ENSG00000222057 RNU4-62P 4.79309956 -2.525394685 0.696161 -3.6276 0.000286 0.026096 
ENSG00000243766 HOTTIP 94.9825193 5.119680533 1.411934 3.626006 0.000288 0.026166 
ENSG00000160219 GAB3 315.115907 -1.625816119 0.448708 -3.62333 0.000291 0.026346 
ENSG00000115507 OTX1 100.734909 2.153605643 0.595073 3.619063 0.000296 0.02641 
ENSG00000267374 AC016205.1 30.1777681 2.624000386 0.725041 3.619106 0.000296 0.02641 
ENSG00000249853 HS3ST5 37.2977677 3.554226385 0.981821 3.620034 0.000295 0.02641 
ENSG00000205847 OR7E91P 27.932587 4.1027078 1.133898 3.618233 0.000297 0.02641 
ENSG00000148826 NKX6-2 42.3895056 5.801032414 1.602475 3.620045 0.000295 0.02641 
ENSG00000006555 TTC22 1404.44061 1.373650687 0.380085 3.614062 0.000301 0.026711 
ENSG00000117650 NEK2 410.693844 1.995882467 0.552336 3.613531 0.000302 0.026711 
ENSG00000265096 C1QTNF1-AS1 9.79585121 -2.544576493 0.704477 -3.61201 0.000304 0.026763 
ENSG00000267040 AC027097.1 71.9409944 -1.252512361 0.346992 -3.60963 0.000307 0.026763 
ENSG00000198088 NUP62CL 158.104496 1.654458523 0.458359 3.609527 0.000307 0.026763 
ENSG00000251191 LINC00589 13.7964847 3.260893097 0.904915 3.603536 0.000314 0.027205 
ENSG00000241359 SYNPR-AS1 30.5666196 2.969700335 0.824898 3.600082 0.000318 0.027477 
ENSG00000086300 SNX10 942.393187 -1.526374137 0.424177 -3.59844 0.00032 0.027511 
ENSG00000100994 PYGB 15693.8289 1.589512193 0.441772 3.59804 0.000321 0.027511 
ENSG00000268849 SIGLEC22P 4.34410387 -2.101954661 0.585153 -3.59215 0.000328 0.02796 
ENSG00000128408 RIBC2 72.1011124 2.154794991 0.599868 3.592114 0.000328 0.02796 
ENSG00000160883 HK3 462.010269 -2.339047302 0.652157 -3.58663 0.000335 0.02827 
ENSG00000005844 ITGAL 1163.40627 -2.324067813 0.648041 -3.5863 0.000335 0.02827 
ENSG00000269072 AC063977.6 3.00095994 -2.127335015 0.593115 -3.58672 0.000335 0.02827 
ENSG00000122986 HVCN1 434.20858 -1.79629802 0.501177 -3.58416 0.000338 0.02827 
ENSG00000180539 C9orf139 42.0573063 -1.658490655 0.462575 -3.58534 0.000337 0.02827 
ENSG00000231369 Z97353.1 5.40890258 -1.171981088 0.327066 -3.58332 0.000339 0.02827 
ENSG00000261762 AC027228.2 67.5960408 2.145347178 0.598582 3.584052 0.000338 0.02827 
ENSG00000185499 MUC1 40678.3358 2.479915109 0.692423 3.581501 0.000342 0.028377 
ENSG00000139874 SSTR1 658.794366 3.057031881 0.854278 3.578498 0.000346 0.028613 
ENSG00000165807 PPP1R36 239.727459 1.637226186 0.457872 3.575732 0.000349 0.028826 
ENSG00000143776 CDC42BPA 5765.75353 1.047582612 0.293072 3.574492 0.000351 0.028871 
ENSG00000279427 AC007490.1 48.2741352 2.283917265 0.639244 3.572841 0.000353 0.028962 
ENSG00000112799 LY86 484.798192 -1.997894616 0.559503 -3.57084 0.000356 0.029002 
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ENSG00000019102 VSIG2 4328.11783 2.769978124 0.775557 3.571599 0.000355 0.029002 
ENSG00000260963 AC026462.3 18.5531369 3.413162758 0.956229 3.569397 0.000358 0.02907 
ENSG00000154016 GRAP 70.1939853 -1.856059422 0.520192 -3.56803 0.00036 0.029119 
ENSG00000259485 LINC02253 83.8693851 5.022111851 1.407947 3.566976 0.000361 0.029119 
ENSG00000204542 C6orf15 150.580101 5.206488048 1.459825 3.566514 0.000362 0.029119 
ENSG00000276842 AC023510.2 16.4172516 -2.158218693 0.605476 -3.5645 0.000365 0.029253 
ENSG00000231226 TRIM31-AS1 31.9513166 2.815247367 0.790254 3.56246 0.000367 0.029364 
ENSG00000172927 MYEOV 2739.87359 3.018614097 0.847476 3.561889 0.000368 0.029364 
ENSG00000184060 ADAP2 522.860817 -1.342962393 0.377123 -3.56107 0.000369 0.029366 
ENSG00000124635 HIST1H2BJ 91.9278684 2.542480146 0.714302 3.55939 0.000372 0.029375 
ENSG00000163993 S100P 13512.9992 3.352472117 0.941764 3.55978 0.000371 0.029375 
ENSG00000086159 AQP6 81.5301899 3.265294811 0.917778 3.557825 0.000374 0.029461 
ENSG00000175832 ETV4 1776.24751 2.09262378 0.588541 3.555614 0.000377 0.02962 
ENSG00000256427 AC010175.1 3.83426563 -2.41774937 0.680519 -3.5528 0.000381 0.029667 
ENSG00000115956 PLEK 1015.45659 -2.131543153 0.600011 -3.55251 0.000382 0.029667 
ENSG00000007129 CEACAM21 96.0423827 -1.918287957 0.540173 -3.55125 0.000383 0.029667 
ENSG00000205420 KRT6A 3655.21989 4.644209301 1.30688 3.553662 0.00038 0.029667 
ENSG00000145384 FABP2 33.7798637 5.624974949 1.583741 3.551702 0.000383 0.029667 
ENSG00000128815 WDFY4 966.285981 -2.525338894 0.712083 -3.54641 0.000391 0.030128 
ENSG00000162482 AKR7A3 1441.65187 2.624013457 0.740322 3.544423 0.000393 0.030266 
ENSG00000267416 AC025048.4 19.7540203 -1.496672144 0.423187 -3.53667 0.000405 0.030985 
ENSG00000163624 CDS1 1939.79548 1.38842794 0.392574 3.536727 0.000405 0.030985 
ENSG00000153898 MCOLN2 150.825575 -2.218975431 0.627846 -3.53427 0.000409 0.031026 
ENSG00000105383 CD33 187.103393 -1.747780565 0.494543 -3.53413 0.000409 0.031026 
ENSG00000280924 LINC00628 8.64740916 4.155756658 1.175934 3.534005 0.000409 0.031026 
ENSG00000107099 DOCK8 1800.47676 -1.787006825 0.506011 -3.53156 0.000413 0.031061 
ENSG00000149260 CAPN5 7187.72578 1.932250128 0.547163 3.531399 0.000413 0.031061 
ENSG00000224259 LINC01133 1313.84521 3.048154554 0.862881 3.53253 0.000412 0.031061 
ENSG00000183542 KLRC4 3.66722076 -2.853800395 0.8107 -3.52017 0.000431 0.031151 
ENSG00000164935 DCSTAMP 76.9349434 -2.305810389 0.653953 -3.52596 0.000422 0.031151 
ENSG00000134061 CD180 388.269146 -2.260347309 0.641463 -3.52374 0.000426 0.031151 
ENSG00000122122 SASH3 1112.37723 -2.17034647 0.616128 -3.52256 0.000427 0.031151 
ENSG00000010671 BTK 557.623883 -2.139347108 0.606751 -3.5259 0.000422 0.031151 
ENSG00000269800 PLEKHA3P1 8.35815314 -1.887392014 0.53521 -3.52645 0.000421 0.031151 
ENSG00000279377 AC003973.3 66.5666162 -1.878629367 0.533239 -3.52306 0.000427 0.031151 
ENSG00000227954 TARID 22.9834313 -1.80695057 0.513067 -3.52186 0.000429 0.031151 
ENSG00000258539 AC068896.1 10.8448929 -1.766195971 0.500716 -3.52734 0.00042 0.031151 
ENSG00000152229 PSTPIP2 490.333228 -1.572451061 0.446153 -3.52446 0.000424 0.031151 
ENSG00000137269 LRRC1 1549.43778 1.058690512 0.300754 3.520126 0.000431 0.031151 
ENSG00000260328 AC104024.2 29.190294 2.580813988 0.733011 3.520839 0.00043 0.031151 
ENSG00000258689 LINC01269 28.8130227 2.798282759 0.793611 3.526011 0.000422 0.031151 
ENSG00000179674 ARL14 1565.0797 2.924576423 0.828994 3.527862 0.000419 0.031151 
ENSG00000265206 AC004687.1 129.663471 -2.890536586 0.822073 -3.51616 0.000438 0.031369 
ENSG00000101445 PPP1R16B 836.08883 -2.141533755 0.609069 -3.51608 0.000438 0.031369 
ENSG00000172818 OVOL1 446.872613 2.599274827 0.739036 3.517117 0.000436 0.031369 
ENSG00000096996 IL12RB1 261.507205 -1.723811224 0.490743 -3.51266 0.000444 0.031688 
ENSG00000166897 ELFN2 440.353417 2.52042626 0.717868 3.510991 0.000446 0.0318 
ENSG00000226491 FTOP1 16.4962072 -1.519760576 0.433042 -3.5095 0.000449 0.031892 
ENSG00000140678 ITGAX 1782.07522 -1.728006175 0.492639 -3.50765 0.000452 0.032026 
ENSG00000203711 C6orf99 28.4114148 2.013195467 0.574196 3.506114 0.000455 0.032124 
ENSG00000106089 STX1A 1929.47905 1.822397882 0.52006 3.50421 0.000458 0.032267 
ENSG00000179869 ABCA13 141.911351 2.744304422 0.783558 3.502362 0.000461 0.032327 
ENSG00000232498 AL136987.1 8.59243124 5.638181162 1.609863 3.502274 0.000461 0.032327 
ENSG00000011426 ANLN 1351.55435 2.125387502 0.60807 3.495299 0.000474 0.033006 
ENSG00000171243 SOSTDC1 157.20821 3.616607123 1.034684 3.495373 0.000473 0.033006 
ENSG00000238113 LINC01410 55.7018811 -1.762980991 0.504757 -3.49273 0.000478 0.033236 
ENSG00000136542 GALNT5 2730.28746 2.61424653 0.748831 3.491102 0.000481 0.03335 
ENSG00000230937 MIR205HG 133.28201 5.724753783 1.641961 3.486535 0.000489 0.033835 
ENSG00000248714 AC091180.2 3.77702911 -1.9842435 0.569465 -3.4844 0.000493 0.033862 
ENSG00000225342 AC079630.1 21.0603124 -1.786809467 0.512735 -3.48486 0.000492 0.033862 
ENSG00000110031 LPXN 976.391637 -1.403507409 0.402821 -3.48419 0.000494 0.033862 
ENSG00000162078 ZG16B 1809.99454 2.792551341 0.802257 3.480869 0.0005 0.034195 
ENSG00000133048 CHI3L1 1788.12679 -2.622722653 0.754923 -3.47416 0.000512 0.034677 
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ENSG00000167083 GNGT2 90.2171681 -1.531135611 0.440725 -3.47413 0.000513 0.034677 
ENSG00000056558 TRAF1 979.797135 -1.298258145 0.37364 -3.47463 0.000512 0.034677 
ENSG00000206069 TMEM211 19.4043564 4.010392693 1.154222 3.474542 0.000512 0.034677 
ENSG00000277268 AC243773.2 18.8516189 6.774176485 1.950183 3.47361 0.000514 0.034677 
ENSG00000260220 CCDC187 92.6366246 2.568977494 0.740223 3.470544 0.000519 0.034984 
ENSG00000107159 CA9 3657.86144 3.593013687 1.036911 3.465112 0.00053 0.035515 
ENSG00000146054 TRIM7 548.249771 2.361475046 0.681639 3.464409 0.000531 0.035516 
ENSG00000100027 YPEL1 112.011056 -1.132309297 0.326953 -3.46322 0.000534 0.035582 
ENSG00000197465 GYPE 21.6416548 -1.833060604 0.530083 -3.45806 0.000544 0.036178 
ENSG00000168078 PBK 242.662634 1.831933258 0.530096 3.455849 0.000549 0.036383 
ENSG00000095539 SEMA4G 2041.34639 1.831754408 0.530694 3.451619 0.000557 0.036833 
ENSG00000275216 AL161431.1 339.539485 5.123411063 1.484548 3.451158 0.000558 0.036833 
ENSG00000240216 CPHL1P 62.7352668 3.837058837 1.112414 3.449308 0.000562 0.036965 
ENSG00000005073 HOXA11 66.5872699 4.026565311 1.167518 3.448825 0.000563 0.036965 
ENSG00000169442 CD52 1670.62611 -2.377883268 0.690063 -3.44589 0.000569 0.037262 
ENSG00000171608 PIK3CD 1150.62236 -1.57255824 0.456485 -3.44493 0.000571 0.037262 
ENSG00000110723 EXPH5 536.50137 1.374471606 0.399019 3.444628 0.000572 0.037262 
ENSG00000272980 Z94721.2 7.08552298 -1.64182157 0.476852 -3.44304 0.000575 0.037294 
ENSG00000227038 GTF2IP7 30.3363918 2.457746773 0.713784 3.443263 0.000575 0.037294 
ENSG00000272468 AL021807.1 26.6338161 2.817153048 0.818406 3.442246 0.000577 0.037311 
ENSG00000174791 RIN1 1223.55773 1.446239215 0.420386 3.440267 0.000581 0.037399 
ENSG00000164379 FOXQ1 1811.25958 2.088594868 0.607 3.440847 0.00058 0.037399 
ENSG00000148600 CDHR1 42.8642167 -2.522909862 0.733735 -3.43845 0.000585 0.037439 
ENSG00000276231 PIK3R6 158.290422 -1.416779483 0.412011 -3.4387 0.000585 0.037439 
ENSG00000104413 ESRP1 4052.89176 1.594523594 0.463798 3.437971 0.000586 0.037439 
ENSG00000101842 VSIG1 3192.92748 3.667945324 1.067525 3.435932 0.000591 0.037566 
ENSG00000260284 TPSP2 43.5413947 4.253233299 1.237943 3.435726 0.000591 0.037566 
ENSG00000163508 EOMES 98.2139187 -2.557173361 0.745019 -3.43236 0.000598 0.037577 
ENSG00000270164 LINC01480 78.7282138 -2.020813556 0.588309 -3.43495 0.000593 0.037577 
ENSG00000236901 MIR600HG 216.963153 -1.973719164 0.574983 -3.43266 0.000598 0.037577 
ENSG00000171346 KRT15 1068.12931 2.645786902 0.770737 3.4328 0.000597 0.037577 
ENSG00000181631 P2RY13 196.280209 -2.175286076 0.634047 -3.4308 0.000602 0.037703 
ENSG00000135773 CAPN9 956.134985 3.374028239 0.983872 3.429335 0.000605 0.037815 
ENSG00000204839 MROH6 2045.6906 2.289057944 0.66786 3.427454 0.000609 0.037987 
ENSG00000205268 PDE7A 1523.87065 -1.376342252 0.401999 -3.42374 0.000618 0.038417 
ENSG00000280153 AC133065.6 301.581333 -1.828705583 0.534346 -3.42233 0.000621 0.038524 
ENSG00000111701 APOBEC1 261.08098 3.793550387 1.108677 3.421691 0.000622 0.038524 
ENSG00000186583 SPATC1 20.2885481 -2.123598157 0.620777 -3.42087 0.000624 0.038548 
ENSG00000249464 LINC01091 110.525099 2.312993325 0.676279 3.420177 0.000626 0.038551 
ENSG00000170786 SDR16C5 1804.87086 2.777175476 0.812143 3.419566 0.000627 0.038551 
ENSG00000162543 UBXN10 887.463119 1.757017269 0.51396 3.41859 0.000629 0.038598 
ENSG00000086288 NME8 19.7779347 -1.731870767 0.506973 -3.4161 0.000635 0.038704 
ENSG00000077152 UBE2T 428.134058 1.448907614 0.424163 3.415919 0.000636 0.038704 
ENSG00000105219 CNTD2 51.8228197 3.351568539 0.981081 3.4162 0.000635 0.038704 
ENSG00000101213 PTK6 2631.09265 2.293328706 0.672086 3.412255 0.000644 0.039137 
ENSG00000235897 TM4SF19-AS1 19.4526116 -1.509740978 0.442734 -3.41004 0.00065 0.039198 
ENSG00000198380 GFPT1 6954.4109 1.028760516 0.301739 3.409441 0.000651 0.039198 
ENSG00000187837 HIST1H1C 2357.36836 2.040153906 0.598399 3.409356 0.000651 0.039198 
ENSG00000272068 AL365181.2 290.484515 2.994968151 0.878472 3.409294 0.000651 0.039198 
ENSG00000094804 CDC6 524.934084 1.635121345 0.479719 3.408501 0.000653 0.039221 
ENSG00000236876 TMSB4XP1 7.49150452 -1.544332506 0.453585 -3.40473 0.000662 0.039591 
ENSG00000139800 ZIC5 24.8232584 5.642055655 1.657148 3.404679 0.000662 0.039591 
ENSG00000134762 DSC3 272.116908 3.305473292 0.971099 3.403849 0.000664 0.039621 
ENSG00000162460 TMEM82 27.109296 3.80449375 1.117948 3.403105 0.000666 0.039638 
ENSG00000156453 PCDH1 8046.36279 1.396316069 0.41048 3.401667 0.00067 0.039756 
ENSG00000101336 HCK 1184.77617 -1.648677488 0.485143 -3.39833 0.000678 0.040152 
ENSG00000213075 RPL31P11 2.89894775 -2.261867782 0.66583 -3.39706 0.000681 0.040156 
ENSG00000092607 TBX15 263.608113 2.84339012 0.836961 3.397281 0.000681 0.040156 
ENSG00000140284 SLC27A2 286.429628 2.242737089 0.660433 3.395861 0.000684 0.040241 
ENSG00000226690 AC013470.2 5.11591296 4.887289193 1.439637 3.394807 0.000687 0.040306 
ENSG00000164078 MST1R 4222.16162 2.141018928 0.631679 3.389411 0.0007 0.041015 
ENSG00000115523 GNLY 235.21983 -1.989780853 0.587353 -3.38771 0.000705 0.041141 
ENSG00000198734 F5 3369.51719 2.716727701 0.802026 3.387332 0.000706 0.041141 



 

Page | 38  

 

ENSG00000261465 AC099518.4 8.34335748 2.310793512 0.682318 3.38668 0.000707 0.041147 
ENSG00000136286 MYO1G 684.897616 -1.812430155 0.535723 -3.38315 0.000717 0.041587 
ENSG00000270379 HEATR9 6.29980313 -2.2557178 0.667325 -3.38024 0.000724 0.041676 
ENSG00000273062 AL449106.1 17.4847665 -1.482566816 0.438683 -3.37959 0.000726 0.041676 
ENSG00000213371 NAP1L1P3 6.5326642 -1.142942388 0.33803 -3.38119 0.000722 0.041676 
ENSG00000227155 AL161725.1 14.6959435 -1.929267643 0.571775 -3.37417 0.00074 0.042124 
ENSG00000204991 SPIRE2 1472.63827 2.038583252 0.604171 3.374183 0.00074 0.042124 
ENSG00000250271 AC068647.2 20.2602533 4.437077255 1.314612 3.375198 0.000738 0.042124 
ENSG00000267369 AC015911.7 51.8147896 -1.99339354 0.591564 -3.3697 0.000753 0.042636 
ENSG00000233217 MROH3P 181.340608 3.203930561 0.950998 3.369019 0.000754 0.042636 
ENSG00000123329 ARHGAP9 752.735485 -1.952923108 0.579811 -3.36821 0.000757 0.042669 
ENSG00000196405 EVL 3370.00816 -1.39247419 0.413597 -3.36674 0.000761 0.042804 
ENSG00000186517 ARHGAP30 1723.35378 -1.686417305 0.501217 -3.36465 0.000766 0.043037 
ENSG00000166866 MYO1A 969.27542 3.154725828 0.937998 3.363255 0.00077 0.043161 
ENSG00000104951 IL4I1 476.060348 -2.045485466 0.608613 -3.3609 0.000777 0.043438 
ENSG00000185015 CA13 602.209351 1.457663617 0.43403 3.35844 0.000784 0.043732 
ENSG00000111860 CEP85L 352.931261 -1.186925963 0.354165 -3.35134 0.000804 0.044387 
ENSG00000176920 FUT2 2311.36809 1.923233578 0.573965 3.350786 0.000806 0.044387 
ENSG00000101447 FAM83D 567.529914 2.228968763 0.664965 3.352008 0.000802 0.044387 
ENSG00000167755 KLK6 3327.73254 3.606747997 1.075468 3.353655 0.000798 0.044387 
ENSG00000267287 AC068473.3 22.2718612 -1.864386109 0.556926 -3.34764 0.000815 0.044711 
ENSG00000262714 AC007342.5 39.0626488 2.826037343 0.844198 3.347602 0.000815 0.044711 
ENSG00000135898 GPR55 40.3375702 -2.187969992 0.654003 -3.3455 0.000821 0.044767 
ENSG00000265743 AC138207.5 33.4137291 -1.407301856 0.420619 -3.34579 0.00082 0.044767 
ENSG00000110244 APOA4 143.162102 7.120313761 2.128231 3.345649 0.000821 0.044767 
ENSG00000196329 GIMAP5 102.192597 -2.113321656 0.632265 -3.34246 0.00083 0.045166 
ENSG00000223813 AC007255.1 53.0321115 1.703069004 0.509621 3.341833 0.000832 0.045174 
ENSG00000102445 RUBCNL 327.530553 -1.994262409 0.596977 -3.3406 0.000836 0.045186 
ENSG00000189238 LINC00943 7.75412261 -2.133539798 0.639664 -3.33541 0.000852 0.04541 
ENSG00000224968 LINC01645 3.78495247 -2.117496783 0.635166 -3.33377 0.000857 0.04541 
ENSG00000015285 WAS 828.496173 -1.795871547 0.539328 -3.32983 0.000869 0.04541 
ENSG00000268316 AC006272.1 3.37452835 -1.682204137 0.504445 -3.33476 0.000854 0.04541 
ENSG00000274712 AC005332.7 105.52057 -1.41482331 0.424383 -3.33383 0.000857 0.04541 
ENSG00000150867 PIP4K2A 2230.46659 -1.073039063 0.322276 -3.32957 0.00087 0.04541 
ENSG00000121057 AKAP1 4055.5721 1.067282323 0.320318 3.33195 0.000862 0.04541 
ENSG00000213853 EMP2 5096.33425 1.201370596 0.360498 3.332529 0.000861 0.04541 
ENSG00000079385 CEACAM1 3865.42623 1.862364387 0.559141 3.330759 0.000866 0.04541 
ENSG00000226330 AL606489.1 35.4696022 1.954036725 0.586574 3.331272 0.000865 0.04541 
ENSG00000204335 SP5 110.59096 2.678422223 0.80419 3.330584 0.000867 0.04541 
ENSG00000099834 CDHR5 2276.28768 2.788007228 0.837283 3.329828 0.000869 0.04541 
ENSG00000132821 VSTM2L 3068.41807 2.79451631 0.838826 3.331461 0.000864 0.04541 
ENSG00000188100 FAM25A 5.7150008 5.041744381 1.512714 3.332913 0.000859 0.04541 
ENSG00000113303 BTNL8 510.491986 3.565838892 1.071601 3.327582 0.000876 0.045577 
ENSG00000231324 AP000696.1 13.0911516 4.346753439 1.30634 3.32743 0.000877 0.045577 
ENSG00000108691 CCL2 2088.27563 -2.181517025 0.656428 -3.32331 0.00089 0.045697 
ENSG00000265798 AC138207.6 11.0862376 -1.501185233 0.451548 -3.32453 0.000886 0.045697 
ENSG00000280194 AD000864.1 29.1940613 -1.341574148 0.403554 -3.32439 0.000886 0.045697 
ENSG00000006611 USH1C 4288.41362 1.88569264 0.567791 3.321105 0.000897 0.045697 
ENSG00000175318 GRAMD2A 193.738708 1.992512143 0.600041 3.320629 0.000898 0.045697 
ENSG00000196890 HIST3H2BB 53.2317536 2.469743331 0.74257 3.325938 0.000881 0.045697 
ENSG00000167644 C19orf33 5348.37311 2.474552482 0.74507 3.321235 0.000896 0.045697 
ENSG00000179148 ALOXE3 43.9387698 2.499563568 0.752433 3.321974 0.000894 0.045697 
ENSG00000239093 snoU13 8.27508527 3.15286829 0.949111 3.321917 0.000894 0.045697 
ENSG00000166589 CDH16 38.544366 3.676392208 1.106207 3.323422 0.000889 0.045697 
ENSG00000240476 LINC00973 28.7490385 4.595089068 1.383587 3.321141 0.000897 0.045697 
ENSG00000185482 STAC3 235.958217 -1.133273021 0.341529 -3.31823 0.000906 0.045732 
ENSG00000130762 ARHGEF16 3058.30489 1.598908313 0.481824 3.318447 0.000905 0.045732 
ENSG00000124107 SLPI 9912.17224 2.257826666 0.680397 3.318396 0.000905 0.045732 
ENSG00000198835 GJC2 383.563972 2.409049492 0.725689 3.31967 0.000901 0.045732 
ENSG00000239961 LILRA4 60.2482752 -2.879821231 0.868023 -3.31768 0.000908 0.045734 
ENSG00000153292 ADGRF1 1694.15126 2.633483328 0.793908 3.317113 0.00091 0.045739 
ENSG00000188820 FAM26F 253.641079 -1.971132999 0.594603 -3.31504 0.000916 0.045902 
ENSG00000138756 BMP2K 430.123567 -1.086720677 0.327972 -3.31346 0.000921 0.046073 
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ENSG00000188536 HBA2 395.707208 -3.233727938 0.977562 -3.30795 0.00094 0.046779 
ENSG00000123338 NCKAP1L 1823.57083 -1.873957156 0.566445 -3.30828 0.000939 0.046779 
ENSG00000204121 ECEL1P1 12.6716589 4.694755964 1.419386 3.307596 0.000941 0.046779 
ENSG00000227191 TRGC2 57.3685509 -2.225207329 0.673197 -3.30543 0.000948 0.046962 
ENSG00000160321 ZNF208 49.2295945 -1.646522093 0.498051 -3.30593 0.000947 0.046962 
ENSG00000121957 GPSM2 523.540024 1.1487345 0.34838 3.297362 0.000976 0.047876 
ENSG00000174607 UGT8 1391.54334 1.594161002 0.483201 3.299167 0.00097 0.047876 
ENSG00000143375 CGN 7268.92387 1.629682745 0.494186 3.297708 0.000975 0.047876 
ENSG00000258077 AC078923.1 9.80606574 3.827399055 1.16041 3.298317 0.000973 0.047876 
ENSG00000253258 AC068228.2 4.3697963 4.652986634 1.411059 3.297514 0.000975 0.047876 
ENSG00000242747 AC090515.1 5.3125842 -1.537223347 0.466485 -3.29533 0.000983 0.048042 
ENSG00000224137 LINC01857 49.0407035 -2.945545281 0.894504 -3.29294 0.000991 0.048141 
ENSG00000143119 CD53 2706.1744 -1.941983312 0.589773 -3.29276 0.000992 0.048141 
ENSG00000234964 FABP5P7 5.35885771 -1.673443714 0.508398 -3.2916 0.000996 0.048141 
ENSG00000254827 SLC22A18AS 194.9412 1.857643721 0.564162 3.292746 0.000992 0.048141 
ENSG00000118194 TNNT2 156.511118 2.610094605 0.792839 3.292085 0.000994 0.048141 
ENSG00000167964 RAB26 563.950396 2.640644534 0.802087 3.292219 0.000994 0.048141 
ENSG00000244468 AC093001.1 6.64385339 5.263370047 1.602039 3.285419 0.001018 0.049119 
ENSG00000213279 Z97192.2 11.0147348 -1.730672469 0.526887 -3.28471 0.001021 0.049151 
ENSG00000188060 RAB42 207.751694 -1.640880658 0.499821 -3.28294 0.001027 0.049188 
ENSG00000147676 MAL2 13324.195 1.685358114 0.513296 3.283405 0.001026 0.049188 
ENSG00000161643 SIGLEC16 36.4030319 -1.878343972 0.572298 -3.28211 0.00103 0.049242 
ENSG00000158517 NCF1 209.772933 -2.16561013 0.660109 -3.28069 0.001036 0.049276 
ENSG00000135596 MICAL1 3059.99244 -1.042356466 0.317816 -3.27975 0.001039 0.049276 
ENSG00000170522 ELOVL6 1152.05549 1.335620712 0.407348 3.27882 0.001042 0.049276 
ENSG00000175164 ABO 1864.17373 2.275605964 0.693519 3.281245 0.001033 0.049276 
ENSG00000123843 C4BPB 702.372719 2.664791673 0.812657 3.279111 0.001041 0.049276 
ENSG00000254548 AC105219.2 13.0067685 3.79795819 1.158093 3.279494 0.00104 0.049276 
ENSG00000126882 FAM78A 559.364829 -1.704631343 0.520172 -3.27706 0.001049 0.049406 
ENSG00000154133 ROBO4 940.086206 -1.158837004 0.353603 -3.27723 0.001048 0.049406 
ENSG00000164129 NPY5R 11.5031536 -2.963135483 0.905044 -3.27402 0.00106 0.049513 
ENSG00000131042 LILRB2 428.874969 -1.763764462 0.538402 -3.27593 0.001053 0.049513 
ENSG00000175866 BAIAP2 3044.25548 1.312594002 0.400797 3.274958 0.001057 0.049513 
ENSG00000137460 FHDC1 898.829474 1.526157491 0.46616 3.273895 0.001061 0.049513 
ENSG00000211974 AC245369.1 69.4594686 4.393470804 1.341719 3.274509 0.001058 0.049513 
ENSG00000197872 FAM49A 812.24303 -1.478459649 0.45187 -3.27187 0.001068 0.049602 
ENSG00000237523 LINC00857 237.760665 1.787683432 0.546285 3.27244 0.001066 0.049602 
ENSG00000047597 XK 311.905072 2.043372237 0.624455 3.272251 0.001067 0.049602 
ENSG00000121075 TBX4 11.9140423 3.653151567 1.116782 3.271141 0.001071 0.049641 
ENSG00000170608 FOXA3 2175.86884 2.152692635 0.658565 3.268764 0.00108 0.049838 
ENSG00000255545 AP004608.1 192.464306 3.039462611 0.929736 3.269167 0.001079 0.049838 
ENSG00000280362 AC084759.3 24.5304416 4.038152044 1.23547 3.268515 0.001081 0.049838 
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Appendix figure 1: Result of consensus clustering analysis. Heatmap of the consensus matrix M (K) for K = 2 
which is the optimal number of clusters, cluster 1 (n=88 patients) and cluster2 (n= 89 patients) with clustering 
consensus values 0.8774 and 0.8452, respectively. Consensus values range from 0 (never clustered together) to 
1 (always clustered) marked by white to dark blue. FPKMs of the top eight significantly prognostic genes for the 
177 PDAC tumour samples were used for the analysis applying the parameters mentioned in material and 
methods. 

  


