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Abstract 

Time series prediction is one of the main areas of statistics and machine learning. In 2018 the two new 

algorithms higher order hidden Markov model and temporal convolutional network were proposed 

and emerged as challengers to the more traditional recurrent neural network and long-short term 

memory network as well as the autoregressive integrated moving average (ARIMA).  

In this study most major algorithms together with recent innovations for time series forecasting is 

trained and evaluated on two datasets from the theme park industry with the aim of predicting future 

number of visitors. To develop models, Python libraries Keras and Statsmodels were used. 

Results from this thesis show that the neural network models are slightly better than ARIMA and the 

hidden Markov model, and that the temporal convolutional network do not perform significantly 

better than the recurrent or long-short term memory networks although having the lowest prediction 

error on one of the datasets. Interestingly, the Markov model performed worse than all neural network 

models even when using no independent variables. 
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1 LƴǘǊƻŘǳŎǘƛƻƴ 

Time series forecasting is an important tool in modern science for studying relationships between a 

dependent variable and time, possibly together with other independent variables. The goal of time 

series prediction is to collect historical data that can be used to create a quantitative model that 

explains the characteristics of the explained variable. Areas of use include econometrics (Zhang, Yin, 

Zhang & Li 2016; Wang 2016), biology (Huang et al. 2016), psychology (Jebb, Tay, Wang & Huang 

2015) and climatology (Duchon & Hale 2012).  

In addition to scientific research, time series forecasting is frequently utilized in the business sector 

to forecast areas like product demand as well as the need for materials and personnel. When 

utilized, it can be developed and used by individual analysts using code or form a module within a 

system such as in Amazon Forecast (Amazon 2019), the ERP system SAP (Dadouche 2018) and most 

interface-based analytics software such as SAS (SAS n.d), NCSS (NCSS 2019), and Tableau (Tableau 

2019).   

Time series can have four characteristics as described by Jebb & Tay (2017). These are trends, 

seasonality, cycles and noise. Algorithms for time series forecasting are appropriate for data that has 

a time dimension and exhibit one or more of these properties. 

In the beginning of the ninetieth century deterministic models were used and the involvement of 

stochastic properties became prominent with the invention of the autoregressive moving average 

(ARIMA) model developed by major contributions from Box & Jenkins (1970). This statistical 

approach dominated the development of models for time series forecasting for thirty years (De 

Gooijer & Hyndman 2006).  

Quantitative models for time series analysis based on deep learning has become more and more 

important in recent years (Makridakis, Spiliotis & Assimakopoulos 2018). The development of 

machine learning and deep learning has led to a myriad of solutions that compete with traditional 

statistical methods with important examples being recurrent neural networks (RNN) (Russel & Norvig 

2010, pp. 729) and long-short term memory networks (LSTM) (Hochreiter & Schmidhuber 1997) 

which revolutionized the ability to create models for sequential problems like speech recognition 

(Xiangang & Wu 2014) and machine translation (Sutskever, Vinyals & Le 2014). 

A novel implementation by Bai, Kolter & Koltun (2018) use feed forward networks and convolutional 

operations utilized in computŜǊ Ǿƛǎƛƻƴ ǘƻ ŎƻƴǎǘǊǳŎǘ ŀ ƴŜǳǊŀƭ ƴŜǘǿƻǊƪ ŎŀƭƭŜŘ άǘŜƳǇƻǊŀƭ ŎƻƴǾƻƭǳǘƛƻƴŀƭ 

ƴŜǘǿƻǊƪέ (TCN) that can learn faster and attain higher accuracy on some sequential datasets 

compared to LSTMs.   

A different approach to time series modelling is using Markov chains. While originating in 1906 more 

recent developments by Ky & Tuyen (2018) using higher order chains and intervals of the time series 

as states suggest promising results on its ability to predict stock prices, a traditionally difficult 

problem because of its high level of stochasticity. 

Research into the accuracy and reliability of different algorithms for time series forecasting can lead 

to improvements in the ability of the scientific community to carry out time-based analysis. 

Furthermore, better knowledge in which algorithm to choose for a problem could help businesses 
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create better forecasts thereby improving their strategical and tactical planning as well as optimizing 

operations. 

In this study, data is collected from two Swedish theme parks containing visitors per day over time. 

This data is fused with datasets containing weather parameters and search keyword frequency from 

Google Trends. With this,  the three traditional algorithms ARIMA, RNN and LSTM are compared to 

the two novel implementations: temporal convolutional networks and higher order Markov chains.  

The remainder of the report is organized as follows. In section 2, the technical and mathematical 

theory behind the algorithms are explained. Section 3 describes the problem area and the 

contribution of this study.  Section 4 describes and motivates the choice of scientific methods. 

Acquired data and relevant tools are presented in section 5 along with an exploratory data analysis 

Results are presented in section 6. There is an analysis of concerning the meaning of the acquired 

results in section 7. Lastly, a discussion concerning the performed study and the subsequent results 

are presented in section 8.
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2 .ŀŎƪƎǊƻǳƴŘ 

The background section examines the theoretical foundations for the investigated time series models 

and the general characteristics of time series datasets.  

2.1 Terminology 

Network Architecture ς describing the morphology of a network by referring to the structure of 

nodes, layers, and the way their edges are connected. 

Machine Learning Algorithm/algorithm ς a theoretical description of a machine learning based 

quantitative system that has the capacity to learn from input data and create a prediction based on 

one or more independent variables. 

Statistical Model ς a general description of a mathematical equation that describe relationships 

between parameters and variables. 

Machine Learning Model/model ς an implementation of a machine learning algorithm where 

hyperparameters have been selected and the algorithm has been trained on a dataset. 

2.2 Characteristics of Time Series Data and Forecasting 

A time series is a chronological sequence of observations of a predictor variable behaving like a 

stochastic process; that is, individual values are impossible to predict exactly but there can be an 

overall pattern. This type of data can display patterns that can be used to create models to predict 

future behavior. The series can display a trend which can be upward, downward or stationary. 

Furthermore, the pattern can be of a cyclical nature changing from lower and higher values in an 

interval around an average point, an example of this is a heartbeat over time. Typical of cyclical 

pattern is that they have no set repetition and ŘƻŜǎƴΩǘ ǊŜǇŜŀǘ ŎŜǊǘŀƛƴ ǇŜǊƛƻŘǎ ƻŦ ǘƘŜ year. Lastly, time 

series can have seasonality which is a pattern where values change in a certain manner on specific 

points in time, for example during winter and summer (Montgomery, Jennings & Kulahci 2015, pp. 6-

12). 

Another important attribute that can be found in time series is called white noise. A dependent 

variable that changes randomly over time with constant variance and no autocorrelation can be said 

to be white noise. The scatter plot of such a series across time will indicate no pattern and hence 

forecasting the future values of such a series is not possible. It is not possible to do time series 

analysis on such data (Montgomery, Jennings & Kulahci 2015, p. 71).  

Forecasting time series data can be classified as short-term, medium-term and long-term. Short 

forecasts range between a few days to a few months. Medium time forecasts can go 1-2 years into 

the future and long-term forecasts can be several years into the future. Statistical models are useful 

for short- and medium-term forecasts (Montgomery, Jennings & Kulahci 2015, p. 2). 

There are two categories of forecasting techniques. Qualitative techniques are relatively rare and can 

consist of a panel of experts giving individual estimates which are then pooled together, such as with 

the Delphi Method. In quantitative models there are statistical and machine learning models for 

forecasting. These are considered more stable and are most commonly used. Types of quantitative 
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forecasting models are regression models (chapter 2.6.1), smoothing models (chapter 2.5), general 

time series models (chapter 2.6) (Montgomery, Jennings & Kulahci 2015, pp. 4-6). 

2.3 Statistical Models 

Statistical models differ from machine learning (ML) models in that they usually require a set of 

presuppositions for the model to work. E.g. linear regression requires normally distributed data, 

homoscedasticity and lack of autocorrelation (Casson 2014). ML models on the other hand typically 

ƭŜŀǊƴ ŀƴŘ ŀŘŀǇǘ ŦǊƻƳ ǘƘŜ Řŀǘŀ ŀƴŘ ŘƻƴΩǘ ǊŜǉǳƛǊŜ as thorough preprocessing.  

2.4 ETS Models 

9¢{ ǎǘŀƴŘǎ ŦƻǊ έ9ǊǊƻǊ-Trend-{Ŝŀǎƻƴŀƭƛǘȅέ ŀƴŘ ƛƴŎƭǳŘŜǎ ƳƻŘŜls such as exponential smoothing, trend 

methods and ETS decomposition. ETS decomposition is a way to break down a time series into 

components of trends, seasonality and cycles (Jofipasi, Miftahuddin & Hizir 2017). This can be a 

useful tool for diagnosing time series to determine whether a seasonal ARIMA should be used and if 

the data must undergo transformations to become stationary. In this study, ETS decomposition will 

be used as a diagnostic tool in the development of the ARIMA model. 

2.5 EMWA Models 

EMWA is one of the more advanced smoothing models that can be used for time series forecasting. 

Other examples include Simple Moving Average (SMA) and Simple Moving Median. These models are 

also a common tool in descriptive statistics and only EMWA is usually used for producing detailed 

predictions.  

A regular moving average can be improved by using an exponentially weighted moving average 

(EMWA). SMA has some weaknesses, smaller windows will lead to more noise rather than signal. Its 

lacks starting values and it will never reach the full peak or valley of the data due to averaging. 

Furthermore, it does not inform about future behavior all it really does is describe trends in the 

historical data. Lastly, an issue with SMA can be the presence of extreme historical values that skew 

the rolling mean (Montgomery, Jennings & Kulahci 2015, pp. 223-257).  

EWMA reduce the lag effect of SMA and can put more weight on values that occurred more recently 

by applying a higher weight to the more recent values. The amount of weight given to the most 

recent values depend on the actual parameters used in the EWMA and the number of periods given a 

window size (Montgomery, Jennings & Kulahci 2015, pp. 223-257).  

Although ETS- and EMWA models have been historically important in time series forecasting, they 

could be considered older and somewhat more simple models that have already been thoroughly 

studied and will therefore not be investigated in detail in this study. 

2.6 ARIMA Models 

ARIMA stands for Auto Regressive Integrated Moving Average. There are thus three independent 

components making up the model and they can be used together or with the exclusion of one or 

more. 

ARIMA can be divided into three categories (Durka & Pastorekova 2012) 
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¶ Non-seasonal ARIMA (ARIMA) 

¶ Seasonal ARIMA (SARIMA) 

¶ Multivariate ARIMA (ARIMAX) 

 

Regular ARIMA-models is a univariate time series model because it works on data that consists of 

single observations of a dependent variable over regular time intervals and no external predictor 

variables.  

ARIMA models are usually applied where data show evidence of non-stationarity, where an initial 

differencing step ς corresponding to the integrated part of the model ς can be applied one or more 

times to eliminate the non-stationarity. A stationary time series is one whose statistical properties 

such as mean, variance and covariance are constant over time. Most models assume that the time 

series is or can be rendered approximately stationary through mathematical transformations. Making 

a time series stationary through differencing where needed is an important part of the process of 

fitting an ARIMA model (Montgomery, Jennings & Kulahci 2015, pp. 48-50). 

There are several ways to make a non-stationary dataset stationary but the simplest is differencing. 

Subtract each value according to ὣ  ὣ . This can be done several times if needed and every step 

of differencing costs one row of data. 

Differencing can also be done by season if there are long-term seasonal patterns that cause the non-

stationarity. For example, if the time series is recorded monthly and there is an annual change in 

values that cause non-stationarity the dependent variable can be transformed according to ὣ 

 ὣ . It is also common with seasonal ARIMA to combine both methods, taking the seasonal 

difference of the first difference (Montgomery, Jennings & Kulahci 2015, p. 52).  

Furthermore, there are hypothesis tests that can be used to indicate mathematically if a series can 

be considered stationary or not, one of these if the Dickey-Fuller test (Bernal & Sanso 2001).  

Major components of ARIMA are the autoregressive portion, the integrated portion and the moving 

average portion. Non-seasonal ARIMA models are generally denoted ARIMA(p, d, q) where 

parameters p, d, q are non-negative integers (Montgomery, Jennings & Kulahci 2015, pp. 327-367).  

2.6.1  The Autoregressive AR(p) Part of ARIMA 

A regression mode that utilizes the dependent relationship between a current observation and 

observations over a previous period. An auto regressive model or AR model is one in which Yt 

depends only on its own past values ὣ  Ὢὣ ȟὣ ȟȢȢȢȟὣ . 

A representation of an autoregressive model where it depends on n of its past values (p = n) called 

ά!wόǇύέ ƳƻŘŜƭ Ŏŀƴ ōŜ ƳŀǘƘŜƳŀǘƛŎŀƭƭȅ ǊŜǇǊŜǎŜƴǘŜŘ ŀǎΥ 

(1) ὣ  ὄ  ὄ z ὣ   ὄ z ὣ   ὄ z ὣ   Ὁ 

An important question is how many past values to use. AR(p) means p past values. B are coefficients 

like those used in linear regression models, and Et is an error term representing random behavior 

(white noise) in the series (Montgomery, Jennings & Kulahci 2015, pp. 338-348). 

2.6.2  The Integrated I(d) Part of ARIMA 

If the time series was shown to be non-stationary there are two ways to make it stationary 

differencing (subchapter 2.2.3) and mathematical transformations using logarithms (Montgomery, 

Jennings & Kulahci 2015, p. 363) can be employed. A series which is stationary after being 
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differentiated d times is said to be integrated of order d denoted I(d). Therefore, a series which is 

stationary without differencing is said to be I(0) and integrated of order 0. 

2.6.3  The Moving Average MA(q) Part of ARIMA 

The MA part of the model uses the dependency between an observation and a residual error from a 

moving average model applied to lagged observations. A moving average model is one when ὣ 

depends only on the random error terms which follow a white noise process (Montgomery, Jennings 

& Kulahci 2015, pp. 333-337). 

A common representation of a moving average model where it depends on q of is past values is 

called MA(q). 

(2) ὣ ὗ Ὁ ὗ Ὁz ὗ Ὁz ȟȣȟὗ Ὁz  

Where the error terms Ὁ are assumed to be white noise processes with mean zero and variance „ . 

That is average(Ὁ) = 0 and var(Ὁ) = 1. 

2.6.4  Combinations of Parts 

There are times when the time-series may be represented as a mix of both AR and MA models 

referred as ARMA(p, q). The general form of such a time series model which depends on p of its past 

values and q past values of white noise disturbances takes the following form (Montgomery, 

Jennings & Kulahci 2015, pp. 354-355). How to develop an ARIMA model will be explained in 

subsequent chapters. 

(3) ὣ ὄ  ὄ z ὣ   ὄ z ὣ   ὄ z ὣ   ὗ z Ὁ   ὗ  z Ὁ  

2.6.5 Autocorrelation Function (ACF) 

Once the data is stationary, model selection is the next step. An autocorrelation plot ς also known as 

a correlogram ς shows the correlation of the series with itself lagged by n time units. The y-axis is the 

correlation and the x-axis are the number of time units of lag. This can be done several times for 

different times of lags. 

(4) ὅέὶὶὣȟὣ
ȟ

 z 
 

The results from the ACF plot should show whether the (AR) or the (MA) part of the ARIMA model 

should be used, or both (Yaffee & McGee 2000, pp. 122-126).  

¶ If the autocorrelation plot shows positive autocorrelation at the first lag (lag-1) then it 

suggests using the AR terms in relation to the lag.  

¶ If the autocorrelation plot shows negative autocorrelation at the first lag, then it suggests 

using MA terms.  

2.6.6  Partial Autocorrelation Function (PACF) 

A partial correlation is a conditional correlation. It is a correlation between two variables under the 

assumption that some other set of variables is known and considered. 

For example, in a regression context where y is the response variable and x1, x2, x3 are the predictor 

variables. The partial correlation between y and x3 is the correlation between the variables 

determined considering how both y and x3 are related to x1 and x2. 



7 
 

¢ȅǇƛŎŀƭƭȅΣ ŀ ǎƘŀǊǇ ŘǊƻǇ ŀŦǘŜǊ ƭŀƎ άƪέ ǎǳƎƎŜǎǘǎ ŀƴ AR-k model should be used. If there is a gradual 

decline it suggests an MA model. Identification of an AR model is often best done with the PACF. 

Identification of an MA model is often best done with the ACF rather than the PACF (Yaffee & McGee 

2000, pp. 122-126).  

2.6.7 The Box-Jenkins Methodology 

The Box-Jenkins methodology is an approach on how to build a univariate time series models in an 

orderly manner as the minimize the risk of faulty assumptions. It is an iterative three step approach 

(Akpanta & Okorie 2014). 

1. Model identification and model selection. 

2. Parameter estimation. 

3. Model checking 

In the first step, diagnostic tests are used to investigate whether the data is stationary or not. This 

can be done by visually exploring charts using rolling averages for standard deviation and averages 

and breaking the data down with ETS decomposition. How to make data conform to stationarity was 

discussed in (chapter 2.6). Furthermore, the Dickey-Fuller hypothesis test (chapter 2.6) can be used 

to verify that the time series has become stationary after relevant treatment has been implemented. 

In this stage, it should also be verified whether the dataset has attributes of seasonality, and if it does 

a special type of seasonal ARIMA should be considered. 

Once the type of ARIMA has been decided, a series of tests must be done to find the AR(p), I(d) and 

MA(q) terms that should be used for the data. In the Box-Jenkins methodology, autocorrelation plots 

are used to find the MA terms and partial autocorrelation plots to find the AR terms. 

In the second stage, the parameter estimation stage, computational algorithms are used to arrive at 

coefficients (chapters 2.6.1, 2.6.2 & 2.6.3) that best fit the selected ARIMA model. The two most 

common methods are maximum likelihood estimation and non-linear least-squares estimation. 

The third and last stage, model checking, is done by testing whether the estimated model conforms 

to the specifications of a stationary univariate process. For example, the residuals should be 

independent of each other and constant in mean and variance over time. To verify this, a Ljung-Box 

test can be used to test the autocorrelation within the dataset. The Ljung-Box test tests the 

hypothesis that the correlation between two points with lag k are zero and can also be used to 

evaluate an ARIMA model by saying whether the residuals are independent or not (Ljung & Box 

1978). 
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2.6.8  Summary of ARIMA Development 

 

Figure 1. Overview of the development of an ARIMA model according to the Box-Jenkins methodology. 

 

2.7 Feed Forward Networks 

A basic feed forward neural network (FNN)  got its name because it has architectural similarities to 

metazoan brain cells with the components of dendrites and axons.  An FNN can be described as a 

weighted acyclic bipartite graph (figure 2). It consists of three distinct types of nodes: input, hidden 

and output. Input nodes receive the input variables which must go through unity-based 

normalization to transform the set of inputs into the range [0, 1]. Each input is subsequently 

multiplied by a weight and sent to a connected hidden node (Schmidhuber 2014).  
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Figure 2. Graphical description of an FNN. The fist index number i specifies layer, the second signifies the node number, j. 
Weights wi,j are labeled according to node numbers with sink node as i and source node as j.  

Hidden nodes are special in that they create the ability of non-linearity and being able to handle 

complex interactions between different input variables.  They do this by using activation functions 

which transform the incoming  value a0,0 * w0,0 +  a0,1 * w0, Ҍ ΧҌŀi,j * w i,j (a weighted sum) by a 

function where common examples include the rectifier function max(0, x) or a logistic function f(x) = 

1/(1 + e-x) (Glorot, Bordes & Bengio 2011). By using activation functions, each incoming weighted 

sum is transformed back into the original [0, 1] range before going through further calculations in the 

next layer. 

The output of a node being Yn = Wn  *  Xn-1. Where Wn *  Xn-1 = (wi,j + bi) * ai,j. The b is a bias term that 

can be added to the weighted sum. Xn-1 is all previously connected nodes multiplied by their related 

weights with added biases the generated output of that node is then transformed by the activation 

function Xn = F(Yn).  

Every transmission of data from one layer to the next (figure 2) can also be interpreted in matrix-

vector form. 

(5) Ὂ
ύȟ ύȟ
ύȟ ύȟ

ὥȟ
ὥȟ

  
ὦ
ὦ

 

This process can be carried out through any number of hidden layers until the signals are finally 

pooled together into an output layer which also usually has a special activation function in order to 

transform the output into a reasonable scale such as the sigmoid function for probabilities. Between 

each cycle, a cost function is used to calculate the error between the derived prediction value and 

the actual value in the training set.  

The calculations between the input nodes, the weights and the activation functions are described by 

LeCun, Bottou, Orr & Muller (1998) as a function M(Zp, W)  where Z is the input variables and W the 

adjustable parameters (i.e. weights and bias terms).  Each cycle of M(Zp, W)  has a related desired 

output value D0, D1Σ ΧΣ 5p . These are used in a cost function EP   to calculate the training error. 

Commonly used cost functions are mean absolute error, root mean square error or mean square 

error which is ½ * (DP ς M(ZP, W))2  . 
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Figure 3. The FNN as a learning machine. Adapted and redrawn from Muller et al (1998). 

 

The actual learning in the network is done by tuning the weights and the bias terms on all the edges 

between nodes to minimize the resulting error and an important task in the science of FNNs have 

thus been to develop methods to adjust W both regarding computational efficiency and accuracy in 

order to minimize the cost function. Two concepts become central: backpropagation and gradient 

descent.  

The gradient ɳ Ὂ of an n-dimensional space is the change in variables that cause the function to 

increase in value most rapidly. The concept of the gradient is the same as that of the derivative of a 

univariate function but in a multidimensional setting (Adams & Essex 2013, pp. 716-720).  

(6) Ὂὼȟώȟᾀ ױὊὼȟώȟᾀ 

(7) Ὂὼȟώȟᾀ ױ ȟ ȟ  

Calculating the gradient for a one-dimensional function Ὂὼ ױ  would be the same as a regular 

derivative. By using the current coordinates of the function and plugging them into the gradient the 

direction of greatest ascent is obtained. By continuously doing that, eventually a local maximum is 

attained and while on that point the gradient becomes zero.  

In neural networks, the values derived from the cost function is used as an output variable and the 

vector space has as many dimensions as there are weights and bias terms in the network Muller et al. 

(1998). Hence, gradient descent is the opposite of the gradient ЎὊὡ  (Adams & Essex 2013, ss. 

720). By changing the parameters in W in order to minimize the cost function (which is an aggregate 

representation of all the tunable parameters) the network can improve its performance or learn.  

Gradient descent is the most widely used way to optimize tunable parameters and there are three 

variants of this method: batch gradient descent, stochastic gradient descent and mini batch gradient 



11 
 

descent.  Batch gradient descent updates the tunable parameters of the cost function in respect to 

the entire dataset, making it slow and requiring that all training data fit into the RAM. Stochastic 

gradient descent calculates the negative gradient for every training example, making it fluctuate 

heavily but working well with a progressive reduction in learning rate. Mini-batch gradient descent is 

a combination of the two previous methods, updating parameters for a batch of n examples (Ruder 

2017).  

Muller et al. (1998) describes backpropagation  as a process where the output of each node can be 

written mathematically as Xn = F(Wn, Xn-1). Here, Xn is a vector containing the outputs of the node, Wn 

is a vector containing the set of tunable parameters relating to the node and Xn-1 is the input vector 

into the node.  

The partial derivative of EP with respect to Xn is known and because of that the partial derivative of EP 

with respect to Wn and Xn-1 can be computed.  

(8)   ὡȟὢ  z  

(9)   ὡȟὢ  z  

The Jacobian or Jacobi matrix is a matrix containing partial derivatives of variables that make up a 

multivariable vector function. The expression dF/dW(Wn, Xn-1) is the Jacobian of F with respect to W 

evaluated at the point (Wn, Xn-1), and dF/dX(Wn, Xn-1) is the Jacobian of F with respect to X. From this, 

the multidimensional derivative of all values in the set of Wn and Xn-1 can be modeled and the result 

of their corresponding changes on the cost function, E, can be determined (Muller et al. 1998). 

These equations are applied to all nodes in reverse order from the last layer to the first layer, hence 

all the partial derivatives of the cost function with respect to all the parameters can be computed. 

This process is called backpropagation.  

2.8 Recurrent Neural Networks 

In FNNs it is assumed that all inputs and outputs are independent of each other, in Recurrent Neural 

Networks (RNNs) on the other hand, there is a dependence between an output Yt and all previous 

outputs ὣ ȟὣ ȟȢȢȢȟὣ .  

 

Figure 4. Schematic figure of RNN architecture. Adapted and redrawn from LeCun, Bengio, & Hinton (2015). 
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In figure (3), Xt is the input vector into the network at step t.  St  is the hidden state at step t and 

constitutes the memory of the network. These are the hidden nodes containing activation functions 

(LeCun, Bengio & Hinton 2015). The hidden state at St can be expressed as a function of the sum of 

the input weight multiplied by the input vector and the recurrent weight matrix W times the previous 

hidden state (equation 10).  

(10) Ὓ ױὪὟὼ  ὡὛ  

(11) ὣ  ὪὟὛ  

(12) Ὁ ױ ὣ  ¹  

The input Xt is multiplied by the associated weight to the edge that connects the input node and the 

hidden node. This is added to WSt-1 which is the long-term memory of the network. Finally, the 

weighted sum is applied on an activation function. 

The error between the actual value Yi and the predicted value Y-hat can is calculated with a loss 

function like mean squared error (equation 12). 

An important difference between RNNs and FNNs is that unlike FNNs that use different tunable 

parameters between all edges and nodes, RNNs use the same parameters i.e. U, V, W (figure 4). This 

is because outputs are dependent on each other. 

Two issues with RNNs are the vanishing- and exploding gradient problems (Pascanu, Mikolov & 

Bengio 2013). This arises from the fact that RNNs do not only have edges between nodes from the 

input, to the hidden and onward to the output layer like FNNs do. Here, there are recurrent weights 

W that connect hidden layers from Ὓ ȟὛ ȟȢȢȢȟὛ . Since the process of calculating the negative 

gradient and using backpropagation to adjust the tunable parameters involves all weights and biases 

that contributed to the error Et (equation 12) there is a chain of multiplication (equation 10) that can 

lead to unreasonably small (vanishing gradient) or large (exploding gradient) numbers. This prevents 

RNNs from utilizing layers too many steps back in time. 

If the recurrent weights become too small there is a vanishing gradient problem and it prevents the 

network from learning properly, if it becomes too large there is a risk of an exploding gradient 

causing the weights to change too much from every training sample. 

Hochreiter & Schmidhuber (1997) propose a solution to the vanishing gradient problem in the form 

of a modified architecture of RNNs, Long-Short Term Memory networks (LSTMs). 

2.9 Long-Short Term Memory Networks 

LSTMs is a special type of RNNs capable of handling long term dependencies being resistant to the 

vanishing gradient problem. It has a more advanced architecture than RNNs with several additions. 

In LSTMs there is a cell state St that convey a flow of information from one module to the next. The 

transmission from St to St+1 is regulated by components called gates.  

The data that is removed from the cell state is regulated by a forget gate layer. This layer uses Yt-1 and 

the input into the network xt concatenated together into a matrix. This is multiplied by associated 
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weights (by the dot product) and a bias term is added. This value is then inserted into a sigmoid 

activation function („) to attain a value between [0, 1] and multiplied with St-1. A value of zero means 

that no information should be transmitted within the cell state and a value of one means that all 

information should be transmitted (Olah 2015).  

(13) Ὢ ױ„ὡ ὣ ȟὼ   ὦ  

The second type of gate is an input gate (it) together with a tanh layer (Gt) which transform values to 

the interval [-1, 1]. This section of the module determines what information that should be stored 

within the cell state.  

(14) ÔÁÎὬὼ  ρ  

(15) Ὥ  „ὡ ὣ ȟὼ   ὦ  

(16) Ὃ ױÔÁÎὬὡ ὣ ȟὼ   ὦ  

The input gates decide which values that should be updated, and the tanh layer determines 

candidate values that could be added to the cell state.  

The new cell state at St is then calculated using equations (13, 15, 16).  

(17) Ὓ  Ὢ Ὓz   Ὥ Ὃz 

 

Figure 5. A module in an LSTM network. Adapted and redrawn from Olah (2015). 

 

Equation (17) determines the final input into the module. The second part of the LSTM architecture 

deals with the final output. First the previous output together with the input is multiplied with 

associated weights and a bias term is added (equation 18). This weighted sum is put through another 

sigmoid activation function to determine what parts of the input is going to affect the output. In the 

next step the final output is the product of (equation 19) and a tanh layer that uses the cell state 

calculated in (equation 17). The complete architecture of a basic LSTM is displayed in figure (4). 
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(18) ὕ ױ„ὡ ὣ ȟὼ   ὦ  

(19) ὣ ױὕ ÔzÁÎὬὛ  

2.10 Temporal Convolutional Networks 

Temporal Convolutional Networks (TCNs) build on the more familiar Convolutional Neural Networks 

(CNNs) that has been a dominating architecture for developing deep computer vision models. 

Famous architectures include You Only Look Once (Redmon, Divvala, Girshick & Farhadi 2015) and 

Single Shot MultiBox Detector (Liu et al. 2016) that can perform real time object detection and LeNet 

(LeCun, Bottou, Bengio & Haffner 1998) that was one of the first deep models that could learn to 

recognize handwritten digits. 

TCNs could be implemented in a variety of ways with different tweaks but the version that will be 

discussed in this section is the one used by Bai, Kolter & Koltun (2018). In this architecture, instead of 

using a cell state to preserve information from previous outputs as in LSTMs, TCNs use connection 

between previous hidden layers configured with two hyperparameters: dilation factor and filter size. 

The dilation factor (d) decides how many steps back in a layer that connections should be made 

between the output column and previous hidden nodes. As can be seen in figure (5), a d = 1 means 

that there should be no interval between previous nodes while d = 2 creates a connection between 

every second node to the output column. Filter size (k) decides how many connections there should 

be in total between a certain layer and the output layer. With k = 3 (figure 6) there are three 

connection between every layer and the output layer (Bai, Kolter  Koltun 2018). 

Because d = 1 is used in the input layer, all information from the entire network is stored in later 

ƘƛŘŘŜƴ ƭŀȅŜǊǎ ƎŜƴŜǊŀǘƛƴƎ ŀ άǊŜŎŜǇǘƛǾŜ ŦƛŜƭŘέΦ ¢Ƙƛǎ ƛǎ ŀƴ ŜŦŦŜŎǘƛǾŜ ǿŀȅ ƻŦ ǊŜŘǳŎƛƴƎ ǘƘŜ ƴǳƳōŜǊ ƻŦ 

tunable parameters that must go through optimization thus increasing the training speed. The 

process of creating this is together with kernels for feature extraction that generate filter maps is 

called dilated convolution. The advantage of dilated convolutions is the ability to increase the size of 

the receptive field exponentially while the tunable parameters grow linearly, and the technique was 

first introduced as a tool in semantic segmentation (pixel-wise image classification ) (Yu & Koltun 

2015). 
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Figure 6. Schematic image of the TCN architecture with dilation factors 1, 2, and 3 and filter size = 3. Connections only 
shown for the output column Yt, but these can be extrapolated to every node in the output layer. Adapted and redrawn form 
Bai, Kolter & Koltun (2018). 

Another important concept in TCNs are residual blocks (Bai, Kolter & Koltun 2018). These pool 

together n nodes (decided by parameters k, d) and the result is added to the input to create the final 

output of the block. In figure (6) the shaded column apart from the input nodes represents a residual 

block (figure 7). 

 

Figure 7. A residual block unit in TCNs. Adapted and redrawn form Bai, Kolter & Koltun (2018). 
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Inside the residual blocks there is a sequence of data transformations carried out. Weight 

normalization or WeightNorm (equation 21) is a technique that normalizes the weight vectors of 

each node and instead of tuning the weights w and bias term b (equation 20) using gradient descent, 

a parameter vector v and scalar parameter g is optimized (equation 21). Salimans & Kingma (2016) 

propose that this technique makes gradient descent converge to a local minimum faster. 

(20) ὣ ױ„ύ ὼ  ὦ 

(21) ύ ױ
ȿȿ
ὺ 

The next step in the residual block is a unit with the activation function rectified linear unit (ReLU) 

which is Ὢὼ ױάὥὼὼȟπ. LeCun, Bengio & Hinton (2015) describes this function as particularly 

useful in networks with many layers leading to a faster learning.  

Finally, dropout is applied. This is a technique where random neurons are ignored during training in 

order to minimize the risk of overfitting. That is, their incoming information is not part of the cost 

function and their tunable parameters are not changed through backpropagation for that training 

iteration (Srivastava, Hinton, Krizhevsky & Salakhutdinov 2014). 

The residual block described in figure (7) can also be viewed in the context of the network as a graph 

with edges and nodes (figure 8). The flow of information from the input layers, to consequent hidden 

layers and the final output layer and the transformations that happens in between constitutes a 

residual block.  

 

Figure 8. A residual block viewed in the context of network architecture with nodes and edges. Adapted and redrawn from 
Bai, Kolter & Koltun (2018). 

2.11 Hidden Markov Models for Time Series 

There are two basic types of Markov models, Markov chains for discrete states and Markov 

processes for continuous states. A Markov chain is a mathematical system that changes between 

different states. The set of all possible states are called the state space. In figure (8) there is a Markov 

Chain with state space = {A, B}. If the system is in state A, there is a 90% probability that it will remain 

in state A in the next time step and 10% probability that it will change from state A to state B. When 
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modelling a Markov chain, it is presented as an ὲ ὲ transition matrix where n is the cardinality of 

the state space and the cells contain transition probabilities. Markov chains are a common technique 

for creating dynamic mathematical systems and one example is Googles page rank algorithm (Rai 

2016). 

 

Figure 9. Illustration of a Markov chain for discrete states. 

Hidden Markov Models (HMMs) differ from regular Markov models in that the probabilities of 

changing state (or remaining in the same state) are determined by derived probability distributions 

by using a training set, as opposed to using fixed probabilities. 

Furthermore, the Markov property says that the state at Ct+1 can depend solely on Ct. (Montgomery, 

Jennings & Kulahci 2015, p. 502). This is called a first order Markov model but there are adaptations 

where the current state can depend on several successive states ὖὶὅ  ȿ ὅȟὅ ȟȢȢȢȟὅ   and 

these models are called a Markov model of order n where n is the number of previous states that 

affect the current state (Ky & Tuyen 2018). These Markov models are particularly suited for time 

series forecasting as they acquire the ability to model patterns like trends and cycles.  
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3 tǊƻōƭŜƳ ŀǊŜŀ 

This chapter provides information regarding other research that has been done related to the 

present study. Furthermore, it also provides the research questions, aim and motivation for the 

study and the objectives that will be achieved.  

3.1 Related Research 

A performance comparison between LSTM and ARIMA conducted by Siami-Namin & Siami-Namin 

(2018) showed that the LSTM algorithm had six times lower RMSE than ARIMA on six different 

economic time series datasets. Although promising, the authors did not state in detail how the 

models were developed and as ARIMA must be configured for each dataset more data is required to 

be able to understand their respective strengths and weaknesses. Flores et al. (2016) investigated 

the robustness for noise in training data for ARIMA and FNNs and found similar increase in prediction 

error as the level of noise increased. Furthermore, Chan, Xu & Qi (2018) compared several versions 

of ARIMA to FNNs in their ability to forecast throughput of containers in a harbor area and found that 

ARIMA had significantly better performance.  

Ky &Tuyen (2018) developed an HMM for time series forecasting by using historic stock price data as 

a training set and divided the time series into intervals which represented different states in the 

Markov model. The author found that an HMM with number of states adapted to the dataset and an 

order higher than one (adapted to the dataset) can outperform several neural network models. This 

makes it an interesting candidate with a different approach to time series forecasting. HMMs are 

heavily stochastic models because of their completely probabilistic architecture of states and 

movements between states which might fit particularly well for stochastic data like stock prices. In 

this study, they will be evaluated on more traditional time series data with trends and seasonality.  

Results from Bai, Kolter & Koltun (2018) show that a modified version of CNNs specialized for 

sequence analysis can perform better and learn faster than traditional recurrent networks. Two of 

the reported experiments were predicting sequences of digits using the MNIST database (LeCun & 

Cortes, n.d); and predicting sequences of words using the Word Wiki-103 dataset (Merity 2016). The 

authors compared the performance of TCNs to LSTMs and found that TCNs have better ability to 

retain information from many steps back in time being able to process inputs from 250 steps back. 

Furthermore, they reached higher accuracy than LSTMs when being fully trained as well as learning 

faster when applied on sequential datasets. With these outcomes it is a relevant scientific inquiry as 

to whether they can also perform better on time series forecasting of continuous data, a question 

which has not yet been investigated.  
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Table 1. The algorithms that will be evaluated in the study. 

Algorithm Pros Cons 

Recurrent Neural Network Simpler than LSTM fewer hyperparameters 

that can be tuned. 

Unable to use more than ~10 previous 

steps in time because of vanishing- and 

exploding gradient problems. 

Long-Short Term Memory Network Does not risk vanishing gradient. Can use 

any number of independent variables and 

any number of previous time steps.  

Needs a lot of training data. There is no 

deterministic developmental process, 

must be developed individually for each 

dataset. There is loss of data between 

each module. 

Temporal Convolutional Network Number of weights increase linearly while 

receptive field increase exponentially.  

Has only been studies for sequential 

problems never for time series. Takes 

more time to train than RNN and LSTM. 

ARIMA Standardized developmental process. 

Good insight into how the algorithm 

works. No need for hyperparameter 

tuning. 

Relatively simple model. Data must be 

stationary. 

Hidden Markov Model Good at modelling stochastic behavior. Cannot use independent variables. 

Difficult to develop due to weak library 

support in R and Python. 

 

3.2 Aim 

The aim of this study is to see if there is a significant difference between the novel algorithms 

temporal convolutional network and higher order Markov model as compared to the more classic 

recurrent neural network, long-short term memory network and ARIMA for forecasting on a 

continuous time series dataset. This will be investigated by collecting data from two Swedish theme 

parks and use this to predict future number of visitors, which constitutes a regular business use 

(forecasting product demand/resources).  

3.3 Motivation 

Time series prediction is an important technique for both scientific research and optimizing business 

processes. With many different algorithms to choose from, it can be difficult and time consuming to 

find the best solution. The motivation for this study is to present a clear performance evaluation for 

state-of-the-art algorithms for time series forecasting and deliver a detailed description of data 

exploration and model development as to allow reproducibility. Furthermore, if the result is a model 

able to reliably predict the future number of visitors, it is possible to optimize both staffing and 

deliveries of food and drinks. Thereby increasing employee satisfaction as well as efficiency while at 

the same time limiting the ŎƻƳǇŀƴƛŜǎΩ environmental impact.  

3.4 Research Questions 

This study aims to answer whether there is a significant difference between the newly publicized 

algorithms temporal convolutional network (Koltun et al. 2018) and A higher order Markov model (Ky 

& Tuyen 2018) as compared to the classical alternatives (RNN, LSTM and ARIMA). 
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1. Which one out of the five independently developed (using optimal variables and parameters) 

algorithms have the best performance as measured by RMSE? 

2. Which of the algorithms have the best performance as measured by RMSE when using no 

independent variables? 

3.5 Delimitations 

Based on a pre-study of the literature, five of the most promising algorithms were selected (table 1). 

ETS- and EMWA models will not be investigated. The data that will be used will be based on number 

of visitors per day between 2010-2018 in Skara Sommarland AB and 2011-2018 in AB Furuviksparken. 

The Skara Sommarland AB will also provide the number of booked days for a camping. This data will 

be fused with Lantmet and SMHI for weather data and Google Trends for keyword search frequency. 

Other data sources will not be considered. 

3.6 Hypothesis 

The hypothesis is that the independent variables in the complete datasets will explain a significant 

amount of the variance in number of visitors.  Thus, all algorithms apart from HMMs are presumed 

to either reach or be close to <20% MAPE. Also, the literature suggests that LSTMs are superior to 

RNNs regarding the number of previous time steps that can be taken into consideration. 

Furthermore Siami-Namin & Siami-Namin (2018) showed that LSTMs can predict time series much 

more accurately than ARIMA in some settings. The conclusion is thereby that LSTMs are a likely top 

performer.  

The performance of TCNs on this dataset is highly uncertain. Bai, Kolter & Koltun (2018) showed that 

TCNs can overperform LSTMs significantly on sequential problems but they are still untested on 

continuous time series data. Although theoretically, with their ability to cover much more tunable 

parameters than LSTMs in their outputs they should have the best ability to forecast visitors and get 

a larger advantage as there are more independent variables and previous time steps considered.  

HMMs  (chapter 2.11) are assumed to have the best performance when compared to other 

algorithms with no independent variables used but the worst performance when all algorithms are 

compared with optimal variable inputs and hyperparameter configurations. 

3.7 Objectives 

This study encompasses four objectives that must be completed in order to answer the research 

questions and reach the aim. 

1. Acquire data describing number of visitors and sold tickets to the Skara Sommarland camping 

through representatives of the two companies. Complement this with weather data from 

Lantmet and SMHI as well and Google Trends.  

 

2. Handle problems with data cleaning and remove outliers. Thoroughly investigate collected 

variables to understand their importance as future input variables and if it is possible to 

construct derived variables. 
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3. Use the prepared datasets to develop LSTM, RNN, TCN and ARIMA using Python and HMM 

using R. The initial architectures will be based on Bai, Kolter & Koltun (2018) for TCN, Siami-

Namin & Siami-Namin (2018) for LSTM and Ky & Tuyen (2018) for HMM. Arima will be 

developed according to the Box-Jenkins methodology (chapter 2.6.7 & 2.6.8) and RNN will 

have the same number of nodes and layers as the LSTM network. The neural networks 

models will go through hyperparameter tuning using sequential grid search. 

 

4. Evaluate algorithmic performance both optimally trained with independent variables and 

without independent variables, using hypothesis testing on acquired RMSE values.  
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4 wŜǎŜŀǊŎƘ aŜǘƘƻŘǎ 

In this section, the reasoning behind the choice of scientific methods and their implementation are 

described. Furthermore, possible alternatives are explored. 

4.1 Exploratory Data Analysis 

John W. Tukey wrote about the need for this method in his book Exploratory Data Analysis from 

1977. In the book he suggests that confirmatory statistics with the advent of hypothesis testing had 

become too important and that the preliminary descriptive statistics had been neglected. By 

exploring data and finding patterns and limitations, it is possible to get a broader and more deep 

understanding about a certain sample. The author writes that before hypothesis testing became 

dominating, descriptive statistics was the only analysis researchers did. Later, it became common to 

only carry out a minimal amount of exploration in order to ensure that the correct hypothesis test 

was selected. 

When developing machine learning- and statistical models it is paramount to create the best possible 

dataset in order to achieve good results. By using Exploratory Data Analysis, it will provide a process 

for creating a detailed data understanding and document the developmental process, allowing 

subsequent researchers to replicate and improve upon this work. The use of this method will also be 

informed by the Cross-Industry Standard for Data Mining (CRISP-DM) (Shearer 2000). This is a 

process model that has become an industry standard for carrying out data mining projects while 

maximizing the chances of a high-quality result. 

The employment of this method is aimed at maximizing the control in preparing the data and 

allowing future researchers to understand how the algorithmic performance was generated, from 

start to end. 

4.2 Experiment 

The experimental method is characterized by setting up experiments aimed at disproving a certain 

hypothesis, regularly with the support of statistical hypothesis testing (Berndtsson, Hansson, Olsson 

& Lundell 2008 p. 65). This is a good way to answer two of the three formulated research questions 

in this study (question 2 & 3).   

There are three basic principles of experimental design (Toutenburg, Shalabh, Fienberg & Olkin 2009, 

pp. 4-5). The first is CƛǎŎƘŜǊΩǎ tǊƛƴŎƛǇƭŜ ƻŦ wŜǇƭƛŎŀǘƛƻƴ. An experiment must be done on several units in 

order to determine the sampling error. In this study, a unit will be one day with associated variables 

throughout the years 2010-2018.  

The second principle is that of Randomization. This means that units must be assigned randomly to 

treatment and control groups. Also, the conditions under which treatment is delivered should be as 

similar as possible. In the present case, time series models will be developed on the same training- 

and test data and used to predict on the same validation data. The process of developing these 

models will serve as treatment and this will not affect the units within the groups. Because of this it is 

not necessary to randomize observations into different groups. However, care will be taken to make 

the model development as comparable as possible. To do this, the Box-Jenkins methodology will be 

used to develop ARIMA, network architectures from previous studies will be used together with 
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evolutionary search to develop neural network models and the HMM will be the same as that 

published by Ky & Tuyen (2018). Furthermore, the cleaning, outlier removal and creation of derived 

variables will be carefully examined using the method described in chapter 4.2. 

The last and third principle is that of Control of Variance. The variance can be controlled by dividing a 

set of data into smaller blocks that have similar characteristics such as age and sex. An advantage of 

the experiment in this study is that the treatment does not affect the units of study, hence there can 

be a complete control of variance. 

4.2.1 Evaluation Metrics 

Two metrics will be used to answer the two research questions. Root Mean Squared Error (RMSE) 

will be used to assess the difference between the chosen algorithms with respect to independent 

variables and without independent variables because it gives larger weight to outliers than mean 

average error (MAE) which is more affected by many small errors, as suggested by Chai (2014). This 

makes it more sensitive to few large errors and a comparatively low RMSE thus indicate predictive 

stability more than MAE would. 

RMSE will be calculated on validation data from 2018 by weekly intervals where every week will 

represent one sample thus generating 12 samples per algorithm in total. 

(22) RMSE = В ώ ļ  

Where n is the number of samples, yi is the actual value and y-hat is the predicted value. 

The second metric Mean Average Precision Error (MAPE) shows average percentual error (Fiores et 

al. 2016). For a model to be a useful tool in practice, the organizations have communicated that 

MAPE should be <20%. It is easy to understand and interpret and is thus a reasonable tool to answer 

the feasibility of a possible implementation of one of the algorithms.  

(23) MAPE = В ȿ
ļ
ȿ 

4.3 Implementation of Research Methods 

In the initial phase of this study discussions with the CEOs of Skara Sommarland AB and 

Furuviksparken AB will be had in order to understand their view of relevant explanatory variables 

and to acquire historic datasets. This data will be fused with sets of weather variables using SMHI and 

Lantmet. Lastly, Google Trends will be used to create two sets containing search frequency on the 

ƪŜȅǿƻǊŘǎ ά{ƪŀǊŀ {ƻƳƳŀǊƭŀƴŘέ ŀƴŘ άCǳǊǳǾƛƪǎǇŀǊƪŜƴέΦ  

The second stage will employ the exploratory data analysis-method tailored for this study by using a 

workflow informed by the data preparation stage in CRISP-DM. Here, data will be analyzed, the 

quality of the raw data will be examined, and relevant variables will be selected. Going further, the 

selected data will be cleaned by using techniques for outlier removal and imputing missing values. 

With these preliminary datasets it will be inspected to see if it is possible to derive new variables that 

have relevant explanatory power. Finally, the different datasets (Skara Sommarland/Furuviksparken, 

Google Trends, SMHI, Lantmet) will be fused into one concluding material for each of the two 

organizations (appendix 1). 
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With the completion of the data collection and preparation, the experimental phase begins. The 

selected algorithms will be developed using programming languages R and Python. Using data 

between 2010-2017 these will be trained and tested. In addition, selection of hyperparameters will 

be done using evolutionary search as to minimize the risk of performance differences because of 

uncontrolled choices of model configurations. Data from the year 2018 will be saved so it can be 

completely unused for obtaining model predictions and through this, the two metrics RMSE and 

MAPE complemented by mean average error (MAE).  

The MAPE results will be used to answer whether one or several out of the models could be used to 

automate visitor forecasting in the respective organizations. RMSE on the other hand will be used to 

do hypothesis testing to see if there is a statistical significance in the predictive power between the 

selected algorithms, both with and without independent variables as two different experiments. 

To confirm whether there is a significant difference between the investigated algorithms, a Kruskal-

Wallis H-test will be used to answer if there is a difference in the daily prediction errors. 

4.4 Alternative Methods 

An alternative method for collecting relevant explanatory data for this task could be to use 

interviews with company representatives (Berndtsson et al. 2008 pp. 60-62). This method has the 

advantage of generating an in-depth understanding of respondents view of the problem. It is likely 

that people that have worked for years in an organization could have experience to contribute to the 

development of the time series models. However, the focus of this study is to compare the 

performance of the algorithms by developing them in a controlled manner and limiting uncontrolled 

influences that could raise questions as to whether the predictive power depends on things like 

hyperparameter tuning or other configurations. The delimitations raised in chapter 3.6 should be 

enough for this. 

Another method that has some interesting features is the case study (Berndtsson et al. 2008 pp. 62-

63). This method is characterized by conducting a deep investigation into one or a few objects of 

study. The focus of this study could be to investigate the algorithmic performance in the specific 

organizations from where the data is collected. Nevertheless, regardless of whether the final dataset 

display trends, cycles or noise ς the final evaluation will still provide a generalizable answer to their 

ability to accurately predict time series data in that setting.  

Lastly, implementation as a choice of method was considered. This method is about implementing a 

solution and study how well it works in a certain setting. This is a reasonable choice for this study 

where one or more of the algorithms could have been developed, put into production and the 

impact on the organizations could have been analyzed. Another interesting research question could 

have been to investigate how to best implement a decision support system, which could pose a topic 

for a future study based on this work.  
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5 5ŀǘŀ tǊŜǇŀǊŀǘƛƻƴ 

In this section the data collection procedures are described along with an exploratory analysis 

(section 4.1). As the same variables were collected for both theme parks only one figure per park per 

variable is shown unless the data explored displayed a relevant difference between the two parks. 

5.1 Data Collection 

5.1.1 Organizational Data 

Organizational data were provided by Skara Sommarland in the form of number of visitors per day 

between the years 2010-2018 and the months May to August when the park had been open. They 

also had the largest camping in Sweden were number of tickets sold had been recorded. Lastly, they 

also recorded whether there was an event during a specific day or not. Through dialogue with 

company representatives, it became clear that an event could mean a performing artist or a 

collaboration with another organization in some way. 

Representatives of the Furuvik theme park were not able to provide organizational data other than 

number of visitors per day for the years 2011-2018. 

5.1.2 Weather Data 

Weather data was collected from two databases, Lantmet and SMHI. The choice of provider 

depended on the proximity of the measurement stations to the respective organizations and the 

types of measurements that were done at the different stations.  

For Skara Sommarland AB, Götala weather station was used to collect solar irradiance (w/m2), min-, 

max- and average daily temperatures (degrees Celsius), min-, max- and average relative humidity 

(%), average rainfall (mm), degree days and wind speed (m/s). The choice of this station was suitable 

because it was only about 6 km away from the park. This station was provided by the Lantmet 

database. 

CǳǊǘƘŜǊ ǾŀǊƛŀōƭŜǎ ǿŜǊŜ ŎƻƭƭŜŎǘŜŘ ŦǊƻƳ {aILΩǎ IŅƭƭǳƳ ǿŜŀǘƘŜǊ ǎǘŀǘƛƻƴ ос ƪƳ ŀǿŀȅ ŦǊƻƳ ǘƘŜ ǇŀǊƪΦ ¢Ƙƛǎ 

was the closest measurement station that recorded air pressure (kPa), cloud base (km) and cloud 

cover (%).These datasets had one measurement per hour. Since the dependent variable is observed 

as one value per day these cloud values were summarized. This was done by taking the average 

between 09:00 and 17:00 and using that as the value for each day. Cloud Base was summarized by 

averaging an entire day because of fewer and more irregular observations.  

The closest measurement station for Furuvik was the Gävle weather station 14.2 km away from the 

park. Solar Irradiance was not measured by any stations within reasonable distance from the park. 

For air pressure, Örskär was the closest station 105.9 km way. 

 

 



26 
 

Table 2. Summary of weather variables collected. 

Variable Unit Comment Provider: Station 

Solar Irradiance Watt/m2 Describes the amount of 

solar energy that reaches 

the ground. 

Sommarland 

Lantmet: Götala 

Furuvik 
N/A 

Min-, Max-, Average 

Temperature 

Degrees Celsius The lowest-, highest-, and 

average recorded 

temperature of a day. 

Sommarland 

Lantmet: Götala 

Furuvik 
SMHI: Gävle 

Min-, Max- and Average 

Humidity 

Percentages The lowest-, highest, and 

average recorded relative 

humidity. With 100% the 

air is saturated with water 

vapor. 

Sommarland 

Lantmet: Götala 

Furuvik 
SMHI: Gävle 

Average Rainfall Millimeters Rain in millimeters 

collected throughout a 

day. 

Sommarland 

Lantmet: Götala 

Furuvik 
SMHI: Gävle 

Wind Speed Meters/Second Daily average. Sommarland 

Lantmet: Götala 

Furuvik 
SMHI: Gävle 

Air Pressure Kilopascal Daily air pressure 

recorded once per hour. 

Sommarland 

SMHI: Hällum 

Furuvik 
SMHI: Örskär 

Cloud Base Kilometers The distance between the 

ground and the lowest 

cloud layer. Recorded 

once per hour. 

Sommarland 

SMHI: Hällum 

Furuvik 
SMHI: Gävle 

Cloud Cover Percentages The percentage of the 

visible sky covered with 

clouds. Measured by 

laser. Recorded once per 

hour. 

Sommarland 

SMHI: Hällum 

Furuvik 
SMHI: Gävle 
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5.1.3 Google Trends 

Google (Alphabet, Inc) provides a functionality where it is possible to view number of keyword 

searches per date unit. This comes in the form of a relative index which mean values can range from 

1-100 based on the selected interval. For Skara Sommarland thŜ ƪŜȅǿƻǊŘ ά{ƪŀǊŀ {ƻƳƳŀǊƭŀƴŘέ ǿŀǎ 

used. Data was collected individually for each year by selecting the first day of the previous year 

when the park was open and ending in the last day of the actual year. This was downloaded in the 

form of a csv file and the index values for the actual year was stored. This procedure was repeated 

once for every year between 2010-2018. CƻǊ CǳǊǳǾƛƪ ǘƘŜ ƪŜȅǿƻǊŘ άCǳǊǳǾƛƪǎǇŀǊƪŜƴέ ǿŀǎ ǳǎŜŘ ŀƴŘ 

collected in the same manner. 

5.1.4 Temporal Data 

Temporal data was extracted from the dates provided by the companies where there were recorded 

observations with visitors in the parks. By using the date, weekday, week number and month was 

extracted and stored as individual variables. 

5.2 Data Exploration 

A major technique for exploring correlations and linear relationships was using regression analysis 

between the dependent variable and all predictors. 

5.2.1 Organizational Variables 

The linear relationship between sold camping tickets and visitors display a strong correlation with an 

R2 of 65% and p-value of 5.6*10-150. The encircled column of observations in figure (10) where sold 

tickets were around zero although number of visitors were > 2000 and < 6000. This was investigated 

further, and it was revealed that these values were days on the last opening day of the season when 

the camping had been emptied. 

 

Figure 10. Number of camping tickets sold and number of visitors. 

5.2.2 Weather Variables 

Solar irradiance captures how much solar energy that hits the ground and could theoretically be an 

interesting predictor. Figure (11) show a significant correlation between dependent and independent 

variables although with a smaller amount of variance explained (9.3%). This variable was only 

available in proximity to the Skara Sommarland park. 
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Figure 11. Number of visitors and solar irradiance. 

There are three variables relating to daily temperature. The highest- and lowest daily temperatures 

as well as the average daily temperature (figure 12). The strongest relationship between number of 

visitors and temperature is found in the highest daily temperature with an R2 of 38.6% and a p-value 

of 1.88*10-70. Speculatively, this could be because the highest daily temperature is during day time 

when the park is open. The weakest relationship is with the lowest daily temperature, and this value 

is most likely recorded during night time when the park is closed, and thus, it affects the number of 

visitors much less. The average temperature reflects both day- and night time and hence it falls 

between the two.  

 

Figure 12. Number of visitors and temperature variables. 

Degree days is a value that always increase throughout a year. It is a way to accumulate the occurred 

degrees through time (figure 12). This value reflects trends more than regular temperature 

measurements. If an observation has high degree days, it means that it has been warm for a long 

period. This value starts and the beginning of the year, making it an interesting target for a derived 

variable that starts at the beginning of the season. 
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Air pressure is generally associated with good weather and this variable could explain 7% in the 

variance of number of visitors with a significant linear relationship (figure 13). 

 

Figure 13. Air pressure and number of visitors. 

The distance between the ground and the lowest layer of clouds had a significant linear relationship 

although weak explanatory potential (R2 = 4.5%) (figure 14). The amount of the sky covered by 

clouds, average values between 9-17 had a negative linear relationship with number of visitors. For 

every percentage of the sky covered with clouds, there tended to be 31.38 less visitors in the park. 

 

 

Figure 14. The two cloud variables: total cloud (amount of sky covered with clouds) and cloud base (the distance from the 
ground to the lowest layer of cloud). 

As with temperature, there are three variables relating to humidity. There is a similar pattern here. 

The highest daily humidity (figure 15) does not have a statistically significant relationship (p = 0.45). 
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The strongest relationship is between number of visitors and the lowest daily humidity (figure 16) 

and this is most likely because that value is recorded during day time. The average humidity is 

significant and explains 7.8% of the variance is number of visitors. 

 

Figure 15. Number of visitors and air humidity. 

Average daily rainfall (figure 16) is surprisingly weak as an explanatory variable although significant 

(R2 = 3.3% and p = 0.001). The reason for this could be that it is not a linear relationship. Less people 

do not come the more it rains, instead, it might work better a binary or categorical variable. 

 

Figure 16. Number of visitors in relation to rainfall and wind speed. 

Wind speed display a similar behavior like rainfall. It explains a small amount of variance in the 

dependent variable (R2 = 3.6%) with a significant linear relationship (p = 7.3*10-7). By visually 


