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Abstract: The application of mechanistic models to natural systems is of interest to eco-

logical researchers. We use the mechanistic Allometric Trophic Network (ATN) model, which

is well-studied for controlled and theoretical systems, to describe the dynamics of the aphid

Rhopalosiphum padi in an agricultural field. We diagnose problems that arise in a first attempt

at a least squares parameter estimation on this system, including formulation of the model

for the inverse problem and information content present in the data. We seek to establish

whether the field data, as it is currently collected, can support parameter estimation for the

ATN model.
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1. Introduction

The effects of increased biological diversity on species and ecosystems has long
been a central area of focus in ecology. Early biodiversity-stability debates[21,
30, 36] have given rise to more general explorations of how biodiversity affects
ecosystem functioning and services[27, 1, 31, 29]. One critical ecosystem ser-
vice, biological control, has been the subject of intense scrutiny for decades,
though often in a simplified way that focuses on single species or a handful of
species interactions within only one trophic level[18, 28, 34]. A broader under-
standing of how predator richness affects pest suppression remains elusive[26];
models of multi-species interactions in a food-web context across several trophic
levels indicate that biological control can be both positively and negatively af-
fected by biological diversity[35]. We present here a predictive, mechanistic
approach to modelling multiple species interactions that allows us to investi-
gate the link between biological control and biodiversity. We use an Allometric
Trophic Network (ATN) model, a dynamic food web model which assumes a
general relationship between trophic interaction strengths and the body size
of predator and prey. The strength of the ATN model, particularly compared
to standard Lotka-Volterra and matrix models, is that in parameterizing in-
teractions by body mass, we reduce the number of parameters which must be
identified to compute a model solution. The ATN model is well-studied in
theoretical ecology [14, 32, 11] and has been applied to controlled microcosms
[25, 33]. The model has also been used to describe the average seasonal behav-
iors of an aquatic food web [12]. Multivariate autoregressive (MAR) models
[19, 23] have also been successfully applied to aquatic food webs [24, 22] and
can be used with model comparison tests to identify the dominant interactions
in a foodweb. Despite having a strong statistical framework which accommo-
dates process-driven deviation from the model, these MAR models only support
linear species interactions. In comparison, the ATN model is formulated with
a Holling-type functional response[33] and therefore supports dynamic species
interactions which can change with availability of alternative prey. In order to
test the robustness of our approach, we validate the model by fitting field data
to our model.

We consider the use of the ATN model to describe the dynamics of the
aphid Rhopalosiphum padi, an agricultural pest, subject to population loss by
the naturally-occurring community of predators in a single-season barley field.
In initial efforts at solving a least squares inverse problem for this model using
observational data, we found that the model’s complexity, when paired with the
sparsity of available data, led to numerical difficulties and poor fits to data [2].
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Here, we investigate the limitations present in this first parameter estimation.
We explore the statistical model for observational error in the data, formulation
of the mathematical model used to describe the system, and the information
content necessary to estimate the parameters in the ATN model. Revisiting
the underlying statistical and mathematical models used in the formulation of
the inverse problem is an expected step in the iterative modelling process[10]
and allows us to understand the conditions under which the parameters for the
study system and model can be estimated with available field data.

2. Methods

2.1. ATN Model

We have data for the arthropod populations of ten barley fields in Uppland,
Sweden, for six weeks from late May to early July, 2011. The arthropods are
divided into 15 groups, which we will call nodes, to form the basis for the food
web in the barley fields. See [2] for a description of the experimental design
and assumptions used in the formulation of the food web.

We attempt to model the dynamics of the bird cherry-oat aphid, Rhopalosi-
phum padi, with an Allometric Trophic Network (ATN) model. The ATN model
assumes Lotka-Volterra dynamics with a Holling Type-II response, where pa-
rameters are assumed to depend on the body masses of interacting species[33].
The dynamics of the aphid population, N1, are given by

dN1

dt

= N1



r(T (t))−
∑

j∈C1

a1j(a0, Ropt, φ)Nj

1 + cj(c0)Nj +
∑

k∈Rj
akj(a0, Ropt, φ)hkj(h0)Nk



 , (1)

where Ni is the population density of node i, Ci is the set of consumers for node
i, Ri is the set of prey for node i, aij is the attack rate of node j on node i, cj
is the coefficient of intraspecific interference competition for node j, hij is the
handling time for one individual of node j to catch and consume one individual
of node i. Here, r(T (t)) is the temperature-dependent growth rate of the aphid
population,

r(T (t)) = .024T (t) − .089.

The time-varying temperature, T (t), is given by observational data. For all
j 6= 1, the density Nj is an input to the system from observational data.
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The body mass-dependent parameters are

aij(a0, Ropt, φ) = a0W
1/4
i W

1/4
j

(

Wj/Wi

Ropt
e
1−

Wj/Wi
Ropt

)φ

,

hij(h0) = h0 (Wi/Wj)
1/4 ,

cj(c0) = c0W
1/2
j ,

where Wi is the body mass of node i, Ropt is the optimal body mass ratio
between predator and prey, φ scales the dependency of a successful attack on
predator-prey body mass ratio, and a0, h0, and c0 are normalizing constants.
The body masses Wi are known, but we must estimate the parameter set q =
[a0, h0, c0, Ropt, φ]. We note that the parameters a0, h0, c0, and φ do not have
a simple, physical meaning; experimentally determining empirical values for
these parameters would be challenging, in particular for realistic predator-prey
species compositions. Additionally, we expect that some of these parameters
will vary between study systems; for example, the optimal predator-prey body
mass ratio has been found to vary between predator types[13], so we can expect
Ropt to vary between systems. For theoretical studies, the parameters for the
ATN model have historically been generalized from metabolic theory and known
allometric relationships across many species and ecosystems[14, 15, 37]. In
empirical studies, parameters are hand-selected by choosing the best-fitting
parameters to a data set over many simulations[33, 25]. We use a least squares
parameter estimation to find the parameters for the system.

2.2. Formulation of the Inverse Problem

Following [9, 10], we assume a relative error statistical or observational model

Yj = f(tj; θ0) + fγ(tj ; θ0)Ej , (2)

for Yj the observation of our system at a point tj and θ0 = [q0, y0]
T , the pa-

rameter set that we must estimate. Here f(tj; θ0) is the solution N1(tj ; q0, y0)
of (1) at point tj with nominal parameters q0 and initial condition y0, γ is a
constant weight that specifies the parameters of the error’s distribution, and
Ej is independent, identically distributed random noise assumed to be N (0, 1).
For an inverse problem with n observations, the iterative weighted least squares

(IWLS) (also referred to as generalized least squares (GLS)) cost functional
gives an estimator Θ of the parameter θ0 defined by

Θ = argmin
θ∈Ω

n
∑

j=1

(

Yj − f(tj; θ)

fγ(tj; θ)

)2

, (3)
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where Ω is the space of admissible parameters. Our experiences [4, 3, 5, 6] with
other ecological and population modeling efforts involving population counts

have suggested that some type of error process depending on the size of the
population is likely to be most appropriate. This motivates our choice of sta-
tistical model in (2).

The collected data N j
1 is a realization of Yj ,

N j
1 = f(tj; θ0) + fγ(tj; θ0)ǫj

for ǫj a realization of Ej . Then a realization of the minimizing parameter is
given by

θ̂ = argmin
θ∈Ω

n
∑

j=1

(

N j
1 − f(tj; θ)

fγ(tj ; θ)

)2

. (4)

The weight γ is unknown and can generally be identified using the method
of residual plots, outlined in [10, 9]. From the statistical model, we know
that Ej = [Yj − f(tj; θ0)]/f

γ(tj ; θ0) and that the realizations of Ej should be
independent and identically distributed as random noise. That is, we expect a
plot of the modified residuals

rj,γ =
N j

1 − f(tj; θ̂)

fγ(tj ; θ̂)

will be randomly distributed for an appropriate choice of γ.
However, the use of residual plots to determine the statistical model tacitly

assumes that our mathematical model accurately describes the system dynam-
ics. Initial treatment of the inverse problem in [2] suggested that the ATNmodel
cannot capture some aspects of aphid population dynamics. Therefore, we first
use difference-based pseudo-measurement errors, as described in [7], to test our
statistical model without tacitly assuming a mathematical model. We compute
estimates of the measurement error, fγ(tj ; θ̂)ǫj , from the observed N j

1 . We
employ the second-order central differencing scheme for pseudo-measurement
errors

ε̂j =
1√
6

(

N j−1
1 − 2N j

1 +N j+1
1

)

.

To find γ for use in our statistical model, we compute

ηj,γ̂ =
ε̂j

∣

∣

∣
N j

1 − ε̂j

∣

∣

∣

γ̂



148 H.T. Banks, J.E. Banks, R. Bommarco, A. Curtsdotter, T. Jonsson, A.N. Laubmeier

for different values of γ̂ until we find the value that results in a random distri-
bution of ηj,γ̂ when plotted against observations tj .

We assume this resulting value of γ to facilitate the use of model comparison
tests for our system. After assuming an appropriate mathematical model, we
may return to the traditional method of residual plots to verify that our choice
of γ is accurate.

2.3. Model Comparison

We will refer to the model given by the equation in (1) as Model 1. We will
also consider the restriction of (1) to a parameter space where h0 = c0 = 0.
This results in a linear functional response

dN1

dt
= N1



r(T )−
∑

j∈C1

a1j(a0, Ropt, φ)Nj



 . (5)

In this restriction, we note that there are only three constants, [a0, Ropt, φ], and
the initial condition N0

1 to be estimated. We denote this as Model 2.

The aphid population data exhibits unexpected population declines that
cannot reasonably be attributed to the predators in the ATN model. Therefore,
we also consider the addition of an as yet unknown source of mortality to the
model. We assume that the mortality occurs over a full day and after the
last data point before an unexpected population decline. That is, if the aphid
population decreases by 25% or more between the observation collected at tj
and the observation collected at tj+1, then we denote the time Tk = tj . We
assume that the aphids suffer some extrinsic mortality factor µ over the interval
Mk = [Tk + 1, Tk + 2]. We denote the set of all such times as M =

⋃

k

Mk and

add this discrete mortality term to (5)

dN1

dt
= N1



r(T )−
∑

j∈C1

a1j(a0, Ropt, φ)Nj − µχM



 , (6)

where χM is the indicator function for the set M. We refer to this as Model
3, and it requires the specification of the constants [a0, Ropt, φ, µ] as well as
the initial condition N0

1 . Note that Model 2 is a restriction of Model 3 to a
parameter space where µ = 0.

Parameter estimation on Model 2 yields values of φ ∈ [.3, 2], so we also
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consider the restriction of (5) to a parameter space where φ = 1

dN1

dt
= N1



r(T )−
∑

j∈C1

a1j(a0, Ropt, 1)Nj



 . (7)

This is equivalent to assuming that the sensitivity of a successful attack to
predator-prey body mass ratio does not need to be tuned for the system. We
will refer to this as Model 4, where the only parameters to estimate are the
constants [a0, Ropt] and the initial condition N1

0 .
To test if the fit obtained by a particular model is a significant improvement

over ones of its restrictions, we follow the methods developed in [8] and carefully
summarized in [9, 10]. We denote J(Y, θ) to be the cost functional associated
with a parameter θ and observations Y , that is,

J(Y, θ) =

n
∑

j=1

(

Yj − f(tj; θ)

fγ(tj ; θ)

)2

.

We let Θ1 be the estimator of the nominal parameter θ0, as defined in (3),
drawn from an admissible parameter space Ω1. That is,

Θ1 = arg min
θ∈Ω1

J(Y, θ).

For any Ω2 ⊂ Ω1, we let Θ2 be the estimator of θ0 drawn from an admissible
parameter space Ω2, i.e.,

Θ2 = arg min
θ∈Ω2

J(Y, θ).

We test the null hypothesis that the nominal parameter exists in the con-
strained parameter space, or, that θ0 ∈ Ω2. We define the test statistic

Un(Y ) = n
J(Y,Θ1)− J(Y,Θ2)

J(Y,Θ1)
.

Here, n is the number of data points used in the inverse problem. For realiza-
tions of Yj, denoted N̂1 = {N j

1}n1 , we let θ̂1 and θ̂2 be corresponding realizations
of Θ1 and Θ2, as defined in (4). Then we have a realization of the test statistic
given by

Ûn(N̂1) = n
J(N̂1, θ̂1)− J(N̂1, θ̂2)

J(N̂1, θ̂1)
.
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Given a realization Ûn(N̂1), we reject the null hypothesis with (1 − α) · 100%
certainty if Ûn(N̂1) > τα. Here τα is specified by the critical value of the χ2(r)
distribution, for r the additional degrees of freedom that the model associated
with Ω1 has over the restriction given by Ω2. We set the threshold for model
rejection at 75%, since we are dealing with rather sparse experimental data
sets.

3. Results

3.1. Selecting γ

We compute pseudo-measurement errors for the aphid population densities in
the ten fields where data was collected. We note that the data sets for all
fields were sparse, with five or six observations for each field. After central
differencing, we are left with three or four estimates of the pseudo-measurement
error, and it is difficult to identify randomness in so small a set of points.
However, the sparsity of the data is problematic even when using residuals
from the model. As in [2], we cannot compare the mathematical model with
data when crop quality deteriorates late in the season, and only four or five
data points from each field can be used in residual analysis.

For some fields, we successfully identify the appropriate statistical model
using pseudo-measurement errors. The values of ηj,γ̂ for Field JC are plotted
in Figure 1, where we can see that γ̂ = 0 gives a distribution that appears
random, while γ̂ = 1 and γ̂ = 2 do not perform as well. Similar results were
obtained in Fields JO, KC, KO, and OO, plotted in Figures 5, 6, 7, and 11 in
the appendix. In the remaining fields, the data sparsity makes it difficult to
choose an appropriate value of γ̂. For example, we plot the results from Field
SO in Figure 2. No choice of γ̂ appears to give a random distribution of ηj,γ̂ ,
so we cannot choose a value of γ̂ for the statistical model. We reach the same
conclusion for Fields MC, MO, OC, and SC (see Figures 8, 9, 10, and 12).

For simplicity, and having insufficient data to assume otherwise, we take γ =
0 and plot the solutions to the inverse problem with absolute error formulation
in Figure 3. Although we do not necessarily expect that γ will be the same for all
fields, we require additional data to identify the correct value for the statistical
model. In summary, we find that γ = 0 is an appropriate choice for some fields,
and do not have sufficient information to select a different appropriate value of
γ in the remaining fields.
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Figure 1: Values of ηj,γ̂ are plotted against time for γ̂ = 0, 1, and 2 for
data from field JC.

3.2. Model comparison test

We first compare the performance of Model 1, the full ATN model, to its restric-
tion to a linear functional response in Model 2, which assumes that h0 = c0 = 0.
The results of the model comparison test are given in Table 1, while the model
solutions are plotted in Figure 3. The least squares minimization for the full
model is to take h0 = c0 = 0 in almost all fields, and so there is little variation
between the solutions to Models 1 and 2. As expected, we see in Table 1 a fail-
ure to reject the null hypothesis, that the solution is contained in the restriction
given by Model 2.

Although we fail to show that the nominal parameters do not satisfy h0 =
c0 = 0, we cannot readily conclude from this test that the functional response
in the ATN model should be linear. Our data set is sparse, and there may be
unobserved dynamics which require specification of h0, c0 6= 0. In other words,
the current data do not support with strong statistical significance the inclusion
of the more complicated dynamics of Model 1 over the simpler dynamics of
Model 2. For these data sets, we take h0 = c0 = 0, having no statistical
motivation to do otherwise, but we must revisit the nonlinear formulation of
the functional response if we acquire new, hopefully more extensive, data sets.

We consider the addition of a mortality term by asserting the null hypothe-
sis that the nominal parameters are contained in the restriction given by Model
2 instead of the model with mortality, Model 3. The results from the compar-
ison test, for the six fields that satisfy the requirement that a 25% or greater
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Figure 2: Values of ηj,γ̂ are plotted against time for γ̂ = 0, 1, and 2 for
data from field SO.

Field JC JO KC KO MC MO OC OO SC SO

Ûn 0.126 0.001 0 0.012 0.023 0 -0.0003 0.010 0.121 0
Reject? Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail

Table 1: Realizations of the test statistic for Model 2 compared to
Model 1.

population decline occur between observations, are given in Table 2. We re-
ject the model without mortality with 99.9% confidence in all but Field OC.
We conclude that in Fields JC, JO, KO, OO, and SC, the data supports the
estimation of some additional mortality event in the aphid population.

Field JC JO KO OC OO SC

Ûn 127.58 54.443 13.246 -0.621 582.07 117.74
Reject? 99.9% 99.9% 99.9% Fail 99.9% 99.9%

Table 2: Realizations of the test statistic for Model 2 compared to
Model 3.

We last assert the null hypothesis that the nominal parameters are contained
in the restriction given by Model 4, that is φ = 1, instead of Model 2. The
results from the model comparison test are given in Table 3, and we reject
Model 4 with 75% or higher certainty in fields except JC and JO. In these two
exceptions, the estimated value of φ is close to 1, and so it is not surprising
that the comparison test fails. We conclude that there is sufficient information
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Figure 3: Least squares solutions for Models 1-4 with γ = 0. Data
is plotted with a star marker with error bars to indicate the standard
deviation in the data and the horizontal line indicates the cutoff date
for data to be used in the inverse problem. See Table 5 in the appendix
for a list of the parameters used in each field.

in the data set to justify the estimation of φ in the ATN model.

3.3. ATN solution with additional data

For all fields, we find that the available data supports the estimation of the
ATN model with a linear functional response; the inclusion of h0 and c0 as un-
known parameters in the inverse problem seldom adds value to the estimates.
Additionally, the numerical minimization necessary for the inverse problem us-
ing the full model is sensitive to the initial iterate supplied to the program. We
only find that h0 = c0 = 0 by starting sufficiently close to the solution, with ini-
tial iterates for each parameter on the order of 10−4 or 10−3 across fields. The
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Figure 3: (Continuation) Least squares solutions for Models 1-4 with
γ = 0. Data is plotted with a star marker with error bars to indicate
the standard deviation in the data and the horizontal line indicates the
cutoff date for data to be used in the inverse problem. See Table 5 in
the appendix for a list of the parameters used in each field.

Field JC JO KC KO MC MO OC OO SC SO

Ûn 0.19 0.03 49.35 4.30 17.97 41.34 34.75 1.63 1.58 5.10
Reject? Fail Fail 99.9% 95% 99.9% 99.9% 99.9% 75% 75% 95%

Table 3: Realizations of the test statistic for Model 4 compared to
Model 2.

physically admissible range for each parameter is h0 ∈ [0, 0.42] and c0 ∈ [0, 0.24]
when converted to the units for our system [25]. With the current data, the
inverse problem for the full ATN model is too sensitive to initial conditions to
be tractable. We conjecture that with data collected at a higher sampling rate,
the problem could be solved with less sensitivity to the initial conditions of the
numerical minimizer.

We consider this assumption for Field MC, where the aphid population does
not experience a mortality event and is well-fit by the inverse problem using
the reduced ATN model with initial iterate a0 = .8, Ropt = 150, and φ = 1,
yielding parameters a0 = 0.4207, Ropt = 160, and φ = 0.8570. We construct
a synthetic data set with these parameters and solve the inverse problem for
the full model, using initial iterate a0 = .4, Ropt = 160, and φ = 0.8, with an
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increasing number of data points added between each existing observation. The
resulting solutions are plotted in Figure 4 and the parameters used to generate
the synthetic data, initial iterate for the inverse problem using the synthetic
data, and resulting parameter estimates are given in Table 4.

Parameter a0 Ropt φ h0 c0

Synthetic Value 0.4207 160 0.8570 0 0

Initial Iterate 0.4 160 0.8 0.1 0.1

Estimated Value 0.3459 140 0.7772 0.0005 0.0005

Table 4: Parameter values and initial iterates used in the inverse prob-
lem on synthetic data.

The inverse problem for the full ATN model in Field MC requires five
additional observations between each existing point to visually fit the data,
but the solution does not give the same parameters as we used to generate the
synthetic data. This rate of sampling would require population measurements
approximately three times a week, where a single measurement of the aphid
population requires a sweepnet count of the aphids on 100 barley tillers. This
would be a significant undertaking, and even then we do not claim that this rate
of data collection would support parameter estimation for the full ATN model
in future experiments. We only demonstrate that the current limitations of the
inverse problem on the full ATN model can be remedied by increased collection
of data; we can not readily generalize these results to a statement about the
amount of data necessary to estimate the parameters for the full ATN model
in a given study system.

4. Conclusion

The results presented here are an important first step in developing more ac-
curate models for describing the dynamics of species interactions in food webs.
Despite recent calls for better integration of food web ecology and ecosys-
tem functioning and services[20], there has been little theory developed to
date[20, 16, 17]. Agroecosystems, with their simplified dynamics and species
diversity, are an ideal system for testing these models especially for identifying
and establishing the conditions under which the parameters for the dynamic
models can be estimated with some degree of confidence. The present results
show that although the inverse problem was not tractable as originally for-
mulated for the ATN model, this can be ameliorated by reducing the number
of parameters to be estimated or increasing data available for least squares
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Figure 4: The solution to the inverse problem using the full ATN model
with the original data (left) and a synthetic data set with increased
sampling (right) is plotted with a solid line. The data used in the
inverse problem is plotted with a star marker.

minimization. We find that simplifying the model by fixing some parameters
at constant values or generating synthetic data with higher sampling rates al-
lows for parameterization of the ATN model. The results from this paper and
ongoing efforts in information content analysis should better-inform future dis-
cussions about data collection practices and model formulation for experiments
on this study system.
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Figure 5: Values of ηj,γ̂ are plotted against time for γ̂ = 0, 1, and 2 for
data from field JO.
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Figure 6: Values of ηj,γ̂ are plotted against time for γ̂ = 0, 1, and 2 for
data from field KC.
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Figure 7: Values of ηj,γ̂ are plotted against time for γ̂ = 0, 1, and 2 for
data from field KO.
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Figure 8: Values of ηj,γ̂ are plotted against time for γ̂ = 0, 1, and 2 for
data from field MC.
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Figure 9: Values of ηj,γ̂ are plotted against time for γ̂ = 0, 1, and 2 for
data from field MO.
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Figure 10: Values of ηj,γ̂ are plotted against time for γ̂ = 0, 1, and 2 for
data from field OC.
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Figure 11: Values of ηj,γ̂ are plotted against time for γ̂ = 0, 1, and 2 for
data from field OO.
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Figure 12: Values of ηj,γ̂ are plotted against time for γ̂ = 0, 1, and 2 for
data from field SC.
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Field Model a0 Ropt φ h0 c0 µ N1

0

JC Model 1 3.10 387.37 1.07 0 0 - 7.43
Model 2 2.97 515.64 0.96 - - - 7.30
Model 3 3.69 0.54 1.01 - - 1.98 9.99
Model 4 2.56 428.92 - - - - 4.62

JO Model 1 2.57 750.28 0.94 0 0 3.13
Model 2 2.58 750.31 0.94 - - - 3.13
Model 3 2.52 823.56 1.20 - - 1.84 1.46
Model 4 3.04 803.08 - - - - 2.86

KC Model 1 0.81 184.75 1.98 0 0 - 0.94
Model 2 0.81 184.75 1.98 - - - 0.94
Model 3 - - - - - - -
Model 4 0.83 518.41 - - - - 3.93

KO Model 1 0.12 37.49 1.43 0 0 - 1.71
Model 2 0.12 38.73 1.52 - - - 1.71
Model 3 0.02 24.93 0.05 - - 3.68 1.64
Model 4 0.88 0.87 - - - - 2.90

MC Model 1 0.42 160.09 0.86 0 0 - 7.00
Model 2 0.42 160.09 0.86 - - - 7.00
Model 3 - - - - - - -
Model 4 0.51 161.19 - - - - 7.61

MO Model 1 0.16 1000 0.22 0 0 - 18.18
Model 2 0.16 1000 0.22 - - - 18.18
Model 3 - - - - - - -
Model 4 0.52 0.90 - - - - 18.17

OC Model 1 0.18 46.86 0.21 0 0 - 1.45
Model 2 0.18 46.86 0.21 - - - 1.45
Model 3 0.18 46.75 0.21 - - 0.01 1.41
Model 4 0.29 37.78 - - - - 1.00

OO Model 1 1.15 0.75 0.99 0 0 - 6.02
Model 2 1.16 0.75 0.99 - - - 6.01
Model 3 0.18 2.12 0.40 - - 1.08 2.32
Model 4 0.95 0.81 - - - - 4.86

SC Model 1 0.37 0.73 0.41 0 0 - 18.18
Model 2 0.34 0.70 0.35 - - - 18.18
Model 3 2.07 478.73 2.00 - - 4.01 4.94
Model 4 0.57 146.55 - - - - 18.19

SO Model 1 3.30 239.33 1.57 0 0 - 5.01
Model 2 3.30 239.33 1.57 - - - 5.01
Model 3 - - - - - - -
Model 4 1.68 227.45 - - - - 5.00

Table 5: Estimated parameters for Models 1, 2, 3, and 4 over the ten
fields. In Fields KC, MC, MO, and SO, the data did not meet the
requirements to estimate the parameters for Model 3.


