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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Identifying sustainable strategies to develop maintenance performance within the short-termism framework is indeed challenging. It requires 
reinforcing long-term capabilities while managing short-term requirements. This study explores differently applied time horizons when 
optimizing the tradeoff between conflicting objectives, in maintenance performance, which are: maximize availability, minimize maintenance 
costs, and minimize maintenance consequence costs. The study has applied multi-objective optimization on a maintenance performance system 
dynamics model that contains feedback structures that explains reactive and proactive maintenance behavior on a general level. The quantified 
results provide insights on how different time frames are conditional to enable more or less proactive maintenance behavior in servicing 
production. 
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1. Introduction 

Industrial equipment maintenance includes rich dynamic 
complexity on how to deliver value. While the technical 
development has provided with many applicable solutions in 
terms of reliability and condition-based monitoring, managing 
maintenance is still an act of balancing, trying to manage the 
short-term economic requirements and simultaneously address 
the necessity of strategic and long-term thinking.  

Nonetheless, one of the contributing facts to seeing 
maintenance as a cost function only is the aggravating fact that 
maintenance is hard to justify at the individual activity level [1]. 
It contributes to that the strategic importance of maintenance 
becomes neglected [2]. Furthermore, the operational level of 
maintenance is hard to manage [1], since it suffers from many 
unplanned events of stochastic nature which, as they reoccur, 
interrupt important, advanced-planned activities and altogether 
allow too little abstract and strategic thinking. Therefore, much 
maintenance literature focus on the operation of maintenance, 
see, e.g., [3]. However, the economic short-term pressure 

combined with the character of maintenance on the operational 
level explain, to some extent, a common problem with regard 
to the dynamics of maintenance behavior, which according to 
[4], tend to overload the maintenance department with reactive 
work instead of proactive activities. Although the neglecting of 
maintenance activities can achieve short-term gains, such as 
reduced costs or more production hours, it may lead to delayed 
economic consequences resulting from more frequent 
breakdowns [2], reduced equipment capability, or less time 
invested in continuous improvements [5]. At this point, there is 
no definition of what constitutes all these dynamic 
consequences from proactive or reactive maintenance, where 
the economic consequences are subjective in nature [6], which 
makes it hard to apply the accurate strategy to decrease them. It 
is necessary to build models to support decisions for effective 
maintenance operations because of the complexity of 
production processes [7]. Yet, studying the dynamics of 
maintenance behavior seems to be a rather unexplored area in 
CIRP Annals, with few available studies identified elsewhere, 
see, e.g., [8]. This paper is based on the belief that a larger 
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understanding of how to achieve proactive maintenance 
behavior in manufacturing operations can be supportive in 
reducing the knock-on cost consequences in such time-
dependent systems. Furthermore, to sustainably implement 
strategical development of maintenance behavior, it has been 
argued [9] that despite us knowing the best practices, they do 
not align with the applied, where the limit is the organizational 
capabilities to integrate the conflicting priorities and messages. 

Hence, above-mentioned aspects frame the contribution of 
this study which presents a set of quantitative analyses that 
optimize maintenance behavior, testing four different strategic 
time horizons to their effects on the levels of maintenance 
proactiveness in the production system. The results are 
achieved by the application of simulation-based optimization 
(SBO), using multi-objective optimization (MOO) to a system 
dynamics (SD) model that studies aggregated maintenance 
behavior from different policies to the result in production 
performance. Hence, the experiments are evaluating the 
conflicting objectives of maximizing availability in production, 
minimizing direct maintenance costs, and minimizing the 
consequence costs connected to insufficient maintenance.  

The hypotheses of the study is that the time horizon is one 
of the key contributors to the success of sustainable strategic 
work, where: optimization of maintenance performance using a 
short time horizon is expected to produce more reactive 
behavior due to larger attention to direct maintenance costs, and 
using a longer time horizon is expected to produce more 
proactive behavior due to that the long-term benefits will have 
the opportunity to be considered in the tradeoff evaluation. 

Hence, to search supports to a sustainable implementation, 
addressed by [9], this paper presents one approach to inform 
strategic development of maintenance, seeking its economic 
justification by analyses of the aggregated system behavior. 
MOO is applied to explore the tradeoffs between the conflicting 
objectives of, for instance, the short-term economic 
requirements [2], and the long-term needs in the maintenance 
system to attain the desired development [5]. 

Strategy researchers [5,10,11], have argued for SD’s 
application to investigate how the growth and decline of 
multiple capabilities affect system performance. SD is applied 
to identify the interconnections between parts in relevant 
system boundaries, to support understanding the complex 
reality. Researchers have previously claimed the benefits of 
applications of SD to study maintenance behavior, and further 
details can be found in [4,5], of how operations management 
studies based on SD theory can apply to maintenance. To our 
knowledge and recent studies of literature, see [8], there are still 
no published simulation models, except ours, that include the 
dynamic tradeoffs in maintenance behavior between the levels 
of availability, maintenance costs, and maintenance 
consequence costs.  

Moreover, few studies have investigated the integration of 
MOO and SD models, see, e.g., [13,14]. The work of [13] has 
applied MOO on models from [15], which have shown possible 
to draw generalized conclusions through studying the resulting 
patterns from the extensive amount of different optimal 
simulation runs. Our previous studies have explored the 
discerned strategies to apply on more of less critical equipment 
in the production system [16], and how the impact of the 

starting point of preventive maintenance (PM) work may affect 
a manufacturing industry’s strategic development of 
maintenance [17]. 

Fig. 1. Concept of Non-domination, Decision and Objective Space, from [13]. 

In contrast to single-objective optimization, in which only 
one objective function is considered, the main concept of MOO 
is to evaluate two or more conflicting objectives against each 
other and obtain the Pareto-optimal solutions and the Pareto-
front [18]. This comparison of the solutions is executed on the 
basis of the domination concept in which a solution 𝑠𝑠1is said to 
dominate a solution 𝑠𝑠2 if 𝑠𝑠1is no worse then 𝑠𝑠2, with respect to 
all optimization objectives, and where 𝑠𝑠1 is strictly better than 
𝑠𝑠2 in at least one optimization objective [19]. Fig. 1. illustrates 
the concept of decision and objective space, as well as the 
domination and non-domination of solutions in MOO. The 
search space of a MOO problem is represented by the decision 
space where the input parameters, constitute a set of solutions 
evaluated through a solver, here an SD model, and mapped to 
the objective space. Thus, a certain solution A with its inherent 
values of the design parameters x1 and x2 are evaluated through 
the solver which subsequently results in A′ in the objective 
space representing the fitness or performance of solution A in 
terms of the objective functions f1 and f2.  

2. The SD+MOO study  

The technical procedure for how to achieve Pareto-optimal 
solutions, using MOO on SD models, have applied the method- 

Fig. 2. The phases of the strategy selection process. 
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ology developed by [13]; as in applying the NSGA-II algorithm 
running at least 50,000 evaluations of the SD model. And, the 
support to develop maintenance performance through the 
application of SD+MOO, is more accurately described as a part 
of a strategy selection process, depicted in Fig. 2. The strategy 
selection process contains three phases which result in different 
levels of knowledge to support strategic work in maintenance 
systems. Hence, this study applies phase two to elicit Meta 
knowledge of system behavior tradeoffs, elaborately described 
in [16,17]. 

2.1. The SD maintenance performance model 

The purpose of the SD model is to serve as the basis for more 
informed strategies by investigating tradeoffs between short-
term and long-term dependencies in the maintenance system. It 
is a generalized model developed with support from two large 
maintenance organizations in Swedish automotive industry. It 
is reviewed with detail explanations in [8], and [16] includes 
the specific SD model equations from the software. Thus this 
paper briefly introduces the model and its overall dynamics, 
which includes the following parts:  

 The applied mix of maintenance methodologies, such as 
run-to-failure (RTF), preventive maintenance using fixed 
intervals (PMfi), and using condition-based maintenance 
using inspections (CBMi) or sensors (CBMs) [20].  

 The defect generating and defect eliminating activities, 
resulting in the aggregated equipment health (EH) which 
relates to the rate of breakdowns (RBD) of equipment [15]. 

 The resulting proactive or reactive effects from above 
aspects to operations, alongside applied resources such as 
repair workers (SR), executing unscheduled or scheduled 
maintenance, inspired by [21]. 

 The continuous improvements (CI), developing 
countermeasures based on root cause analyses (RCA) of 
breakdowns inspired by practices at industrial partners, 
resulting in improving the applied mix of maintenance 
methodologies. 

 The total maintenance costs (CT), based on direct 
maintenance costs (CM), and estimated maintenance 
consequence costs (CQ), based on corresponding model 
behaviors, such as RBD, the rate of takedowns (RTD), and 
applied resources. See Eq. 1-4. 

Fig. 3. illustrates the model parts leading to the maintenance 
dynamics, and uses the stock and flow structure from the SD 
model that keeps track of the state of equipment in production 
as its base. The rest of the SD model is simplified into causal 
loop diagramming notations [15].  
Reactive maintenance dynamics leads to unscheduled 
maintenance, which in Fig. 3. is depicted as a stock 
accumulated through breakdowns (RBD) and reduced by 
unscheduled repairs, which restore equipment into function. 
RBD leads to deteriorated EH, which leads back to more RBD. 
The continuous level of equipment in the stock of unscheduled 
maintenance has the effect of reduced availability (AT) and 
produce a lower operations load on equipment, thus limits the 
deteriorating impact on EH. Together with the repair workers 

(SR), if kept constant, all these feedback eventually generate a 
new equilibrium level of EH and AT.  

Fig. 3. Maintenance dynamics in the SD model. 

Proactive maintenance dynamics leads to the execution of 
scheduled maintenance, which is a stock accumulated through 
planned takedowns (RTD) and reduced by scheduled repairs, 
restoring equipment into function before failure. The RTD 
depends on the planned work order backlog, which may be 
limited by the pressure to produce which rises with a growing 
gap between the goal and current level of AT; and if so happens 
it overrules the maintenance plan on short-term, having the 
consequence of increasing the work order backlog. Thus, a 
growing backlog will delay the proactive work and meanwhile 
cause an increased risk of a higher RBD to happen instead. 
Furthermore, the precision of identified defects depends on the 
currently applied mix of RTF, PMfi, CBMi, and CBMSs, 
represented by the boxed variable PM-work, with its current 
collective capability to proactively monitor the average EH 
status. Hence, new PM-work is prepared based on the policies 
set by goal PM-work, and the rate of CI arising from the RCA 
of breakdowns, which levels depend on the applied resource 
policies for the number engineers (SE) to its supports. The 
resource policies also determine the number of repair workers 
(SR) working with scheduled repairs, which should be in 
balance with the generated activities based on the level of PM-
work. Introducing CI has the effect of a moving equilibrium 
between reactiveness and proactiveness.  

The resulting behavior in the model in Fig. 3., generates the 
economic effects according to equations 1-4. Eq. 1 shows how 
CT is calculated. Eq. 2 includes total man-hour costs (Ch) and 
CI investments (CCI) which in this study only includes 
investments in CBMs, while RBD and RTD induce equal spare part 
costs per stop (CS). Eq. 3 describes that CQ consist of 
consequential breakdown costs (CQBD), which based on [23] has 
factor 4 to each breakdown, see Eq. 4, and capital costs from 
spare part inventory (CCSI).  
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ology developed by [13]; as in applying the NSGA-II algorithm 
running at least 50,000 evaluations of the SD model. And, the 
support to develop maintenance performance through the 
application of SD+MOO, is more accurately described as a part 
of a strategy selection process, depicted in Fig. 2. The strategy 
selection process contains three phases which result in different 
levels of knowledge to support strategic work in maintenance 
systems. Hence, this study applies phase two to elicit Meta 
knowledge of system behavior tradeoffs, elaborately described 
in [16,17]. 

2.1. The SD maintenance performance model 

The purpose of the SD model is to serve as the basis for more 
informed strategies by investigating tradeoffs between short-
term and long-term dependencies in the maintenance system. It 
is a generalized model developed with support from two large 
maintenance organizations in Swedish automotive industry. It 
is reviewed with detail explanations in [8], and [16] includes 
the specific SD model equations from the software. Thus this 
paper briefly introduces the model and its overall dynamics, 
which includes the following parts:  

 The applied mix of maintenance methodologies, such as 
run-to-failure (RTF), preventive maintenance using fixed 
intervals (PMfi), and using condition-based maintenance 
using inspections (CBMi) or sensors (CBMs) [20].  

 The defect generating and defect eliminating activities, 
resulting in the aggregated equipment health (EH) which 
relates to the rate of breakdowns (RBD) of equipment [15]. 

 The resulting proactive or reactive effects from above 
aspects to operations, alongside applied resources such as 
repair workers (SR), executing unscheduled or scheduled 
maintenance, inspired by [21]. 

 The continuous improvements (CI), developing 
countermeasures based on root cause analyses (RCA) of 
breakdowns inspired by practices at industrial partners, 
resulting in improving the applied mix of maintenance 
methodologies. 

 The total maintenance costs (CT), based on direct 
maintenance costs (CM), and estimated maintenance 
consequence costs (CQ), based on corresponding model 
behaviors, such as RBD, the rate of takedowns (RTD), and 
applied resources. See Eq. 1-4. 

Fig. 3. illustrates the model parts leading to the maintenance 
dynamics, and uses the stock and flow structure from the SD 
model that keeps track of the state of equipment in production 
as its base. The rest of the SD model is simplified into causal 
loop diagramming notations [15].  
Reactive maintenance dynamics leads to unscheduled 
maintenance, which in Fig. 3. is depicted as a stock 
accumulated through breakdowns (RBD) and reduced by 
unscheduled repairs, which restore equipment into function. 
RBD leads to deteriorated EH, which leads back to more RBD. 
The continuous level of equipment in the stock of unscheduled 
maintenance has the effect of reduced availability (AT) and 
produce a lower operations load on equipment, thus limits the 
deteriorating impact on EH. Together with the repair workers 

(SR), if kept constant, all these feedback eventually generate a 
new equilibrium level of EH and AT.  

Fig. 3. Maintenance dynamics in the SD model. 

Proactive maintenance dynamics leads to the execution of 
scheduled maintenance, which is a stock accumulated through 
planned takedowns (RTD) and reduced by scheduled repairs, 
restoring equipment into function before failure. The RTD 
depends on the planned work order backlog, which may be 
limited by the pressure to produce which rises with a growing 
gap between the goal and current level of AT; and if so happens 
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set by goal PM-work, and the rate of CI arising from the RCA 
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balance with the generated activities based on the level of PM-
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economic effects according to equations 1-4. Eq. 1 shows how 
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CI investments (CCI) which in this study only includes 
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costs per stop (CS). Eq. 3 describes that CQ consist of 
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Consequently, the cost effects from reactive maintenance 
behavior consist of CM based on breakdowns and applied 
resource policies, which is the standard approach to its cost 
modeling [9]. Yet, breakdowns also generate consequence costs 
(CQBD), which effects are more intangible and apparent in other 
parts of an organization [22]. Thus estimates as in Eq. 4 must 
be applied. Additionally, reactive maintenance behavior 
requires higher levels of spare part inventories due to 
uncertainty, adding capital costs for CCSI. These aspects sum up 
to the CQ according to Eq. 3. 

Subsequently, the effects from proactive maintenance 
include a higher RTD, which have zero CQBD, however, apply an 
equal level of direct material costs (CS) as to breakdowns for 
each repair, but somewhat shorter repair time, and finally also 
reduce spare part inventories due to more planned work. On 
adding costs proactive behavior may apply more costive 
resource policies, more SR and SE, however, if the RBD can be 
reduced within the time horizon of the investigated strategy 
there may be requiring fewer SR on average. On the other hand, 
to achieve a higher rate of CI to move in the proactive direction 
also requires more SE, adding to the CM.  

2.2. Defining the SD+MOO experiments 

The purpose of the experiments is to enable testing the 
above-mentioned hypothesis about the importance of the 
strategic time horizon for the optimal tradeoff between the 
conflicting objectives in the maintenance performance model. 
To test the hypothesis, four experiments have been conducted 
on the same SD model using a different length of simulation 
time: one, three, five, and seven years. Any other changes are 
omitted. Furthermore, the experiments have applied the same 
optimizing objectives: maximize (AT), minimize (CM), and 
minimize (CQ).  
As the above description of the SD model explains, the three 
objectives are the measures of complex feedback interactions in 
the model. Hence, the experiments have searched combinations 
of input parameter values in the SD model within the same 
parameter ranges for all experiments, see Table. 1. 
Accordingly, the defined experiments explore their respective 
optimal solutions, given the time frame for the policies to be 
implemented and acted out through the delays of the modeled 
system.  

Table 1. Input parameter data for MOO evaluations. 

Input parameters Range Step 

1.  Number of SR 4 – 50 1 

2.  Number of SE 0 – 30 1 

3.  % of PMi from RCA 0 – 1 0.05 

4.  % of CBMi from RCA  0 – 1 0.05 

5.  % of CBMs from RCA 0 – 1 0.05 

6.  Goal % CBM of total PM 0 – 1 0.05 

7.  CBMi interval (Weeks) 4 – 52 2 

8.  Goal CBMs 0 – 500 25 

 
Input parameters one and two affect resource policies for SR 

and SE. More SR have an instant short-term effect on AT in 
reactive maintenance, see e.g. [8]. And, to achieve proactive 

maintenance there is need for more staff and time to develop 
the supportive PM-work required. However, such development 
has tradeoff costs and delayed effects in the system that may 
not come into effect during the time horizon applied in the 
experiment.  

Remaining input parameters, three to eight, are parameters 
in the SD model which explore goals leading to different levels 
of PMfi, CBMi, and CBMs to guide policymaking for the 
development of PM-work. In previous studies the resulting 
output patterns of these mixes have been studied, see e.g. 
[16,17]. Therefore, this study excludes a further focus on these 
measures, limiting the study to the inputs of SR and SE.  

To close the description of the MOO experiments, some 
aspects of the initial conditions are mentioned to support 
interpreting the result graphs. An experiment is affected by its 
initial levels of AT, EH, and levels of constituent PM-work. In 
this study, these values are reused from previous studies, based 
on levels that provided equilibrium behavior using RTF strategy 
[8], and the assumed starting point of mediocre PM-work as 
applied in one of the MOO+SD experiments in [17]. It gives an 
initial AT at 0.622 and EH at 0.7737. And, 0.5 of equipment 
applying PMfi without any CBMi or CBMs resulting in an initial 
fraction of PM-work at 0.25 in the model.  

2.3. The SD+MOO results 

The presented results are the Pareto-front solutions based on 
the conflicting objectives of maximizing (AT), minimize (CM), 
and minimize (CQ). Further, solutions with lower AT than 0.85 
are not considered in the analyses. 

CM is generated based on the levels of applied resources and 
the consumed amount of spare parts, related to RTD and RBD 
throughout the simulation period. According to Fig. 4., all 
experiments show the expected tradeoff where an increase of 
invested CM, by allocating more resources, do not necessarily 
provide a linear increase of AT. Yet, to around AT = 0.90, a 
nearly linear increase of CM is revealed in all solutions. The 
experiment with one-year time horizon, TH1Y, stands out with 
clearly more expensive solutions which do not reach above 0.92 
in AT, further it depicts a sharp knee region, which means that a 
small increase on AT induce a considerable higher CM, while the 
other experiment solutions depict smoother knee regions.  

Fig. 4. Solutions from the four experiments of the tradeoffs between 
availability (AT) and maintenance costs (CM). 
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In sum, the results in Fig. 4. depict that the applied time 
horizons have tradeoff solutions on different achieved levels of 
CM compared to gained AT, providing a spectrum of solutions 
where the longer time horizon leads to better-achieved 
objectives. 

Fig. 5. Solutions from the four experiments of the tradeoffs between 
availability (AT) and maintenance consequence costs (CQ). 

Studying Fig. 5. which compares AT to the induced CQ 
another pattern occurs. The TH1Y solutions reveal a rather 
linear relation between AT and CQ. In comparison with the other 
experiments, TH1Y has no solutions at the higher region of AT 
having a clear non-linear pattern of lower CQ. We could expect 
that these solutions do not include the achievement of proactive 
maintenance, which is later shown in Fig. 6. Since, attaining a 
proactive maintenance reduces the RBD, resulting in lower CQBD.  

The experiment with three-year time horizon, TH3Y, and the 
five-year horizon experiment, TH5Y, both reveal an 
unexpected pattern where solutions with highest AT are found 
on disparate levels of higher and lower levels of CQ. The 
solutions in the experiment with seven-year time horizon, 
TH7Y, apart from that pattern slightly, by having a small slope 
from higher CQ, on the right hand in the graph, to lower, as AT 
increases. Moreover, TH7Y reveals a cluster of solutions at the 
lowest end of CQ with the highest AT values.  

In sum, the results in Fig. 5. depict that the applied time 
horizons have tradeoff solutions on different achieved levels of 
CQ compared to gained AT, however, they provide a non-linear 
pattern where some solutions from TH3Y are better than some 
solutions from TH7Y. Furthermore, the results indicate that 
applying a longer time horizon can identify tradeoff solutions 
that have significantly lower levels of CQ.  

 
The parallel coordinate map (PCM), depicted in Fig. 7., 

visualizes relations between parameters of interest. To have a 
cleaner figure the TH5Y and TH3Y results are omitted, 
comparing the most disassociated experiments TH1Y and 
TH7Y. The PMC visualizes that the TH1Y solutions depict one 
distinct cluster, with RTD at 4-6 per week, and RBD at 34-36 per 
week; thus exhibits a ratio of about 90% of reactive 
maintenance. The PCM reveals such ratio to induce the higher 
levels of CT, see Eq. 1., which is the sum of the costs depicted 
in the two aforementioned graphs, as well as, the higher levels 
of CM. Hence, the effect of reducing CQ can be evaluated to the 

Fig. 7. Parallel coordinate map of experiments TH1Y and TH7Y. 

required increase of CM to achieve the associated results. In 
TH1Y it means higher levels of allocated SR, while for SE, 
which reveals a pattern of even distribution is less informative 
on the optimal choice. In contrast, the TH7Y solutions are 
represented with several clusters in the PCM. Where, for 
instance, the cluster containing the highest levels of AT relates 
to ranges of higher RTD, at around 22 per week, and lower RBD, 
at around 18 per week; exhibiting a ratio of around 45% of 
reactive maintenance on average. Furthermore, tracing the 
results of these solutions they induce the lowest levels of CT, 
but at the same time require the higher levels of CM and the 
higher levels of SR; and apply more SE than the other TH7Y 
solutions. Moreover, the cluster around AT = 0.95 in the TH7Y 
solutions, traced to the resource parameters are seen to require 
fewer repair workers and engineers and thus lower levels of CM, 
still achieving more proactive levels than the THY1 solutions. 

In sum, the results depicted in Fig. 6. reveal that the applied 
time horizons strongly relate to the achievement of proactive 
maintenance behavior, measured by the rates of takedowns 
(RTD) and breakdowns (RBD).  

In this study, the quantified results of the objective space 
(AT, CM, CQ) have been studied, as well as, selected model 
parameters (RTD, RBD) which indicate on achieved proactive 
behaviors in the maintenance SD model, and two input space 
parameters (SR, SE). In this study, the specific input-policies, 
besides staffing (SR, SE), are not deeper studied, which could be 
part of future works. However, the above-analyses of resulting 
tradeoff solutions indicate that: 

 It requires a longer time horizon to act out the effects, 
based on applied policies, to expose a proactive 
maintenance behavior.  

 A proactive maintenance behavior is conditional to achieve 
the higher levels of availability (AT) and lower levels of 
maintenance total costs (CT). 

3. Discussion and conclusions 

To achieve proactive maintenance behavior it requires the 
continuous improvement (CI) of preventive maintenance (PM) 
procedures to balance the underlying maintenance need of the 
equipment. This study shows that results from strategic 
development of maintenance do not come into effect on short-
term. This work is based on a previously published system 
dynamics (SD) model of maintenance performance dynamics. 
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required increase of CM to achieve the associated results. In 
TH1Y it means higher levels of allocated SR, while for SE, 
which reveals a pattern of even distribution is less informative 
on the optimal choice. In contrast, the TH7Y solutions are 
represented with several clusters in the PCM. Where, for 
instance, the cluster containing the highest levels of AT relates 
to ranges of higher RTD, at around 22 per week, and lower RBD, 
at around 18 per week; exhibiting a ratio of around 45% of 
reactive maintenance on average. Furthermore, tracing the 
results of these solutions they induce the lowest levels of CT, 
but at the same time require the higher levels of CM and the 
higher levels of SR; and apply more SE than the other TH7Y 
solutions. Moreover, the cluster around AT = 0.95 in the TH7Y 
solutions, traced to the resource parameters are seen to require 
fewer repair workers and engineers and thus lower levels of CM, 
still achieving more proactive levels than the THY1 solutions. 

In sum, the results depicted in Fig. 6. reveal that the applied 
time horizons strongly relate to the achievement of proactive 
maintenance behavior, measured by the rates of takedowns 
(RTD) and breakdowns (RBD).  

In this study, the quantified results of the objective space 
(AT, CM, CQ) have been studied, as well as, selected model 
parameters (RTD, RBD) which indicate on achieved proactive 
behaviors in the maintenance SD model, and two input space 
parameters (SR, SE). In this study, the specific input-policies, 
besides staffing (SR, SE), are not deeper studied, which could be 
part of future works. However, the above-analyses of resulting 
tradeoff solutions indicate that: 

 It requires a longer time horizon to act out the effects, 
based on applied policies, to expose a proactive 
maintenance behavior.  

 A proactive maintenance behavior is conditional to achieve 
the higher levels of availability (AT) and lower levels of 
maintenance total costs (CT). 

3. Discussion and conclusions 

To achieve proactive maintenance behavior it requires the 
continuous improvement (CI) of preventive maintenance (PM) 
procedures to balance the underlying maintenance need of the 
equipment. This study shows that results from strategic 
development of maintenance do not come into effect on short-
term. This work is based on a previously published system 
dynamics (SD) model of maintenance performance dynamics. 
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The purpose of the SD model is to serve as the basis for a more 
informed strategic development of maintenance behavior by 
supporting the investigation of tradeoffs between short-term 
and long-term dependencies in the system. Hence, it can be 
considered to represent a structural theory for studying the 
feedback between interrelating elements of equipment 
maintenance, such as maintenance need based on reliability and 
current equipment health, number of repair workers, applied 
mix of maintenance methodologies, CI of the applied mix, and 
the corresponding effect in operations based on ratio between 
scheduled and unscheduled maintenance interventions. Hence, 
the SD model makes possible addressing the system costs of 
maintenance as a result of the operational feedback behavior in 
the system. 

To explore the SD model we apply multi-objective 
optimization (MOO) which generates near optimal Pareto-front 
solutions. The experiments apply different time frames of one, 
three, five, and seven years; for which the inputs of staff 
resources and the corresponding CI effects of the PM-work are 
searched and evaluated, using MOO, through the SD model’s 
complex feedback structures with delayed effects. 

The SD-MOO experiments have searched the tradeoffs 
between the conflicting objectives of maximizing availability, 
minimize maintenance costs, and minimize maintenance 
consequence costs. The results indicate that the levels of 
achieved proactive maintenance behavior relate to the applied 
strategic time horizon when searching the appropriate strategy 
for developing maintenance. For the specific study, it has had 
the implication that the optimal tradeoff solutions using a one-
year time horizon allow low levels of proactiveness, around 
10% when the resulting ratio of scheduled maintenance is 
compared to unscheduled. While quite the reverse is true using 
a seven-year time horizon, ending up at around 55% on the 
same measure of proactiveness; which moreover is exhibiting 
higher levels of availability and lower levels of maintenance 
consequence costs. However, both cases partly share the 
required levels of resources to achieve the associated results.  

Hence, the hypothesis that the time horizon is one of the key 
contributors to the success of sustainable strategic work, in 
terms of enabling a more proactive strategy, is considered 
enforced.  

Nevertheless, to use these generalized results in a sharp 
manufacturing case, naturally, the SD model must be adapted 
until enough confidence is achieved for its specific use. Hence, 
the applied SD model holds the largest bias in this study. 
However, at the same time, the results may indicate its supports 
as a structural theory for studying proactive and reactive 
maintenance behavior. The results may also support showing 
how the application of MOO supports exploring the SD model, 
and its corresponding applicability to support the economic 
justification of proactive maintenance on an aggregated system 
behavior level.  

As regards future work, the presented application holds 
many promising uses and enables testing different questions 
with respect to strategic development of maintenance, and it can 
induce deeper studies to adapt the SD model to contain more 
dynamics related to achieving proactiveness, such as, for 
example, the hiring, training, and retiring of repair workers. 
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