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Abstract: In this paper, we developed a fully textile sensing fabric for tactile touch sensing as the robot
skin to detect human-robot interactions. The sensor covers a 20-by-20 cm? area with 400 sensitive
points and samples at 50 Hz per point. We defined seven gestures which are inspired by the social
and emotional interactions of typical people to people or pet scenarios. We conducted two groups of
mutually blinded experiments, involving 29 participants in total. The data processing algorithm first
reduces the spatial complexity to frame descriptors, and temporal features are calculated through
basic statistical representations and wavelet analysis. Various classifiers are evaluated and the feature
calculation algorithms are analyzed in details to determine each stage and segments’ contribution.
The best performing feature-classifier combination can recognize the gestures with a 93.3% accuracy
from a known group of participants, and 89.1% from strangers.

Keywords: tactile sensing; smart textiles; human-robot interaction

1. Introduction

Tactile sensors are an important sensory in robotics, since they contribute largely as the synthetic
counterpart of biological skins on human and other animals. They are crucial in providing control
feedback for safely and securely grasping and manipulating objects [1-3].

However, a majority portion of biological skins are not sensitive enough for precise force
sensing and localization for assisting controls [4]. In the nature, bodily contact is an important
aspect of emotional communication among humans [5], as well as between human and animals [6].
Tactile interaction has been shown to carry emotional information in a similar way as e.g.,
face expressions [7]. Studies have also shown that body movements are specific for certain emotions [8].
As pointed out in [3], most tactile sensors are based on piezoresistive materials, which have the problem
of poor hysteresis and linearity. However, for sensing emotional touches, precision tactile sensing is
not necessary [5,7].

In recent years, the focus on robotics research has evolved from precise and delicate movements
to perform various tasks, to a deeper communication between human and robotic interactions [9-11].
In [12], a humanoid robot WE-4RII (Waseda University, Tokyo, Japan) can effectively express seven
emotion patterns with body languages. Touch is fundamental in human-human interaction and as
robots enter human domains, touch becomes increasingly important also in human-robot interaction
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(HRI). In recent years, we’ve seen several approaches to whole-body tactile sensing for robots, e.g.,
for the iCub (Italian Institute of Technology, Genoa, Italy) [13,14] or the HPR-2 (Kawada Industries,
Tokyo, Japan) [15] robots. These systems are cell based, where each cell comprise a small circuit
board holding necessary sensors and electronics and, while presenting excellent sensing capacity,
they constitute a relatively hard surface with limited flexibility. In [16] conductive serpentine structures
and various silicon compounds are used to construct a skin-like bio-compatible sensor to detect touch
on different zones and caress across zones.

In a recent study comprising 64 participants communicating emotions to an Aldebaran Nao robot
(SoftBank Robotics, Tokyo, Japan) using touch, people interacted for longer time when the robot was
dressed in a textile suite [17], compared to a standard Nao with a hard plastic surface. These results
indicate that the surface material of the robot may be significant for extending and directing tactile
HRI. Inspired by these results, we here report on-going work investigating the use of touch sensitive
smart textiles as a potential alternative to cell based robot skins.

One informative aspect of tactile HRI is the type of touch [9]. In [18], individually designed
56 capacitive sensors are installed in a toy bear to detect affection-related touch. The data processing
algorithm relies on signal features such as amplitude and base frequency from all the sensors.
In [19], a touch sensing furry toy is developed with a conductive fur touch sensor and piezoresistive
touch-localization sensor are combined. Using statistical features of the signal and random forests
classifier, the prototype recognizes 8 gestures with a 86% accuracy. In [20], using electrical impedance
tomography (EIT), with 19 specially placed electrodes, an EIT sensor is used to detect 8 affective touch
gestures, with accuracy of 90% for single person, and 71% for multiple participants.

In [21], a commercially available 8-by-8 textile pressure sensor is used. With custom picked
features, classification accuracy of 14 gestures is 60% for leave-one-participant-out cross validation.
In the present work, we evaluate the capacity of distinguishing between seven different types of touch,
listed in Table 1, based on sensor data gathered from the smart fabric.

Table 1. Prediction class of gestures definition.

Index Gesture Details

P1 grab whole hand grabbing the dummy’s arm

P2 poke with one finger, quick and forceful action

P3 press with multiple finger tips, slow action

P4 push whole hand including palm, slow action

P5 scratch  with multiple finger tips, quick repeating actions
Pé6 pinch on a small area, forceful action

p7 stroke  with multiple fingers, gentle repeating actions

1.1. Contribution

In this paper, we propose to use textile pressure mapping sensors as tactile sensors for emotional
related touch gesture detection. We use the smart fabric sensors from our previous research efforts.
They have been used for wearable and ambient planar pressure sensing for activity recognition
applications, such as monitoring muscle activity through tight fitted textile sensor [22] or recognizing
postures from the body pressure profile on the back of office chairs [23].

We define 7 gestures to detect, and evaluate the method through two groups of mutually blinded
experiments. The experiment datasets are evaluated by extracting basic statistic features and wavelet
analysis. With various classifier, the recognition rate on an exclusive person independent basis is up
to 93.3%.

We also analyzed the contribution of each aspect of the feature extraction process, which offers
a detailed breakdown of the algorithm and the guideline for reducing the computational complexity
with less recognition performance reduction.
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1.2. Paper Structure

In Section 2, we introduce the fabric tactile sensor and the driving electronics. Section 3 describes
the experiment set up and dataset composition; In Section 4, we first explain how to extract features
from the spatial-temporal data, then evaluate different features’ contribution to the recognition rate.

In Section 5, we show the detailed classification results as confusion matrix and discuss the results
such as the underlying meanings of the miss classifications.

Section 6 concludes the paper with the summary of our findings.

2. Sensor Hardware

2.1. Sensing Fabrics

The touch sensitive textile skin is made of the textile pressure mapping (TPM) sensor (developed
during the EU FT7 project SimpleSkin [24]), which has a three-layer structure as typical force sensitive
resistors. But instead of thin film, it is made from flexible fabrics (produced by Sefar AG [25]). Its flexible
nature have proven to be suitable for wearable garments, such as a smart shirt [26]; or as textile covers
in smart living environments, such as a couch cover for gesture input [27] and posture recognition [23].
Therefore, they can be bent to fit many irregular surfaces as on robots. Compare to other modular,
comfort oriented robot skin sensor designs such as [13-16,28], the fabric TPM sensor has a much
simpler structure and less assembling effort. And in contrast to structurally simpler tomography-based
sensors such as [29], the TPM sensor offers finer and more reliable pressure location information.

The middle force-sensitive layer is carbonated polymer fabric, and the top and bottom layers are
metallic fiber stripes woven into a non-conductive fabric substrate as parallel electrodes. Every cross
point of the top and bottom layers is a pressure sensitive point, and the spatial granularity is determined
by the pitch distance of the parallel electrodes. The sensor’s resistance change with the pressed force is
shown in Figure 1. A probe is pressed on a random cross point, and multiple levels of force are applied.
In this prototype we use a 1 cm pitch, 20-by-20 matrix.
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Figure 1. Fabric sensor characteristic.

2.2. Driving Electronics

The sensor is scanned and sampled by a custom designed printed circuit board (PCB) built around
a dsPIC micro-controller (Microchip Technology, Chandler, AZ, USA), sampling rate is 50 frames per
second with Bluetooth data streaming. It is the same hardware platform we used during our work as
a smart chair cover in [23] as shown in Figure 2. The electronic module operates on either wireless or
wired for data transmission. With 3.3 V power supply, the sensing part of the electronics consumes
60 mA during operation, and the Bluetooth consumes 40 mA for data streaming. The sensor fabric are
connected to the electronic through standard ribbon cables and 2.54-pitch pin connectors, making it
easy to produce. On the smart fabric side, the ribbon cables are soldered onto the metallic fabric stripes.
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Figure 3 shows the TPM matrix and the real-time data visualizing on a tablet, with a hand pressed
in the center. During the construction of the sensor fabric structure, the top and bottom layers of
electrode stripes are treated identically; however, on the electronic side, one layer is connected to
output ports to provide voltage (stimulus electrodes), and the other layer is connected to analog inputs
to measure the voltages (sensing electrodes).

(a) Electronics module with enclosure (b) Main PCB

Figure 2. Electronic Hardware.
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Figure 3. Realtime data visualization with a hand pressed on the textile pressure mapping matrix.

The micro-controller has sufficient pins for both stimulus and sensing electrodes, up to 32 each.
During operation, one stimulus electrode is powered with 3.3 V voltage and the remaining stimulus
electrodes are connected to ground. The volume resistance Rsense, ) of the carbonated polymer fabric
within the overlapping area of one stimulus electrode (indexed as x) and one sensing electrode (indexed
as y) decreases as the fabric is being pressed. Each sensing electrode is connected to a grounding
resistor Rgnd,. Ideally, Rsense(, ) and Rgnd, forms a voltage divider, and the 12-bit analog-digital
converter measures the voltage between them, which changes with Rsense(, ). A full scan is completed
by measuring all of the sensing electrodes when every stimulus electrode is powered. As shown in
Figure 3, the hand print is reconstructed on the receiver device by the scanning process.

3. Experiment Setup

3.1. Experiment Design

We defined seven gestures as listed in Table 1. Only in P1 - grab, the sensing skin is wrapped
around a dummy arm (Figure 4a), and for the rest of the gestures, the sensor is fixed on a flat surface
(Figure 4b). This setup should be seen as a pre-stage to mounting the fabric as skin for a robot,
constituting a robot-agnostic baseline without the full complexity of uneven surfaces and the robot’s
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own motions. The focus of our evaluation is to investigate if the sensor can be used to physically
distinguish these expressive gestures.

=

(a) P1 Grab (b) P7 Stroke

Figure 4. Experiment setup and gesture example (a) P1 Grab and (b) P7 Stroke.

3.2. Dataset

We recorded two groups of data using the same sensor set up. The two groups are conducted by
different persons, and they do not have knowledge of how the other group recorded the experiment.
The two groups are therefore mutually blinded, including the experiment conductors. It ends up
that in Group A, the conductors instructed the participants to perform P5 Scratch and P7 Stroke as
quick burst of three repetitions in a single action; while in Group B, the participants only perform the
gestures continuously for every action.

o Group A: twenty four people, two recordings per person. Every gesture is repeated 16 times.
During the recording, the participants are asked to use both their right and left hands to perform
the gestures equally in multiple repetitions. The participant pool consists of 12 males and
12 females. We assume the hand size may be a contributing influence factor in this experiment.
The hand sizes (from the bottom of the palm to the tip of the longest finger) of the males range from
17.5 to 20 cm, and 17-18.7 cm for the female participants. There are one left handed participant in
each gender.

e Group B: 5 people, single recording per person. Every gesture is repeated 16 times.
The participants use only one hand of their choice to perform all the gestures. There are 2 female
and 3 male participants. Their hand size ranges from 16.5 cm to 21.5 cm.

We use Group A for the majority of data analysis and algorithm evaluation. Group B serves
as a reference to see how the algorithm is influenced by a completely new setup with different
environment and directing persons.

The participants are given the literal descriptions of the seven gestures only, without visual
guidance. They are instructed that they can relate each gesture to suitable emotions, however,
the experiment instruction does not prescribe specific emotion-gesture bindings. The data is manually
annotated to separate every gesture action by the experiment conductor. Overall, 5376 gesture actions
are recorded in Group A and 560 in Group B.

4. Data Processing Algorithm

4.1. Data Format and Digital Processing

The pressure mapping sensor generates a temporal sequence of 2-dimensional pressure mapping
frames, at a speed of 50 frames per second. Figure 5 shows the accumulated frame of a random example
of every gestures from a random participant. Every frame is up-sampled from 20-by-20 to 40-by-40 to
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increase the spatial resolution with bicubic interpolation. To extract information, we first reduce the
2D spatial data into limited information as frame descriptors. The following descriptors are calculated
from every frame:

e  Djp: mean value of all pixels’ value

e  Dy: maximum value of all pixels’ value

e  Dj: standard deviation of all pixels’ value

o  Djy: distance from center of gravity to the frame center

e  Ds: distance from maximum point to the frame center

e D¢ the number of pixels that has higher value than a threshold (threshold = mean +
standard deviation)

The frame descriptors therefore reduces the 2-dimensional information to a limited vector.
For example, if a gesture lasts 3 s, a stream of 150 frames (each 20-by-20) are generated by the
tactile sensor, and six arrays, each 150 in length, are abstracted as the temporal sequences of frame
descriptors. D1 and Dy describes the intensity and location of the center of the pressure; D, and Ds
offers information of the highest pressure point; D3 describes how scattered the pressure is on the
surface; Dg describes the surface area of the contact.

P1 Grab P2 Poke P3 Press P4 Push PS5 Scratch P6 Pinch P7 Stroke

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Figure 5. Comparison of the accumulated frame of a random example of every gestures from a random
participant. Every pixel in the figure has the summary value of that pixel location within the time
window of the action.

The experiment data is manually segmented by the experiment conductor roughly before and after
the contact. To make sure the data samples cover exactly the contact time, we define a cut-off threshold:

Threshold,tofs = min(Dy) + (max(Dy) — min(D1)) x 10%

The samples before the first t{ when Dq(t;) > Thresholdcutoff, and after the last t, when
Dy (t2) > Threshold s,y are removed.

Figure 6 visualizes the temporal sequences of frame descriptors from different classes. One action
of each gesture from every person is randomly selected. For comparison purposes, the sequences
are scaled to the same 400-sample window using linear interpolation; the original data sequences
have different length. The next step is to extract features to distinguish between different classes.
For example, in subplot Ds-P2, P2 Poke has significantly smaller Dg than the other gestures; P5 Scratch
and P7 Stroke have distinct higher frequency movements than the other gestures in all the frame
descriptors; P1 Grab and P4 Push has higher average value in D1 and D, than the other gestures.

We investigate two types of features from the temporal sequences D, (t) of size T: basic statistic
representations, and wavelet analysis.
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P1 Grab P2 Poke P3 Press P4 Push PS5 Scratch P6 Pinch P7 Stroke

L]

200 401

Figure 6. Comparison of the temporal sequence of frame descriptors from each class. Each curve is
from a different person within Group A. The x-axis are sample in the temporal domain, the y-axis
are scales of the values from different frame descriptors. The original data has different temporal
length; in this plot they are scaled to the same 400-sample window using linear interpolation for
visual comparison.

4.1.1. Basic Features

The 5 basic statistic representations are:

e the average value in the window
T
mean(Dy) = Y Dx(t)
t=1

e the standard deviation in the window, defined as

T
std(Dy) = | = 3 [Di(t) — mean(D.) 2
t=1

e the absolute range of the sequence: max(Dy) — min(Dy)
e the kurtosis of the sequence, which measures how outlier-prone the data is defined as:

% i(Dx(t) — mean(Dx))4
—1
kur(Dx) = —=— Dy

o the skewness of the sequence, which is the asymmetry measurement of the data around the mean
value. It is defined as:

1 i(Dx(t) — mean(Dy))?

SkZU(Dx) == (Std(Dx))3
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These features would describe the distribution of the temporal sequence, and are commonly used
in statistic analysis.

The temporal features are not to be confused with the frame descriptors. For example, D5(t) is
the standard deviation of all the pixels from a frame at sample f at a particular point in time; Dj is the
sequence of the standard deviation of each frame within the window; std(D3) is the standard deviation
of all the 2D standard deviation frame descriptors within the window. Frame descriptors reduce the
spatial domain data into limited measures, and the temporal features further reduce the temporal
domain information. For one window of gesture, 6 sequences of frame descriptors are calculated,
which results in overall 30 basic features.

4.1.2. Wavelet Features

To convert frequency-related information from the data into features, we use wavelet transform.
Wavelet transform offers frequency and temporal localization of the target signal.

We first pad the Dy (t) signal of length T with its boundary values with a padding size of T/2:
before Dy, Dy(1) are inserted T/2 times repeatedly, and at the end of Dy, Dy(T) are inserted T/2
times. Then the padded signal D (t),t € [1, T] is multiplied with a symmetric Hamming window
w(t),t e [1,T]:

DY (t) = Di(t) x w(t),

w(t) = 0.54 — 0.46c0s (Tzftl) e [LT]

Figure 7 visualizes the boundary padding and hamming window process. Padding and window
functions are typical techniques in signal processing to remove the influence of the sampling window.

D//
Hamming
Paddlng Wmdow
| w(t
/\ 200

100 200
t t 100 200 300 400

Figure 7. Visualization of the boundary padding and hamming window pre-processing before
wavelet transform.

We use fast wavelet transform implemented by the Large Time-Frequency Analysis Toolbox
(LTFAT) [30], which follows Mallat’s basic filterbank algorithm for discrete wavelet transform [31].
Figure 8 offers an illustration and comparison of two different source signals going through 5-level and
10-level filterbanks. Essentially, each filterbank iteration calculates a vector of coefficients as results.
The calculation uses a mother wavelet, which is scaled and shifted to provide frequency variance and
temporal localization. In this study, we used the Daubechies 8 (db8) wavelet as the motherwavelet [32].
Other standard mother wavelets can also be used in this process; however, once chosen, the mother
wavelet should not be changed because the wavelet transform will have different references. Higher
iteration targets the higher frequency and finer temporal localization, which results in a longer vector
of coefficients. For example, assume the sample frequency is f, with T = 1600 samples, a five-level
filterbank discrete wavelet transform as in Figure 8e f results in wavelet coefficients as shown in Table 2.
We define the highest level as ], therefore the coefficients are

Caj(Dx), j € [LI])

cw)= (S
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These coefficients are unique to the specific signal, as they can be used to reconstruct the signal
by the inverse wavelet transform. Each subband contains temporal localization of the corresponding
frequency. Therefore their distribution information can be used as unique features.

2

o
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Figure 8. Visual illustration of wavelet transform. (a,b) are the source signal; (c—f) are scaleograms of

the wavelet transform coefficients; (c,e) are the results from (a); (d,f) are the results from (b); (c,d) are

the results of 10 filterbank iterations; (e,f) are 5 filterbank iterations.

For the last three subbands (in the example in Table 2, level 3-5, subband d3, d4, d5, a5),
we calculate the mean(C,(Dyx)),n € {a],d],d(J] —1),d(] —2),d(] — 3)} as the first four wavelet

features.

For the lower levels C4j(Dy),j € [1,] — 4] which have significantly finer temporal

granularity and bigger number of coefficients, we calculate the following features to describe the

distribution information:

e mean(Cy(Dy))

o  max(Cy(Dy)) — min(Cy(Dy))

o std(Cn(Dx;)
o kur(Cy(Dy))
o skw(Cy(Dy))

Therefore, for every sequence of frame descriptors D, for | = 5, 14 features are calculated from
the wavelet transform; for | = 10, 39 features are calculated.

Table 2. The frequency range and coefficients of the discrete wavelet transform.

Level SubbandIndex(j) Frequencyinfn FrequencyinHz  Coefficients C(Dy)
1 d1 fn/2-fn 25-50 C41(Dy,n), 1 € [1,800]
2 dz fn/4-fn/2 12.5-25 Cio(Dy,n),n € [1,400]
3 d3 fn/8-fn/2 6.25-12.5 Cu3(Dy,n),n € [1,200]
4 d4 fn/16—n/8 3.125-6.25 Ci4(Dy,n),n € [1,100]
5 d5 fn/32-fn/16 1.5625-3.125 Cy5(Dy,n),n € [1,50]
5 ab 0-fn/32 0-1.5625 Cys5(Dy,n),n € [1,50]
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4.2. Evaluation Methods

We use the classifiers from the Matlab Classification Learner app (2017a, MathWorks, Natick, MA,
USA), which enables performance comparison of various classifiers in one stop. The classifiers we
evaluated are:

o  Medium Tree (maximum 20 splits decision tree)

e Linear Discriminant Analysis (LDA)

e  Support Vector Machine (SVM) with linear kernel

e SVM with quadratic kernel

e  K-nearest neighbors (KNN) with K = 10

o distance weighted KNN with K = 10

o Bagged Trees (random forest bag, with decision tree learners)

For cross-validation, we consider three settings:

e Random cross-validation: the training data and testing data are from the same data set with k-fold
cross-validation.

o Leave one recording out: as the data from the same experiment session may exhibit greater
similarity, we use separate different sessions from the same person into training and testing data
of the classifier.

e Person independent exclusive: the training data and testing data are from two groups of persons;
the two groups are mutually exclusive. So that the classifier has no previous knowledge of the
person being tested.

In all three settings, the testing data samples do not appear in the training data pool. The results
we present are calculated from the confusion matrix after comparing the prediction with the ground
truth. We use accuracy (ACC) as the comparison measure, which is the proportion of correctly classified
samples in all testing data.

4.3. Feature Contribution Decomposition

First we investigate the contribution from different feature sets by using only the specific set of
features in the machine learning process. In this step, we use the random cross-validation setting,
with all the data from Group A, with 5-fold cross-validation.

4.3.1. Basic Features

The basic features are defined in Section 4.1.1. We consider all the frame descriptors (Dy, x € [1, 6]).
The results are listed in Table 3. The average accuracy of all classifiers is 86.44%, which is well above
the chance level of seven classes 14.29%. The best performed classifier is SVM with quadratic kernel
with the accuracy of 91.90%.

Table 3. Classification accuracy comparison of different classifiers using basic features.

Classifier ACC?
Medium Tree 80.50%
LDAP 79.10%
SVM (Linear) € 90.80%
SVM (Quadratic) 91.90%
KNN (K = 10) 4 86.20%
Weighted KNN (K = 10)  87.00%
Bagged Trees 89.60%

2 ACC: Accuracy, the proportion of correctly classified samples in all testing data; ® Linear Discriminant
Analysis; ¢ Support Vector Machine; ¢ K-Nearest Neighbors.
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4.3.2. Wavelet Features

Different from the basic features, the amount of wavelet features depends on the filterbank
iteration (J) of the discrete wavelet transform. Therefore, we evaluate the wavelet features by trying
different filterbank iterations, as shown in Table 4. The obvious trend is that as | increases, the accuracy
of all classifiers are increasing. On average, while | = 6 and | = 4, the results are inferior to the
basic features, while | = 8 and | = 10 yields slightly better results than the basic features most of the
classifiers (except for LDA and KNN). Even though there are instances that a higher | yields slightly
lower accuracy (for example, Quadratic SVM with | = 10 and | = 8, it is within the random error
range, because every result is from a unique randomly separated 5-fold cross validation.

Table 4. Classification accuracy comparison of different classifiers using wavelet features with varied
levels of filterbanks.

Classifier ACC(J=100 ACC(J=8 ACC(J=6) ACC(=49
Medium Tree 82.10% 79.70% 78.10% 77.70%
LDA 75.00% 77.90% 74.10% 77.20%
SVM (Linear) 91.70% 91.10% 88.50% 87.10%
SVM (Quadpratic) 92.30% 92.40% 89.70% 87.80%
KNN (K = 10) 85.40% 84.30% 77.50% 77.00%
Weighted KNN (K = 10) 86.10% 84.60% 77.80% 77.60%
Bagged Trees 91.60% 91.00% 88.00% 86.60%

4.3.3. Combined Features

We combine both the basic features and wavelet features. From Table 5, all of the results are
better than either basic features as in Table 3 and wavelet features from Table 4. For example, with the
LDA classifier, basic features and wavelet features (] = 4) yield the accuracy of 79.10% and 77.20%;
while both feature sets are combined, the accuracy is improved by 4.50% to 83.60%.

Table 5. Classification accuracy comparison of using different classifiers with both basic and wavelet
features (for wavelet features, with varying J).

Classifier ACC(J=100 ACC(J=8 ACC(J=6) ACC(J=49
Medium Tree 83.80% 83.70% 83.20% 81.20%
LDA 80.20% 82.30% 81.20% 83.60%
SVM (Linear) 92.80% 92.70% 92.10% 91.70%
SVM (Quadratic) 93.30% 93.60% 92.80% 92.20%
KNN (K = 10) 87.10% 86.90% 84.00% 86.00%
Weighted KNN (K = 10) 87.70% 87.20% 83.90% 86.00%
Bagged Trees 92.40% 92.30% 91.50% 90.80%

We assume the application is not limited by the computational power. Therefore, after comparing
the contribution of the basic features and wavelet features, we choose basic features and wavelet
features (J = 10) combined for the following evaluation.

4.3.4. Contribution of Different Frame Descriptors

In Section 4.1, we introduce 6 frame descriptors. During the previous feature contribution analysis,
all six frame descriptors are used. The six frame descriptors offer information from different angles:
D; and Dy describes the average center pressure point by the value and location; D, and Ds are the
maximum pressure point; D3 is the variation of the pressure profile; D measures the pressed area.
Here we discuss how each frame descriptor contributes to the classification result. Table 6 shows
the results of cross-validations with separate frame descriptors. The results are based on all basic
features and wavelet features with | = 10. Different descriptors contribute differently in combination
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with different classifiers. For example, [D1, Dy4] give less accuracy than Dg with the KNN classifiers,
but more with Quadratic SVM. Overall, the combination of all frame descriptors [D;_g] offer superior
result than any of the individual descriptors. This means that all of the descriptors make positive
contribution to the classification result.

Table 6. Comparison of the contribution of different frame descriptors, the features used are both basic
and wavelet (J = 10) features.

Classifier ACC (D1,Dy) ACC(Do,Ds) ACC(D3) ACC(Dg) ACC (D1-)
Medium Tree 70.90% 70.50% 71.40% 74.30% 83.80%
LDA 68.80% 67.70% 64.50% 73.00% 80.20%
SVM (Linear) 85.80% 83.40% 85.20% 85.00% 92.80%
SVM (Quadratic) 88.00% 84.60% 86.10% 85.30% 93.30%
KNN (K = 10) 74.90% 73.70% 73.10% 78.80% 87.10%
Weighted KNN (K = 10) 75.50% 74.70% 74.10% 79.10% 87.70%
Bagged Trees 84.90% 82.50% 83.10% 85.00% 92.40%

5. Result and Discussion

From the previous analysis, we take all the frame descriptors, with both basic features and
wavelet features (J = 10), because all analysis indicate that all of the factors contribute positively to
the classification result. We choose the support vector machine classifier with quadratic kernel as it
offers the best accuracy.

The first result in Figure 9a is from the randomly separated 5-fold cross-validation from all
participants in Group A, it is essentially the confusion matrix of the corresponding result from Table 5.
The values in the matrix are ratios of the current prediction in the overall ground truth of its class;
on the diagonal, the values are the true positive ratio of each class. The F1 score is is calculated as the
harmonic mean of the average precision and recall of all the classes; the ACC score is the accuracy,
which is the average true positive rate.
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(a) Group A Cross-validation (b) Leave-1-Recording-Out (c) Person Independent Exclusive

Figure 9. Confusion matrix of the cross-validation result on Group A dataset.

As mentioned in Section 4.2, data recorded in the same session may posses greater similarity
than another session from the same person. In Group A, every participant attended two recording
sessions on different days. We separate these sessions as two sets, each set contains one session from
each participant. One set is used as training, and the other as testing; the process is then reversed
as the training and testing sets are exchanged. The confusion matrix in Figure 9b is the average of
both results.

Next we evaluate how well the classifier can predict with a stranger’s data. We randomly separate
the 24 participants in to 4 parties, each 6 people. Then every party is used as the testing data while the
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other three parties are the training data. This process is repeated 4 times so that every party is used as
testing data once. The result in Figure 9c is the average confusion matrix of the four repetitions.

All three results show very well separation among all of the classes. Major miss-classification
happens between P3 Press and P4 Push, P5 Scratch and P7 Stroke. Press and Push are similar actions,
except Push has greater contact area and generally greater force; Scratch and Stroke are both repeating
actions, while Scratch may have smaller area of contact. Overall, the average 88.8% and 89.1% accuracy
in leave-1-recording-out and person independent exclusive cases are also well above the random
chance level of 14.3%.

As mentioned in Section 3.2, we recorded two experiment groups in different environments
settings with different directing persons. The directing persons from Group A and B do not know
how each other has conducted the experiment; they are only given the instructions of how to set
up the sensors, and the details of the gestures as shown in Table 1. The confusion matrix of person
independent exclusive validation of Group B is shown in Figure 10. Except for the miss classifications
observed in Group A, more data from P6 Pinch are classified as P3 Press.

F1: 0.867 ACC: 0.867
P1 (88 0.00 0.04 0.05 0.00 0.00 0.00

0.00 (0)efs! 0.00 0.00 0.00 0.00 0.00
(2]
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L P4 10.00 0.00 0.26 [0}¥s] 0.00 0.00 0.00

a P50.00 0.00 0.00 0.00 (0§} 0.03 0.03
P6 10.00 0.01 0.00 0.00 0.04 }e¥! 0.00

P7 10.00 0.00 0.00 0.00 0.13 0.01 [0KeK4

P1 P2 P3 P4 P5 P6 P7
Ground Truth

Figure 10. Confusion matrix of the person independent exclusive case of Group B.

We then train a classifier with the feature data from Group A, and test with the data from Group B.
Figure 11a shows the confusion matrix result). Compared to the confusion matrix from Figure 9c in the
person independent exclusive case, CM A-B has near 19% drop of accuracy and Fl1-score. This means
the mutually blinded experiment setting does decrease the recognition rate of the gesture recognition
approach. Notably, 12% of P4 Push gestures are classified as P1 Grab, but most of the P1 Grab gestures
are correctly classified. The mutual miss classifications between the pairs of P3 Press and P4 Push,
P5 scratch and P7 stroke, which are observed in the cross-validation of Group A, are further increased.
Most interestingly, in the Group A only cross-validation, P6 Pinch is clearly distinguishable from the
other classes, while in CM A-B, it is largely miss classified into P2 Poke and P3 Press. Also gestures
from P5 Scratch is miss-classified as P6 Pinch. This could be mainly caused by the mutually blind
experiment setting as described in Section 3.

Figure 11b shows the result of using Group B as training, and Group A as testing (CM B-A).
As the accuracy decreases, the classifier for CM B-A has only 560 samples as training data, while in CM
B-A, the classifier is trained with 5376 samples. And also Group B contains only the data from one
hand of each person, while in Group A, both hands are used for recording the data. The major miss
classification caused by P6 Pinch also exists in CM B-A, which further suggests that the mutually blind
setting is the underlying cause.



Sensors 2017, 17, 2585 14 of 16

F1: 0.702 ACC: 0.705 F1: 0.582 ACC: 0.584
P1 (fefe] 0.00 0.04 0.12 0.00 0.00 0.00 P1 okels 0.00 0.13 0.00 0.01 0.00
P2 10.00 g[8 0.04 0.00 0.00 0.00 P2 +0.00 ()l7£0) 0.00 0.00 0.00 0.05 0.00
§ P30.01 0.00 (s} 0.17 0.00 0.00 g P3 001 0.06 0.10 0.00 0.12 0.00
g P4 10.00 0.00 0.15 (0}y&| 0.00 0.00 0.00 g P4 10.03 0.00 0.13 (0)}ff4 0.00 0.00 0.00
,g P5 10.00 0.00 0.00 0.00 (0}/5%/0.00 0.20 &) P5 0.00 0.00 0.00 o.oo@o.so 0.24
P6 [0.00 0.00 0.00 0.00 0.08 P6 10.00 0.23 0.14 0.00 0.00 0.00
P7 10.00 0.00 0.00 0.00 0.04 0.00 P7 10.00 0.00 0.00 0.00 0.18@
P1 P2 P3 P4 P5 P6 P7 P1 P2 P3 P4 P5 P6 P7
Ground Truth Ground Truth
(a) Training: Group A (b) Training: Group B
Testing: Group B Testing: Group A

Figure 11. Confusion matrix of the validations using Group A and Group B as training and testing.

Overall, the comparison of CM A-B, CM B-A and the cross validations within Group A and
Group B concludes that (1) a completely blinded setting regarding experiment and instruction can
make a difference in recognition results; (2) more training data can improve the accuracy for person
independent cases.

6. Conclusions and Future Work

In this work, we developed a textile robot skin prototype from tactile pressure mapping sensors
and algorithms to investigate Human-Robot interface through various kinds of touch, which is still
an uncharted territory. The textile touch sensing skin is soft and the feel is close to clothing materials.
In a small region, it can detect different modes of touch gestures with the same skin patch through
our evaluation.

Our data processing algorithm first converts the spatial pressure profiles at each sample time
into frame descriptors, and calculates features from the temporal sequences of the frame descriptors.
We analyzed the contribution of each frame descriptor and each feature set, with different classifiers.
The overall result is that all of the frame descriptors with all of the feature sets provides the
optimal classification result of 93% with a support vector machine classifier with quadratic kernel.
The contribution breakdown also helps further optimizing the computational complexity. For example,
with only the basic features on all the frame descriptors, the accuracy drops less than 2% from the
optimal accuracy; with only D; and D, frame descriptors, the accuracy only drops 5%. This information
is helpful in the future work of implementing the algorithms on the micro-controller in the sensor
driving electronics.

The increased miss-classification in the exclusive person independent settings (Figures 9c and 10)
and the mutual blind experiment settings (Figure 11) evaluation reveals interesting aspects when
it comes to strangers, which is similar to what may happen between human-human interactions:
for example, someone’s normal pet on the shoulder may feel too heavy for some certain people.
This opens the possibility to progressively improve tactile communication through learning or even
differentiate between users of the robot through social-purposed touch sensing.
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