

A COMPARATIVE STUDY
BETWEEN ALGORITHMS FOR
TIME SERIES FORECASTING
ON CUSTOMER PREDICTION
An investigation into the performance of
ARIMA, RNN, LSTM, TCN and HMM.

Examensarbete inom huvudområdet
informationsteknologi
Grundnivå 30 Högskolepoäng
Vårtermin 2019

Olof Almqvist

Handledare: Jonas Gamalielsson
Examinator: Mika el Berndtsson

Abstract

Time series prediction is one of the main areas of statistics and machine learning. In 2018 the two new

algorithms higher order hidden Markov model and temporal convolutional network were proposed

and emerged as challengers to the more traditional recurrent neural network and long-short term

memory network as well as the autoregressive integrated moving average (ARIMA).

In this study most major algorithms together with recent innovations for time series forecasting is

trained and evaluated on two datasets from the theme park industry with the aim of predicting future

number of visitors. To develop models, Python libraries Keras and Statsmodels were used.

Results from this thesis show that the neural network models are slightly better than ARIMA and the

hidden Markov model, and that the temporal convolutional network do not perform significantly

better than the recurrent or long-short term memory networks although having the lowest prediction

error on one of the datasets. Interestingly, the Markov model performed worse than all neural network

models even when using no independent variables.

Acknowledgements

I would like to extend my thanks to my supervisor, assistant professor Jonas Gamalielsson at the

University of Skövde, for the opportunity to work together and for valuable suggestions that improved

the quality of this work.

CONTENTS

1 INTRODUCTION 1

2 BACKGROUND 3

2.1 Termi nology 3

2.2 Characteristics of Time Series Data and Forecasting 3

2.3 Statistical Models 4

2.4 ETS Models 4

2.5 EMWA Models 4

2.6 ARIMA Models 4
2.6.1 The Autoregressive AR(p) Part of ARIMA 5
2.6.2 The Integrated I(d) Part of ARIMA 5
2.6.3 The Moving Average MA(q) Part of ARIMA 6
2.6.4 Combinations of Parts 6
2.6.5 Autocorrelation Function (ACF) 6
2.6.6 Partial Autocorrelation Function (PACF) 6
2.6.7 The Box-Jenkins Methodology 7
2.6.8 Summary of ARIMA Development 8

2.7 Feed Forward Networks 8

2.8 Recurrent Neural Networks 11

2.9 Long-Short Term Memory Netw orks 12

2.10 Temporal Convolutional Networks 14

2.11 Hidden Markov Models for Time Series 16

3 PROBLEM AREA 18

3.1 Related Research 18

3.2 Aim 19

3.3 Motivation 19

3.4 Research Questions 19

3.5 Delimitations 20

3.6 Hypothesis 20

3.7 Objectives 20

4 RESEARCH METHODS 22

4.1 Exploratory Data Analysis 22

4.2 Experiment 22
4.2.1 Evaluation Metrics 23

4.3 Implementation of Research Methods 23

4.4 Alternative Methods 24

5 DATA PREPARATION 25

5.1 Data Collection 25
5.1.1 Organizational Data 25
5.1.2 Weather Data 25
5.1.3 Google Trends 27
5.1.4 Temporal Data 27

5.2 Data Exploration 27
5.2.1 Organizational Variables 27
5.2.2 Weather Variables 27
5.2.3 Google Trends 31
5.2.4 Temporal Data 31
5.2.5 Variable Contributions to Explanatory Potential 32

5.3 Select Data 33

5.4 Data Cleaning 33
5.4.1 Outliers 34

5.5 Derived Variables 35

5.6 Model Development 36

6 RESULTS 38

7 ANALYSIS 43

8 DISCUSSION AND CONCLUSION 44

8.1 Validity 44

8.2 Societal Aspects 45

8.3 Scientific Aspects 45

8.4 Ethical Aspects 45

8.5 Future Work 45

8.6 Conclusion 46

REFERENCES 47

9 APPENDIX 52

1

1 LƴǘǊƻŘǳŎǘƛƻƴ

Time series forecasting is an important tool in modern science for studying relationships between a

dependent variable and time, possibly together with other independent variables. The goal of time

series prediction is to collect historical data that can be used to create a quantitative model that

explains the characteristics of the explained variable. Areas of use include econometrics (Zhang, Yin,

Zhang & Li 2016; Wang 2016), biology (Huang et al. 2016), psychology (Jebb, Tay, Wang & Huang

2015) and climatology (Duchon & Hale 2012).

In addition to scientific research, time series forecasting is frequently utilized in the business sector

to forecast areas like product demand as well as the need for materials and personnel. When

utilized, it can be developed and used by individual analysts using code or form a module within a

system such as in Amazon Forecast (Amazon 2019), the ERP system SAP (Dadouche 2018) and most

interface-based analytics software such as SAS (SAS n.d), NCSS (NCSS 2019), and Tableau (Tableau

2019).

Time series can have four characteristics as described by Jebb & Tay (2017). These are trends,

seasonality, cycles and noise. Algorithms for time series forecasting are appropriate for data that has

a time dimension and exhibit one or more of these properties.

In the beginning of the ninetieth century deterministic models were used and the involvement of

stochastic properties became prominent with the invention of the autoregressive moving average

(ARIMA) model developed by major contributions from Box & Jenkins (1970). This statistical

approach dominated the development of models for time series forecasting for thirty years (De

Gooijer & Hyndman 2006).

Quantitative models for time series analysis based on deep learning has become more and more

important in recent years (Makridakis, Spiliotis & Assimakopoulos 2018). The development of

machine learning and deep learning has led to a myriad of solutions that compete with traditional

statistical methods with important examples being recurrent neural networks (RNN) (Russel & Norvig

2010, pp. 729) and long-short term memory networks (LSTM) (Hochreiter & Schmidhuber 1997)

which revolutionized the ability to create models for sequential problems like speech recognition

(Xiangang & Wu 2014) and machine translation (Sutskever, Vinyals & Le 2014).

A novel implementation by Bai, Kolter & Koltun (2018) use feed forward networks and convolutional

operations utilized in computŜǊ Ǿƛǎƛƻƴ ǘƻ ŎƻƴǎǘǊǳŎǘ ŀ ƴŜǳǊŀƭ ƴŜǘǿƻǊƪ ŎŀƭƭŜŘ άǘŜƳǇƻǊŀƭ ŎƻƴǾƻƭǳǘƛƻƴŀƭ

ƴŜǘǿƻǊƪέ (TCN) that can learn faster and attain higher accuracy on some sequential datasets

compared to LSTMs.

A different approach to time series modelling is using Markov chains. While originating in 1906 more

recent developments by Ky & Tuyen (2018) using higher order chains and intervals of the time series

as states suggest promising results on its ability to predict stock prices, a traditionally difficult

problem because of its high level of stochasticity.

Research into the accuracy and reliability of different algorithms for time series forecasting can lead

to improvements in the ability of the scientific community to carry out time-based analysis.

Furthermore, better knowledge in which algorithm to choose for a problem could help businesses

2

create better forecasts thereby improving their strategical and tactical planning as well as optimizing

operations.

In this study, data is collected from two Swedish theme parks containing visitors per day over time.

This data is fused with datasets containing weather parameters and search keyword frequency from

Google Trends. With this, the three traditional algorithms ARIMA, RNN and LSTM are compared to

the two novel implementations: temporal convolutional networks and higher order Markov chains.

The remainder of the report is organized as follows. In section 2, the technical and mathematical

theory behind the algorithms are explained. Section 3 describes the problem area and the

contribution of this study. Section 4 describes and motivates the choice of scientific methods.

Acquired data and relevant tools are presented in section 5 along with an exploratory data analysis

Results are presented in section 6. There is an analysis of concerning the meaning of the acquired

results in section 7. Lastly, a discussion concerning the performed study and the subsequent results

are presented in section 8.

3

2 .ŀŎƪƎǊƻǳƴŘ

The background section examines the theoretical foundations for the investigated time series models

and the general characteristics of time series datasets.

2.1 Terminology

Network Architecture ς describing the morphology of a network by referring to the structure of

nodes, layers, and the way their edges are connected.

Machine Learning Algorithm/algorithm ς a theoretical description of a machine learning based

quantitative system that has the capacity to learn from input data and create a prediction based on

one or more independent variables.

Statistical Model ς a general description of a mathematical equation that describe relationships

between parameters and variables.

Machine Learning Model/model ς an implementation of a machine learning algorithm where

hyperparameters have been selected and the algorithm has been trained on a dataset.

2.2 Characteristics of Time Series Data and Forecasting

A time series is a chronological sequence of observations of a predictor variable behaving like a

stochastic process; that is, individual values are impossible to predict exactly but there can be an

overall pattern. This type of data can display patterns that can be used to create models to predict

future behavior. The series can display a trend which can be upward, downward or stationary.

Furthermore, the pattern can be of a cyclical nature changing from lower and higher values in an

interval around an average point, an example of this is a heartbeat over time. Typical of cyclical

pattern is that they have no set repetition and ŘƻŜǎƴΩǘ ǊŜǇŜŀǘ ŎŜǊǘŀƛƴ ǇŜǊƛƻŘǎ ƻŦ ǘƘŜ year. Lastly, time

series can have seasonality which is a pattern where values change in a certain manner on specific

points in time, for example during winter and summer (Montgomery, Jennings & Kulahci 2015, pp. 6-

12).

Another important attribute that can be found in time series is called white noise. A dependent

variable that changes randomly over time with constant variance and no autocorrelation can be said

to be white noise. The scatter plot of such a series across time will indicate no pattern and hence

forecasting the future values of such a series is not possible. It is not possible to do time series

analysis on such data (Montgomery, Jennings & Kulahci 2015, p. 71).

Forecasting time series data can be classified as short-term, medium-term and long-term. Short

forecasts range between a few days to a few months. Medium time forecasts can go 1-2 years into

the future and long-term forecasts can be several years into the future. Statistical models are useful

for short- and medium-term forecasts (Montgomery, Jennings & Kulahci 2015, p. 2).

There are two categories of forecasting techniques. Qualitative techniques are relatively rare and can

consist of a panel of experts giving individual estimates which are then pooled together, such as with

the Delphi Method. In quantitative models there are statistical and machine learning models for

forecasting. These are considered more stable and are most commonly used. Types of quantitative

4

forecasting models are regression models (chapter 2.6.1), smoothing models (chapter 2.5), general

time series models (chapter 2.6) (Montgomery, Jennings & Kulahci 2015, pp. 4-6).

2.3 Statistical Models

Statistical models differ from machine learning (ML) models in that they usually require a set of

presuppositions for the model to work. E.g. linear regression requires normally distributed data,

homoscedasticity and lack of autocorrelation (Casson 2014). ML models on the other hand typically

ƭŜŀǊƴ ŀƴŘ ŀŘŀǇǘ ŦǊƻƳ ǘƘŜ Řŀǘŀ ŀƴŘ ŘƻƴΩǘ ǊŜǉǳƛǊŜ as thorough preprocessing.

2.4 ETS Models

9¢{ ǎǘŀƴŘǎ ŦƻǊ έ9ǊǊƻǊ-Trend-{Ŝŀǎƻƴŀƭƛǘȅέ ŀƴŘ ƛƴŎƭǳŘŜǎ ƳƻŘŜls such as exponential smoothing, trend

methods and ETS decomposition. ETS decomposition is a way to break down a time series into

components of trends, seasonality and cycles (Jofipasi, Miftahuddin & Hizir 2017). This can be a

useful tool for diagnosing time series to determine whether a seasonal ARIMA should be used and if

the data must undergo transformations to become stationary. In this study, ETS decomposition will

be used as a diagnostic tool in the development of the ARIMA model.

2.5 EMWA Models

EMWA is one of the more advanced smoothing models that can be used for time series forecasting.

Other examples include Simple Moving Average (SMA) and Simple Moving Median. These models are

also a common tool in descriptive statistics and only EMWA is usually used for producing detailed

predictions.

A regular moving average can be improved by using an exponentially weighted moving average

(EMWA). SMA has some weaknesses, smaller windows will lead to more noise rather than signal. Its

lacks starting values and it will never reach the full peak or valley of the data due to averaging.

Furthermore, it does not inform about future behavior all it really does is describe trends in the

historical data. Lastly, an issue with SMA can be the presence of extreme historical values that skew

the rolling mean (Montgomery, Jennings & Kulahci 2015, pp. 223-257).

EWMA reduce the lag effect of SMA and can put more weight on values that occurred more recently

by applying a higher weight to the more recent values. The amount of weight given to the most

recent values depend on the actual parameters used in the EWMA and the number of periods given a

window size (Montgomery, Jennings & Kulahci 2015, pp. 223-257).

Although ETS- and EMWA models have been historically important in time series forecasting, they

could be considered older and somewhat more simple models that have already been thoroughly

studied and will therefore not be investigated in detail in this study.

2.6 ARIMA Models

ARIMA stands for Auto Regressive Integrated Moving Average. There are thus three independent

components making up the model and they can be used together or with the exclusion of one or

more.

ARIMA can be divided into three categories (Durka & Pastorekova 2012)

5

¶ Non-seasonal ARIMA (ARIMA)

¶ Seasonal ARIMA (SARIMA)

¶ Multivariate ARIMA (ARIMAX)

Regular ARIMA-models is a univariate time series model because it works on data that consists of

single observations of a dependent variable over regular time intervals and no external predictor

variables.

ARIMA models are usually applied where data show evidence of non-stationarity, where an initial

differencing step ς corresponding to the integrated part of the model ς can be applied one or more

times to eliminate the non-stationarity. A stationary time series is one whose statistical properties

such as mean, variance and covariance are constant over time. Most models assume that the time

series is or can be rendered approximately stationary through mathematical transformations. Making

a time series stationary through differencing where needed is an important part of the process of

fitting an ARIMA model (Montgomery, Jennings & Kulahci 2015, pp. 48-50).

There are several ways to make a non-stationary dataset stationary but the simplest is differencing.

Subtract each value according to ὣ ὣ . This can be done several times if needed and every step

of differencing costs one row of data.

Differencing can also be done by season if there are long-term seasonal patterns that cause the non-

stationarity. For example, if the time series is recorded monthly and there is an annual change in

values that cause non-stationarity the dependent variable can be transformed according to ὣ

 ὣ . It is also common with seasonal ARIMA to combine both methods, taking the seasonal

difference of the first difference (Montgomery, Jennings & Kulahci 2015, p. 52).

Furthermore, there are hypothesis tests that can be used to indicate mathematically if a series can

be considered stationary or not, one of these if the Dickey-Fuller test (Bernal & Sanso 2001).

Major components of ARIMA are the autoregressive portion, the integrated portion and the moving

average portion. Non-seasonal ARIMA models are generally denoted ARIMA(p, d, q) where

parameters p, d, q are non-negative integers (Montgomery, Jennings & Kulahci 2015, pp. 327-367).

2.6.1 The Autoregressive AR(p) Part of ARIMA

A regression mode that utilizes the dependent relationship between a current observation and

observations over a previous period. An auto regressive model or AR model is one in which Yt

depends only on its own past values ὣ Ὢὣ ȟὣ ȟȢȢȢȟὣ .

A representation of an autoregressive model where it depends on n of its past values (p = n) called

ά!wόǇύέ ƳƻŘŜƭ Ŏŀƴ ōŜ ƳŀǘƘŜƳŀǘƛŎŀƭƭȅ ǊŜǇǊŜǎŜƴǘŜŘ ŀǎΥ

(1) ὣ ὄ ὄ z ὣ ὄ z ὣ ὄ z ὣ Ὁ

An important question is how many past values to use. AR(p) means p past values. B are coefficients

like those used in linear regression models, and Et is an error term representing random behavior

(white noise) in the series (Montgomery, Jennings & Kulahci 2015, pp. 338-348).

2.6.2 The Integrated I(d) Part of ARIMA

If the time series was shown to be non-stationary there are two ways to make it stationary

differencing (subchapter 2.2.3) and mathematical transformations using logarithms (Montgomery,

Jennings & Kulahci 2015, p. 363) can be employed. A series which is stationary after being

6

differentiated d times is said to be integrated of order d denoted I(d). Therefore, a series which is

stationary without differencing is said to be I(0) and integrated of order 0.

2.6.3 The Moving Average MA(q) Part of ARIMA

The MA part of the model uses the dependency between an observation and a residual error from a

moving average model applied to lagged observations. A moving average model is one when ὣ

depends only on the random error terms which follow a white noise process (Montgomery, Jennings

& Kulahci 2015, pp. 333-337).

A common representation of a moving average model where it depends on q of is past values is

called MA(q).

(2) ὣ ὗ Ὁ ὗ Ὁz ὗ Ὁz ȟȣȟὗ Ὁz

Where the error terms Ὁ are assumed to be white noise processes with mean zero and variance „ .

That is average(Ὁ) = 0 and var(Ὁ) = 1.

2.6.4 Combinations of Parts

There are times when the time-series may be represented as a mix of both AR and MA models

referred as ARMA(p, q). The general form of such a time series model which depends on p of its past

values and q past values of white noise disturbances takes the following form (Montgomery,

Jennings & Kulahci 2015, pp. 354-355). How to develop an ARIMA model will be explained in

subsequent chapters.

(3) ὣ ὄ ὄ z ὣ ὄ z ὣ ὄ z ὣ ὗ z Ὁ ὗ z Ὁ

2.6.5 Autocorrelation Function (ACF)

Once the data is stationary, model selection is the next step. An autocorrelation plot ς also known as

a correlogram ς shows the correlation of the series with itself lagged by n time units. The y-axis is the

correlation and the x-axis are the number of time units of lag. This can be done several times for

different times of lags.

(4) ὅέὶὶὣȟὣ
ȟ

 z

The results from the ACF plot should show whether the (AR) or the (MA) part of the ARIMA model

should be used, or both (Yaffee & McGee 2000, pp. 122-126).

¶ If the autocorrelation plot shows positive autocorrelation at the first lag (lag-1) then it

suggests using the AR terms in relation to the lag.

¶ If the autocorrelation plot shows negative autocorrelation at the first lag, then it suggests

using MA terms.

2.6.6 Partial Autocorrelation Function (PACF)

A partial correlation is a conditional correlation. It is a correlation between two variables under the

assumption that some other set of variables is known and considered.

For example, in a regression context where y is the response variable and x1, x2, x3 are the predictor

variables. The partial correlation between y and x3 is the correlation between the variables

determined considering how both y and x3 are related to x1 and x2.

7

¢ȅǇƛŎŀƭƭȅΣ ŀ ǎƘŀǊǇ ŘǊƻǇ ŀŦǘŜǊ ƭŀƎ άƪέ ǎǳƎƎŜǎǘǎ ŀƴ AR-k model should be used. If there is a gradual

decline it suggests an MA model. Identification of an AR model is often best done with the PACF.

Identification of an MA model is often best done with the ACF rather than the PACF (Yaffee & McGee

2000, pp. 122-126).

2.6.7 The Box-Jenkins Methodology

The Box-Jenkins methodology is an approach on how to build a univariate time series models in an

orderly manner as the minimize the risk of faulty assumptions. It is an iterative three step approach

(Akpanta & Okorie 2014).

1. Model identification and model selection.

2. Parameter estimation.

3. Model checking

In the first step, diagnostic tests are used to investigate whether the data is stationary or not. This

can be done by visually exploring charts using rolling averages for standard deviation and averages

and breaking the data down with ETS decomposition. How to make data conform to stationarity was

discussed in (chapter 2.6). Furthermore, the Dickey-Fuller hypothesis test (chapter 2.6) can be used

to verify that the time series has become stationary after relevant treatment has been implemented.

In this stage, it should also be verified whether the dataset has attributes of seasonality, and if it does

a special type of seasonal ARIMA should be considered.

Once the type of ARIMA has been decided, a series of tests must be done to find the AR(p), I(d) and

MA(q) terms that should be used for the data. In the Box-Jenkins methodology, autocorrelation plots

are used to find the MA terms and partial autocorrelation plots to find the AR terms.

In the second stage, the parameter estimation stage, computational algorithms are used to arrive at

coefficients (chapters 2.6.1, 2.6.2 & 2.6.3) that best fit the selected ARIMA model. The two most

common methods are maximum likelihood estimation and non-linear least-squares estimation.

The third and last stage, model checking, is done by testing whether the estimated model conforms

to the specifications of a stationary univariate process. For example, the residuals should be

independent of each other and constant in mean and variance over time. To verify this, a Ljung-Box

test can be used to test the autocorrelation within the dataset. The Ljung-Box test tests the

hypothesis that the correlation between two points with lag k are zero and can also be used to

evaluate an ARIMA model by saying whether the residuals are independent or not (Ljung & Box

1978).

8

2.6.8 Summary of ARIMA Development

Figure 1. Overview of the development of an ARIMA model according to the Box-Jenkins methodology.

2.7 Feed Forward Networks

A basic feed forward neural network (FNN) got its name because it has architectural similarities to

metazoan brain cells with the components of dendrites and axons. An FNN can be described as a

weighted acyclic bipartite graph (figure 2). It consists of three distinct types of nodes: input, hidden

and output. Input nodes receive the input variables which must go through unity-based

normalization to transform the set of inputs into the range [0, 1]. Each input is subsequently

multiplied by a weight and sent to a connected hidden node (Schmidhuber 2014).

9

Figure 2. Graphical description of an FNN. The fist index number i specifies layer, the second signifies the node number, j.
Weights wi,j are labeled according to node numbers with sink node as i and source node as j.

Hidden nodes are special in that they create the ability of non-linearity and being able to handle

complex interactions between different input variables. They do this by using activation functions

which transform the incoming value a0,0 * w0,0 + a0,1 * w0, Ҍ ΧҌŀi,j * w i,j (a weighted sum) by a

function where common examples include the rectifier function max(0, x) or a logistic function f(x) =

1/(1 + e-x) (Glorot, Bordes & Bengio 2011). By using activation functions, each incoming weighted

sum is transformed back into the original [0, 1] range before going through further calculations in the

next layer.

The output of a node being Yn = Wn * Xn-1. Where Wn * Xn-1 = (wi,j + bi) * ai,j. The b is a bias term that

can be added to the weighted sum. Xn-1 is all previously connected nodes multiplied by their related

weights with added biases the generated output of that node is then transformed by the activation

function Xn = F(Yn).

Every transmission of data from one layer to the next (figure 2) can also be interpreted in matrix-

vector form.

(5) Ὂ
ύȟ ύȟ
ύȟ ύȟ

ὥȟ
ὥȟ

ὦ
ὦ

This process can be carried out through any number of hidden layers until the signals are finally

pooled together into an output layer which also usually has a special activation function in order to

transform the output into a reasonable scale such as the sigmoid function for probabilities. Between

each cycle, a cost function is used to calculate the error between the derived prediction value and

the actual value in the training set.

The calculations between the input nodes, the weights and the activation functions are described by

LeCun, Bottou, Orr & Muller (1998) as a function M(Zp, W) where Z is the input variables and W the

adjustable parameters (i.e. weights and bias terms). Each cycle of M(Zp, W) has a related desired

output value D0, D1Σ ΧΣ 5p . These are used in a cost function EP to calculate the training error.

Commonly used cost functions are mean absolute error, root mean square error or mean square

error which is ½ * (DP ς M(ZP, W))2 .

10

Figure 3. The FNN as a learning machine. Adapted and redrawn from Muller et al (1998).

The actual learning in the network is done by tuning the weights and the bias terms on all the edges

between nodes to minimize the resulting error and an important task in the science of FNNs have

thus been to develop methods to adjust W both regarding computational efficiency and accuracy in

order to minimize the cost function. Two concepts become central: backpropagation and gradient

descent.

The gradient ɳ Ὂ of an n-dimensional space is the change in variables that cause the function to

increase in value most rapidly. The concept of the gradient is the same as that of the derivative of a

univariate function but in a multidimensional setting (Adams & Essex 2013, pp. 716-720).

(6) Ὂὼȟώȟᾀ ױὊὼȟώȟᾀ

(7) Ὂὼȟώȟᾀ ױ ȟ ȟ

Calculating the gradient for a one-dimensional function Ὂὼ ױ would be the same as a regular

derivative. By using the current coordinates of the function and plugging them into the gradient the

direction of greatest ascent is obtained. By continuously doing that, eventually a local maximum is

attained and while on that point the gradient becomes zero.

In neural networks, the values derived from the cost function is used as an output variable and the

vector space has as many dimensions as there are weights and bias terms in the network Muller et al.

(1998). Hence, gradient descent is the opposite of the gradient ЎὊὡ (Adams & Essex 2013, ss.

720). By changing the parameters in W in order to minimize the cost function (which is an aggregate

representation of all the tunable parameters) the network can improve its performance or learn.

Gradient descent is the most widely used way to optimize tunable parameters and there are three

variants of this method: batch gradient descent, stochastic gradient descent and mini batch gradient

11

descent. Batch gradient descent updates the tunable parameters of the cost function in respect to

the entire dataset, making it slow and requiring that all training data fit into the RAM. Stochastic

gradient descent calculates the negative gradient for every training example, making it fluctuate

heavily but working well with a progressive reduction in learning rate. Mini-batch gradient descent is

a combination of the two previous methods, updating parameters for a batch of n examples (Ruder

2017).

Muller et al. (1998) describes backpropagation as a process where the output of each node can be

written mathematically as Xn = F(Wn, Xn-1). Here, Xn is a vector containing the outputs of the node, Wn

is a vector containing the set of tunable parameters relating to the node and Xn-1 is the input vector

into the node.

The partial derivative of EP with respect to Xn is known and because of that the partial derivative of EP

with respect to Wn and Xn-1 can be computed.

(8) ὡȟὢ z

(9) ὡȟὢ z

The Jacobian or Jacobi matrix is a matrix containing partial derivatives of variables that make up a

multivariable vector function. The expression dF/dW(Wn, Xn-1) is the Jacobian of F with respect to W

evaluated at the point (Wn, Xn-1), and dF/dX(Wn, Xn-1) is the Jacobian of F with respect to X. From this,

the multidimensional derivative of all values in the set of Wn and Xn-1 can be modeled and the result

of their corresponding changes on the cost function, E, can be determined (Muller et al. 1998).

These equations are applied to all nodes in reverse order from the last layer to the first layer, hence

all the partial derivatives of the cost function with respect to all the parameters can be computed.

This process is called backpropagation.

2.8 Recurrent Neural Networks

In FNNs it is assumed that all inputs and outputs are independent of each other, in Recurrent Neural

Networks (RNNs) on the other hand, there is a dependence between an output Yt and all previous

outputs ὣ ȟὣ ȟȢȢȢȟὣ .

Figure 4. Schematic figure of RNN architecture. Adapted and redrawn from LeCun, Bengio, & Hinton (2015).

12

In figure (3), Xt is the input vector into the network at step t. St is the hidden state at step t and

constitutes the memory of the network. These are the hidden nodes containing activation functions

(LeCun, Bengio & Hinton 2015). The hidden state at St can be expressed as a function of the sum of

the input weight multiplied by the input vector and the recurrent weight matrix W times the previous

hidden state (equation 10).

(10) Ὓ ױὪὟὼ ὡὛ

(11) ὣ ὪὟὛ

(12) Ὁ ױ ὣ ¹

The input Xt is multiplied by the associated weight to the edge that connects the input node and the

hidden node. This is added to WSt-1 which is the long-term memory of the network. Finally, the

weighted sum is applied on an activation function.

The error between the actual value Yi and the predicted value Y-hat can is calculated with a loss

function like mean squared error (equation 12).

An important difference between RNNs and FNNs is that unlike FNNs that use different tunable

parameters between all edges and nodes, RNNs use the same parameters i.e. U, V, W (figure 4). This

is because outputs are dependent on each other.

Two issues with RNNs are the vanishing- and exploding gradient problems (Pascanu, Mikolov &

Bengio 2013). This arises from the fact that RNNs do not only have edges between nodes from the

input, to the hidden and onward to the output layer like FNNs do. Here, there are recurrent weights

W that connect hidden layers from Ὓ ȟὛ ȟȢȢȢȟὛ . Since the process of calculating the negative

gradient and using backpropagation to adjust the tunable parameters involves all weights and biases

that contributed to the error Et (equation 12) there is a chain of multiplication (equation 10) that can

lead to unreasonably small (vanishing gradient) or large (exploding gradient) numbers. This prevents

RNNs from utilizing layers too many steps back in time.

If the recurrent weights become too small there is a vanishing gradient problem and it prevents the

network from learning properly, if it becomes too large there is a risk of an exploding gradient

causing the weights to change too much from every training sample.

Hochreiter & Schmidhuber (1997) propose a solution to the vanishing gradient problem in the form

of a modified architecture of RNNs, Long-Short Term Memory networks (LSTMs).

2.9 Long-Short Term Memory Networks

LSTMs is a special type of RNNs capable of handling long term dependencies being resistant to the

vanishing gradient problem. It has a more advanced architecture than RNNs with several additions.

In LSTMs there is a cell state St that convey a flow of information from one module to the next. The

transmission from St to St+1 is regulated by components called gates.

The data that is removed from the cell state is regulated by a forget gate layer. This layer uses Yt-1 and

the input into the network xt concatenated together into a matrix. This is multiplied by associated

13

weights (by the dot product) and a bias term is added. This value is then inserted into a sigmoid

activation function („) to attain a value between [0, 1] and multiplied with St-1. A value of zero means

that no information should be transmitted within the cell state and a value of one means that all

information should be transmitted (Olah 2015).

(13) Ὢ ױ„ὡ ὣ ȟὼ ὦ

The second type of gate is an input gate (it) together with a tanh layer (Gt) which transform values to

the interval [-1, 1]. This section of the module determines what information that should be stored

within the cell state.

(14) ÔÁÎὬὼ ρ

(15) Ὥ „ὡ ὣ ȟὼ ὦ

(16) Ὃ ױÔÁÎὬὡ ὣ ȟὼ ὦ

The input gates decide which values that should be updated, and the tanh layer determines

candidate values that could be added to the cell state.

The new cell state at St is then calculated using equations (13, 15, 16).

(17) Ὓ Ὢ Ὓz Ὥ Ὃz

Figure 5. A module in an LSTM network. Adapted and redrawn from Olah (2015).

Equation (17) determines the final input into the module. The second part of the LSTM architecture

deals with the final output. First the previous output together with the input is multiplied with

associated weights and a bias term is added (equation 18). This weighted sum is put through another

sigmoid activation function to determine what parts of the input is going to affect the output. In the

next step the final output is the product of (equation 19) and a tanh layer that uses the cell state

calculated in (equation 17). The complete architecture of a basic LSTM is displayed in figure (4).

14

(18) ὕ ױ„ὡ ὣ ȟὼ ὦ

(19) ὣ ױὕ ÔzÁÎὬὛ

2.10 Temporal Convolutional Networks

Temporal Convolutional Networks (TCNs) build on the more familiar Convolutional Neural Networks

(CNNs) that has been a dominating architecture for developing deep computer vision models.

Famous architectures include You Only Look Once (Redmon, Divvala, Girshick & Farhadi 2015) and

Single Shot MultiBox Detector (Liu et al. 2016) that can perform real time object detection and LeNet

(LeCun, Bottou, Bengio & Haffner 1998) that was one of the first deep models that could learn to

recognize handwritten digits.

TCNs could be implemented in a variety of ways with different tweaks but the version that will be

discussed in this section is the one used by Bai, Kolter & Koltun (2018). In this architecture, instead of

using a cell state to preserve information from previous outputs as in LSTMs, TCNs use connection

between previous hidden layers configured with two hyperparameters: dilation factor and filter size.

The dilation factor (d) decides how many steps back in a layer that connections should be made

between the output column and previous hidden nodes. As can be seen in figure (5), a d = 1 means

that there should be no interval between previous nodes while d = 2 creates a connection between

every second node to the output column. Filter size (k) decides how many connections there should

be in total between a certain layer and the output layer. With k = 3 (figure 6) there are three

connection between every layer and the output layer (Bai, Kolter Koltun 2018).

Because d = 1 is used in the input layer, all information from the entire network is stored in later

ƘƛŘŘŜƴ ƭŀȅŜǊǎ ƎŜƴŜǊŀǘƛƴƎ ŀ άǊŜŎŜǇǘƛǾŜ ŦƛŜƭŘέΦ ¢Ƙƛǎ ƛǎ ŀƴ ŜŦŦŜŎǘƛǾŜ ǿŀȅ ƻŦ ǊŜŘǳŎƛƴƎ ǘƘŜ ƴǳƳōŜǊ ƻŦ

tunable parameters that must go through optimization thus increasing the training speed. The

process of creating this is together with kernels for feature extraction that generate filter maps is

called dilated convolution. The advantage of dilated convolutions is the ability to increase the size of

the receptive field exponentially while the tunable parameters grow linearly, and the technique was

first introduced as a tool in semantic segmentation (pixel-wise image classification) (Yu & Koltun

2015).

15

Figure 6. Schematic image of the TCN architecture with dilation factors 1, 2, and 3 and filter size = 3. Connections only
shown for the output column Yt, but these can be extrapolated to every node in the output layer. Adapted and redrawn form
Bai, Kolter & Koltun (2018).

Another important concept in TCNs are residual blocks (Bai, Kolter & Koltun 2018). These pool

together n nodes (decided by parameters k, d) and the result is added to the input to create the final

output of the block. In figure (6) the shaded column apart from the input nodes represents a residual

block (figure 7).

Figure 7. A residual block unit in TCNs. Adapted and redrawn form Bai, Kolter & Koltun (2018).

16

Inside the residual blocks there is a sequence of data transformations carried out. Weight

normalization or WeightNorm (equation 21) is a technique that normalizes the weight vectors of

each node and instead of tuning the weights w and bias term b (equation 20) using gradient descent,

a parameter vector v and scalar parameter g is optimized (equation 21). Salimans & Kingma (2016)

propose that this technique makes gradient descent converge to a local minimum faster.

(20) ὣ ױ„ύ ὼ ὦ

(21) ύ ױ
ȿȿ
ὺ

The next step in the residual block is a unit with the activation function rectified linear unit (ReLU)

which is Ὢὼ ױάὥὼὼȟπ. LeCun, Bengio & Hinton (2015) describes this function as particularly

useful in networks with many layers leading to a faster learning.

Finally, dropout is applied. This is a technique where random neurons are ignored during training in

order to minimize the risk of overfitting. That is, their incoming information is not part of the cost

function and their tunable parameters are not changed through backpropagation for that training

iteration (Srivastava, Hinton, Krizhevsky & Salakhutdinov 2014).

The residual block described in figure (7) can also be viewed in the context of the network as a graph

with edges and nodes (figure 8). The flow of information from the input layers, to consequent hidden

layers and the final output layer and the transformations that happens in between constitutes a

residual block.

Figure 8. A residual block viewed in the context of network architecture with nodes and edges. Adapted and redrawn from
Bai, Kolter & Koltun (2018).

2.11 Hidden Markov Models for Time Series

There are two basic types of Markov models, Markov chains for discrete states and Markov

processes for continuous states. A Markov chain is a mathematical system that changes between

different states. The set of all possible states are called the state space. In figure (8) there is a Markov

Chain with state space = {A, B}. If the system is in state A, there is a 90% probability that it will remain

in state A in the next time step and 10% probability that it will change from state A to state B. When

17

modelling a Markov chain, it is presented as an ὲ ὲ transition matrix where n is the cardinality of

the state space and the cells contain transition probabilities. Markov chains are a common technique

for creating dynamic mathematical systems and one example is Googles page rank algorithm (Rai

2016).

Figure 9. Illustration of a Markov chain for discrete states.

Hidden Markov Models (HMMs) differ from regular Markov models in that the probabilities of

changing state (or remaining in the same state) are determined by derived probability distributions

by using a training set, as opposed to using fixed probabilities.

Furthermore, the Markov property says that the state at Ct+1 can depend solely on Ct. (Montgomery,

Jennings & Kulahci 2015, p. 502). This is called a first order Markov model but there are adaptations

where the current state can depend on several successive states ὖὶὅ ȿ ὅȟὅ ȟȢȢȢȟὅ and

these models are called a Markov model of order n where n is the number of previous states that

affect the current state (Ky & Tuyen 2018). These Markov models are particularly suited for time

series forecasting as they acquire the ability to model patterns like trends and cycles.

18

3 tǊƻōƭŜƳ ŀǊŜŀ

This chapter provides information regarding other research that has been done related to the

present study. Furthermore, it also provides the research questions, aim and motivation for the

study and the objectives that will be achieved.

3.1 Related Research

A performance comparison between LSTM and ARIMA conducted by Siami-Namin & Siami-Namin

(2018) showed that the LSTM algorithm had six times lower RMSE than ARIMA on six different

economic time series datasets. Although promising, the authors did not state in detail how the

models were developed and as ARIMA must be configured for each dataset more data is required to

be able to understand their respective strengths and weaknesses. Flores et al. (2016) investigated

the robustness for noise in training data for ARIMA and FNNs and found similar increase in prediction

error as the level of noise increased. Furthermore, Chan, Xu & Qi (2018) compared several versions

of ARIMA to FNNs in their ability to forecast throughput of containers in a harbor area and found that

ARIMA had significantly better performance.

Ky &Tuyen (2018) developed an HMM for time series forecasting by using historic stock price data as

a training set and divided the time series into intervals which represented different states in the

Markov model. The author found that an HMM with number of states adapted to the dataset and an

order higher than one (adapted to the dataset) can outperform several neural network models. This

makes it an interesting candidate with a different approach to time series forecasting. HMMs are

heavily stochastic models because of their completely probabilistic architecture of states and

movements between states which might fit particularly well for stochastic data like stock prices. In

this study, they will be evaluated on more traditional time series data with trends and seasonality.

Results from Bai, Kolter & Koltun (2018) show that a modified version of CNNs specialized for

sequence analysis can perform better and learn faster than traditional recurrent networks. Two of

the reported experiments were predicting sequences of digits using the MNIST database (LeCun &

Cortes, n.d); and predicting sequences of words using the Word Wiki-103 dataset (Merity 2016). The

authors compared the performance of TCNs to LSTMs and found that TCNs have better ability to

retain information from many steps back in time being able to process inputs from 250 steps back.

Furthermore, they reached higher accuracy than LSTMs when being fully trained as well as learning

faster when applied on sequential datasets. With these outcomes it is a relevant scientific inquiry as

to whether they can also perform better on time series forecasting of continuous data, a question

which has not yet been investigated.

19

Table 1. The algorithms that will be evaluated in the study.

Algorithm Pros Cons

Recurrent Neural Network Simpler than LSTM fewer hyperparameters

that can be tuned.

Unable to use more than ~10 previous

steps in time because of vanishing- and

exploding gradient problems.

Long-Short Term Memory Network Does not risk vanishing gradient. Can use

any number of independent variables and

any number of previous time steps.

Needs a lot of training data. There is no

deterministic developmental process,

must be developed individually for each

dataset. There is loss of data between

each module.

Temporal Convolutional Network Number of weights increase linearly while

receptive field increase exponentially.

Has only been studies for sequential

problems never for time series. Takes

more time to train than RNN and LSTM.

ARIMA Standardized developmental process.

Good insight into how the algorithm

works. No need for hyperparameter

tuning.

Relatively simple model. Data must be

stationary.

Hidden Markov Model Good at modelling stochastic behavior. Cannot use independent variables.

Difficult to develop due to weak library

support in R and Python.

3.2 Aim

The aim of this study is to see if there is a significant difference between the novel algorithms

temporal convolutional network and higher order Markov model as compared to the more classic

recurrent neural network, long-short term memory network and ARIMA for forecasting on a

continuous time series dataset. This will be investigated by collecting data from two Swedish theme

parks and use this to predict future number of visitors, which constitutes a regular business use

(forecasting product demand/resources).

3.3 Motivation

Time series prediction is an important technique for both scientific research and optimizing business

processes. With many different algorithms to choose from, it can be difficult and time consuming to

find the best solution. The motivation for this study is to present a clear performance evaluation for

state-of-the-art algorithms for time series forecasting and deliver a detailed description of data

exploration and model development as to allow reproducibility. Furthermore, if the result is a model

able to reliably predict the future number of visitors, it is possible to optimize both staffing and

deliveries of food and drinks. Thereby increasing employee satisfaction as well as efficiency while at

the same time limiting the ŎƻƳǇŀƴƛŜǎΩ environmental impact.

3.4 Research Questions

This study aims to answer whether there is a significant difference between the newly publicized

algorithms temporal convolutional network (Koltun et al. 2018) and A higher order Markov model (Ky

& Tuyen 2018) as compared to the classical alternatives (RNN, LSTM and ARIMA).

20

1. Which one out of the five independently developed (using optimal variables and parameters)

algorithms have the best performance as measured by RMSE?

2. Which of the algorithms have the best performance as measured by RMSE when using no

independent variables?

3.5 Delimitations

Based on a pre-study of the literature, five of the most promising algorithms were selected (table 1).

ETS- and EMWA models will not be investigated. The data that will be used will be based on number

of visitors per day between 2010-2018 in Skara Sommarland AB and 2011-2018 in AB Furuviksparken.

The Skara Sommarland AB will also provide the number of booked days for a camping. This data will

be fused with Lantmet and SMHI for weather data and Google Trends for keyword search frequency.

Other data sources will not be considered.

3.6 Hypothesis

The hypothesis is that the independent variables in the complete datasets will explain a significant

amount of the variance in number of visitors. Thus, all algorithms apart from HMMs are presumed

to either reach or be close to <20% MAPE. Also, the literature suggests that LSTMs are superior to

RNNs regarding the number of previous time steps that can be taken into consideration.

Furthermore Siami-Namin & Siami-Namin (2018) showed that LSTMs can predict time series much

more accurately than ARIMA in some settings. The conclusion is thereby that LSTMs are a likely top

performer.

The performance of TCNs on this dataset is highly uncertain. Bai, Kolter & Koltun (2018) showed that

TCNs can overperform LSTMs significantly on sequential problems but they are still untested on

continuous time series data. Although theoretically, with their ability to cover much more tunable

parameters than LSTMs in their outputs they should have the best ability to forecast visitors and get

a larger advantage as there are more independent variables and previous time steps considered.

HMMs (chapter 2.11) are assumed to have the best performance when compared to other

algorithms with no independent variables used but the worst performance when all algorithms are

compared with optimal variable inputs and hyperparameter configurations.

3.7 Objectives

This study encompasses four objectives that must be completed in order to answer the research

questions and reach the aim.

1. Acquire data describing number of visitors and sold tickets to the Skara Sommarland camping

through representatives of the two companies. Complement this with weather data from

Lantmet and SMHI as well and Google Trends.

2. Handle problems with data cleaning and remove outliers. Thoroughly investigate collected

variables to understand their importance as future input variables and if it is possible to

construct derived variables.

21

3. Use the prepared datasets to develop LSTM, RNN, TCN and ARIMA using Python and HMM

using R. The initial architectures will be based on Bai, Kolter & Koltun (2018) for TCN, Siami-

Namin & Siami-Namin (2018) for LSTM and Ky & Tuyen (2018) for HMM. Arima will be

developed according to the Box-Jenkins methodology (chapter 2.6.7 & 2.6.8) and RNN will

have the same number of nodes and layers as the LSTM network. The neural networks

models will go through hyperparameter tuning using sequential grid search.

4. Evaluate algorithmic performance both optimally trained with independent variables and

without independent variables, using hypothesis testing on acquired RMSE values.

22

4 wŜǎŜŀǊŎƘ aŜǘƘƻŘǎ

In this section, the reasoning behind the choice of scientific methods and their implementation are

described. Furthermore, possible alternatives are explored.

4.1 Exploratory Data Analysis

John W. Tukey wrote about the need for this method in his book Exploratory Data Analysis from

1977. In the book he suggests that confirmatory statistics with the advent of hypothesis testing had

become too important and that the preliminary descriptive statistics had been neglected. By

exploring data and finding patterns and limitations, it is possible to get a broader and more deep

understanding about a certain sample. The author writes that before hypothesis testing became

dominating, descriptive statistics was the only analysis researchers did. Later, it became common to

only carry out a minimal amount of exploration in order to ensure that the correct hypothesis test

was selected.

When developing machine learning- and statistical models it is paramount to create the best possible

dataset in order to achieve good results. By using Exploratory Data Analysis, it will provide a process

for creating a detailed data understanding and document the developmental process, allowing

subsequent researchers to replicate and improve upon this work. The use of this method will also be

informed by the Cross-Industry Standard for Data Mining (CRISP-DM) (Shearer 2000). This is a

process model that has become an industry standard for carrying out data mining projects while

maximizing the chances of a high-quality result.

The employment of this method is aimed at maximizing the control in preparing the data and

allowing future researchers to understand how the algorithmic performance was generated, from

start to end.

4.2 Experiment

The experimental method is characterized by setting up experiments aimed at disproving a certain

hypothesis, regularly with the support of statistical hypothesis testing (Berndtsson, Hansson, Olsson

& Lundell 2008 p. 65). This is a good way to answer two of the three formulated research questions

in this study (question 2 & 3).

There are three basic principles of experimental design (Toutenburg, Shalabh, Fienberg & Olkin 2009,

pp. 4-5). The first is CƛǎŎƘŜǊΩǎ tǊƛƴŎƛǇƭŜ ƻŦ wŜǇƭƛŎŀǘƛƻƴ. An experiment must be done on several units in

order to determine the sampling error. In this study, a unit will be one day with associated variables

throughout the years 2010-2018.

The second principle is that of Randomization. This means that units must be assigned randomly to

treatment and control groups. Also, the conditions under which treatment is delivered should be as

similar as possible. In the present case, time series models will be developed on the same training-

and test data and used to predict on the same validation data. The process of developing these

models will serve as treatment and this will not affect the units within the groups. Because of this it is

not necessary to randomize observations into different groups. However, care will be taken to make

the model development as comparable as possible. To do this, the Box-Jenkins methodology will be

used to develop ARIMA, network architectures from previous studies will be used together with

23

evolutionary search to develop neural network models and the HMM will be the same as that

published by Ky & Tuyen (2018). Furthermore, the cleaning, outlier removal and creation of derived

variables will be carefully examined using the method described in chapter 4.2.

The last and third principle is that of Control of Variance. The variance can be controlled by dividing a

set of data into smaller blocks that have similar characteristics such as age and sex. An advantage of

the experiment in this study is that the treatment does not affect the units of study, hence there can

be a complete control of variance.

4.2.1 Evaluation Metrics

Two metrics will be used to answer the two research questions. Root Mean Squared Error (RMSE)

will be used to assess the difference between the chosen algorithms with respect to independent

variables and without independent variables because it gives larger weight to outliers than mean

average error (MAE) which is more affected by many small errors, as suggested by Chai (2014). This

makes it more sensitive to few large errors and a comparatively low RMSE thus indicate predictive

stability more than MAE would.

RMSE will be calculated on validation data from 2018 by weekly intervals where every week will

represent one sample thus generating 12 samples per algorithm in total.

(22) RMSE = В ώ ļ

Where n is the number of samples, yi is the actual value and y-hat is the predicted value.

The second metric Mean Average Precision Error (MAPE) shows average percentual error (Fiores et

al. 2016). For a model to be a useful tool in practice, the organizations have communicated that

MAPE should be <20%. It is easy to understand and interpret and is thus a reasonable tool to answer

the feasibility of a possible implementation of one of the algorithms.

(23) MAPE = В ȿ
ļ
ȿ

4.3 Implementation of Research Methods

In the initial phase of this study discussions with the CEOs of Skara Sommarland AB and

Furuviksparken AB will be had in order to understand their view of relevant explanatory variables

and to acquire historic datasets. This data will be fused with sets of weather variables using SMHI and

Lantmet. Lastly, Google Trends will be used to create two sets containing search frequency on the

ƪŜȅǿƻǊŘǎ ά{ƪŀǊŀ {ƻƳƳŀǊƭŀƴŘέ ŀƴŘ άCǳǊǳǾƛƪǎǇŀǊƪŜƴέΦ

The second stage will employ the exploratory data analysis-method tailored for this study by using a

workflow informed by the data preparation stage in CRISP-DM. Here, data will be analyzed, the

quality of the raw data will be examined, and relevant variables will be selected. Going further, the

selected data will be cleaned by using techniques for outlier removal and imputing missing values.

With these preliminary datasets it will be inspected to see if it is possible to derive new variables that

have relevant explanatory power. Finally, the different datasets (Skara Sommarland/Furuviksparken,

Google Trends, SMHI, Lantmet) will be fused into one concluding material for each of the two

organizations (appendix 1).

24

With the completion of the data collection and preparation, the experimental phase begins. The

selected algorithms will be developed using programming languages R and Python. Using data

between 2010-2017 these will be trained and tested. In addition, selection of hyperparameters will

be done using evolutionary search as to minimize the risk of performance differences because of

uncontrolled choices of model configurations. Data from the year 2018 will be saved so it can be

completely unused for obtaining model predictions and through this, the two metrics RMSE and

MAPE complemented by mean average error (MAE).

The MAPE results will be used to answer whether one or several out of the models could be used to

automate visitor forecasting in the respective organizations. RMSE on the other hand will be used to

do hypothesis testing to see if there is a statistical significance in the predictive power between the

selected algorithms, both with and without independent variables as two different experiments.

To confirm whether there is a significant difference between the investigated algorithms, a Kruskal-

Wallis H-test will be used to answer if there is a difference in the daily prediction errors.

4.4 Alternative Methods

An alternative method for collecting relevant explanatory data for this task could be to use

interviews with company representatives (Berndtsson et al. 2008 pp. 60-62). This method has the

advantage of generating an in-depth understanding of respondents view of the problem. It is likely

that people that have worked for years in an organization could have experience to contribute to the

development of the time series models. However, the focus of this study is to compare the

performance of the algorithms by developing them in a controlled manner and limiting uncontrolled

influences that could raise questions as to whether the predictive power depends on things like

hyperparameter tuning or other configurations. The delimitations raised in chapter 3.6 should be

enough for this.

Another method that has some interesting features is the case study (Berndtsson et al. 2008 pp. 62-

63). This method is characterized by conducting a deep investigation into one or a few objects of

study. The focus of this study could be to investigate the algorithmic performance in the specific

organizations from where the data is collected. Nevertheless, regardless of whether the final dataset

display trends, cycles or noise ς the final evaluation will still provide a generalizable answer to their

ability to accurately predict time series data in that setting.

Lastly, implementation as a choice of method was considered. This method is about implementing a

solution and study how well it works in a certain setting. This is a reasonable choice for this study

where one or more of the algorithms could have been developed, put into production and the

impact on the organizations could have been analyzed. Another interesting research question could

have been to investigate how to best implement a decision support system, which could pose a topic

for a future study based on this work.

25

5 5ŀǘŀ tǊŜǇŀǊŀǘƛƻƴ

In this section the data collection procedures are described along with an exploratory analysis

(section 4.1). As the same variables were collected for both theme parks only one figure per park per

variable is shown unless the data explored displayed a relevant difference between the two parks.

5.1 Data Collection

5.1.1 Organizational Data

Organizational data were provided by Skara Sommarland in the form of number of visitors per day

between the years 2010-2018 and the months May to August when the park had been open. They

also had the largest camping in Sweden were number of tickets sold had been recorded. Lastly, they

also recorded whether there was an event during a specific day or not. Through dialogue with

company representatives, it became clear that an event could mean a performing artist or a

collaboration with another organization in some way.

Representatives of the Furuvik theme park were not able to provide organizational data other than

number of visitors per day for the years 2011-2018.

5.1.2 Weather Data

Weather data was collected from two databases, Lantmet and SMHI. The choice of provider

depended on the proximity of the measurement stations to the respective organizations and the

types of measurements that were done at the different stations.

For Skara Sommarland AB, Götala weather station was used to collect solar irradiance (w/m2), min-,

max- and average daily temperatures (degrees Celsius), min-, max- and average relative humidity

(%), average rainfall (mm), degree days and wind speed (m/s). The choice of this station was suitable

because it was only about 6 km away from the park. This station was provided by the Lantmet

database.

CǳǊǘƘŜǊ ǾŀǊƛŀōƭŜǎ ǿŜǊŜ ŎƻƭƭŜŎǘŜŘ ŦǊƻƳ {aILΩǎ IŅƭƭǳƳ ǿŜŀǘƘŜǊ ǎǘŀǘƛƻƴ ос ƪƳ ŀǿŀȅ ŦǊƻƳ ǘƘŜ ǇŀǊƪΦ ¢Ƙƛǎ

was the closest measurement station that recorded air pressure (kPa), cloud base (km) and cloud

cover (%).These datasets had one measurement per hour. Since the dependent variable is observed

as one value per day these cloud values were summarized. This was done by taking the average

between 09:00 and 17:00 and using that as the value for each day. Cloud Base was summarized by

averaging an entire day because of fewer and more irregular observations.

The closest measurement station for Furuvik was the Gävle weather station 14.2 km away from the

park. Solar Irradiance was not measured by any stations within reasonable distance from the park.

For air pressure, Örskär was the closest station 105.9 km way.

26

Table 2. Summary of weather variables collected.

Variable Unit Comment Provider: Station

Solar Irradiance Watt/m2 Describes the amount of

solar energy that reaches

the ground.

Sommarland

Lantmet: Götala

Furuvik
N/A

Min-, Max-, Average

Temperature

Degrees Celsius The lowest-, highest-, and

average recorded

temperature of a day.

Sommarland

Lantmet: Götala

Furuvik
SMHI: Gävle

Min-, Max- and Average

Humidity

Percentages The lowest-, highest, and

average recorded relative

humidity. With 100% the

air is saturated with water

vapor.

Sommarland

Lantmet: Götala

Furuvik
SMHI: Gävle

Average Rainfall Millimeters Rain in millimeters

collected throughout a

day.

Sommarland

Lantmet: Götala

Furuvik
SMHI: Gävle

Wind Speed Meters/Second Daily average. Sommarland

Lantmet: Götala

Furuvik
SMHI: Gävle

Air Pressure Kilopascal Daily air pressure

recorded once per hour.

Sommarland

SMHI: Hällum

Furuvik
SMHI: Örskär

Cloud Base Kilometers The distance between the

ground and the lowest

cloud layer. Recorded

once per hour.

Sommarland

SMHI: Hällum

Furuvik
SMHI: Gävle

Cloud Cover Percentages The percentage of the

visible sky covered with

clouds. Measured by

laser. Recorded once per

hour.

Sommarland

SMHI: Hällum

Furuvik
SMHI: Gävle

27

5.1.3 Google Trends

Google (Alphabet, Inc) provides a functionality where it is possible to view number of keyword

searches per date unit. This comes in the form of a relative index which mean values can range from

1-100 based on the selected interval. For Skara Sommarland thŜ ƪŜȅǿƻǊŘ ά{ƪŀǊŀ {ƻƳƳŀǊƭŀƴŘέ ǿŀǎ

used. Data was collected individually for each year by selecting the first day of the previous year

when the park was open and ending in the last day of the actual year. This was downloaded in the

form of a csv file and the index values for the actual year was stored. This procedure was repeated

once for every year between 2010-2018. CƻǊ CǳǊǳǾƛƪ ǘƘŜ ƪŜȅǿƻǊŘ άCǳǊǳǾƛƪǎǇŀǊƪŜƴέ ǿŀǎ ǳǎŜŘ ŀƴŘ

collected in the same manner.

5.1.4 Temporal Data

Temporal data was extracted from the dates provided by the companies where there were recorded

observations with visitors in the parks. By using the date, weekday, week number and month was

extracted and stored as individual variables.

5.2 Data Exploration

A major technique for exploring correlations and linear relationships was using regression analysis

between the dependent variable and all predictors.

5.2.1 Organizational Variables

The linear relationship between sold camping tickets and visitors display a strong correlation with an

R2 of 65% and p-value of 5.6*10-150. The encircled column of observations in figure (10) where sold

tickets were around zero although number of visitors were > 2000 and < 6000. This was investigated

further, and it was revealed that these values were days on the last opening day of the season when

the camping had been emptied.

Figure 10. Number of camping tickets sold and number of visitors.

5.2.2 Weather Variables

Solar irradiance captures how much solar energy that hits the ground and could theoretically be an

interesting predictor. Figure (11) show a significant correlation between dependent and independent

variables although with a smaller amount of variance explained (9.3%). This variable was only

available in proximity to the Skara Sommarland park.

28

Figure 11. Number of visitors and solar irradiance.

There are three variables relating to daily temperature. The highest- and lowest daily temperatures

as well as the average daily temperature (figure 12). The strongest relationship between number of

visitors and temperature is found in the highest daily temperature with an R2 of 38.6% and a p-value

of 1.88*10-70. Speculatively, this could be because the highest daily temperature is during day time

when the park is open. The weakest relationship is with the lowest daily temperature, and this value

is most likely recorded during night time when the park is closed, and thus, it affects the number of

visitors much less. The average temperature reflects both day- and night time and hence it falls

between the two.

Figure 12. Number of visitors and temperature variables.

Degree days is a value that always increase throughout a year. It is a way to accumulate the occurred

degrees through time (figure 12). This value reflects trends more than regular temperature

measurements. If an observation has high degree days, it means that it has been warm for a long

period. This value starts and the beginning of the year, making it an interesting target for a derived

variable that starts at the beginning of the season.

29

Air pressure is generally associated with good weather and this variable could explain 7% in the

variance of number of visitors with a significant linear relationship (figure 13).

Figure 13. Air pressure and number of visitors.

The distance between the ground and the lowest layer of clouds had a significant linear relationship

although weak explanatory potential (R2 = 4.5%) (figure 14). The amount of the sky covered by

clouds, average values between 9-17 had a negative linear relationship with number of visitors. For

every percentage of the sky covered with clouds, there tended to be 31.38 less visitors in the park.

Figure 14. The two cloud variables: total cloud (amount of sky covered with clouds) and cloud base (the distance from the
ground to the lowest layer of cloud).

As with temperature, there are three variables relating to humidity. There is a similar pattern here.

The highest daily humidity (figure 15) does not have a statistically significant relationship (p = 0.45).

30

The strongest relationship is between number of visitors and the lowest daily humidity (figure 16)

and this is most likely because that value is recorded during day time. The average humidity is

significant and explains 7.8% of the variance is number of visitors.

Figure 15. Number of visitors and air humidity.

Average daily rainfall (figure 16) is surprisingly weak as an explanatory variable although significant

(R2 = 3.3% and p = 0.001). The reason for this could be that it is not a linear relationship. Less people

do not come the more it rains, instead, it might work better a binary or categorical variable.

Figure 16. Number of visitors in relation to rainfall and wind speed.

Wind speed display a similar behavior like rainfall. It explains a small amount of variance in the

dependent variable (R2 = 3.6%) with a significant linear relationship (p = 7.3*10-7). By visually

