
PALADYN Journal of Behavioral Robotics

Research Article · DOI: 10.2478/s13230-010-0001-5 · JBR · 1(1) · 2010 · 1-13

A Formalism for Learning from Demonstration
∗

Erik A. Billing† , Thomas Hellström‡

Department of Computing Science,

Umeå University, Umeå, Sweden

Received 12 October 2009

Accepted 26 February 2010

Abstract

The paper describes and formalizes the concepts and assumptions involved in Learning from Demonstration
(LFD), a common learning technique used in robotics. LFD-related concepts like goal, generalization, and rep-
etition are here defined, analyzed, and put into context. Robot behaviors are described in terms of trajectories

through information spaces and learning is formulated as mappings between some of these spaces. Finally, behav-

ior primitives are introduced as one example of good bias in learning, dividing the learning process into the three

stages of behavior segmentation, behavior recognition, and behavior coordination. The formalism is exem-

plified through a sequence learning task where a robot equipped with a gripper arm is to move objects to specific

areas. The introduced concepts are illustrated with special focus on how bias of various kinds can be used to enable

learning from a single demonstration, and how ambiguities in demonstrations can be identified and handled.

Keywords

learning from demonstration · ambiguities · behavior · bias · generalization · robot learning

1. Introduction

Learning From Demonstration (LFD) is a well established tech-

nique for teaching robots how to perform useful tasks. The basic idea

is that the robot learns a behavior from one or several demonstrations

performed by a, most often human, teacher. The research area is at-

tractive, both in its intuitive approach to human robot interaction and as

a framework for a theoretical analysis of knowledge representation and

transfer of knowledge between intelligent agents.

Research on LFD is influenced by a variety of fields, including control

theory, artificial intelligence, psychology, ethology, and neuro physiol-

ogy. While primarily being a big asset, the multidisciplinary nature of

LFD also contributes to the lack of a unified formalism for the different

components constituting the research field. It should not come as a

surprise that the terminology used differs for works conducted by re-

searchers from various areas. In this paper, we define and formalize

the common ideas and principles involved in LFD. The presented work

is both a survey of how these concepts are used in research, and an

attempt to describe them in the light of related concepts in machine

learning, planning theory, and psychology. To our knowledge this has

not been previously done in a unified way and the result can be used

both as a theoretical introduction to the field and as framework for fur-

ther development and research. In contrast to other surveys of the

area [4, 12], the present work specifically focuses on LFD where the

robot is directly controlled during demonstration, e.g. via teleoperation

or kinematic teaching. While this direction removes some of the hard

and important issues in LFD, it allows increased focus on other aspects,

∗Parts of this text also appear as a technical report: E. A. Billing and T. Hell-
ström. Formalising Learning from Demonstration, UMINF 08.10, Department of
Computing Science, Umeå University, Sweden, 2008.
† E-mail: billing@cs.umu.se
‡ E-mail: thomash@cs.umu.se

specifically how bias is introduced into the LFD process.

The formalism is applied to a sequence learning task in which the in-

troduced concepts are illustrated with a special focus on how bias of

various kinds can be used to enable learning from a single demonstra-

tion, and how ambiguities in demonstrations can be handled.

The formal approach is inspired by the work on planning and actuation

by LaValle [53] and therefore does not always follow the terminology

and notation found in common literature on LFD. Where this is the case,

it is highlighted and the commonly used terms are referred.

In Section 2, a few fundamental concepts that form the basis for the

rest of the paper are introduced. Section 3 gives a formal description of

the learning process using these concepts. In Section 4, the introduced

formalism is applied on a sequence learning task using a Khepera robot

equipped with a gripper arm. Section 5 summarizes the paper and

discuss directions for future research. A symbol index summarizing

introduced notations can be found in Table 5.

2. Basic concepts

2.1. State space

One fundamental component in classical AI is the concept of a state
space X , described by a world ontology [77, p.222]. The state space

can be defined as a set of all possible situations that could arise in the

world [53, p.17]. More specifically, the state space only includes the

relevant aspects of the world, given a particular task or limited set of

tasks. However, if the task is unknown it is very difficult to identify which

aspects of the world are relevant. One could of course try to include all

aspects that might be of interest, but even if possible, that would result

in a huge and complex state space, implying tremendous sensing re-

quirements when applied to a field such as LFD. Furthermore, defining

a state space introduces many unnecessary assumptions about the

world, and requirements for information which make the problem much

more complex than necessary. This observation is nicely illustrated by

1



PALADYN Journal of Behavioral Robotics

Simons’ ant [81] and is also related to the frame problem [47, 62].

For these reasons, it is desirable to create new spaces, less task-

specific and sensor-demanding, in which behaviors can be repre-

sented. Such a redefined representation is referred to as an infor-
mation space [53, ch.11]. The concept of information spaces is also

common within LFD, but appears under different names. In order to

facilitate learning, approaches to LFD often utilize so called primitives
or skills. These primitives can be seen as building blocks from which

more complex behaviors can be composed, which results in moving the

learning process away from the state space into a new representational

space composed of the available skills, e.g. [8, 34, 46, 51, 65, 68].

Many of these approaches relate strongly to Behavior Based Con-
trol (BBC) [5, 58, 60]. BBC has its roots in the reactive paradigm, but

emphasizes parallel, loosely connected behaviors for control of the

robot as an emergent property, rather than a single stimuli-response

loop.

The possibility of applying the concept of information spaces within LFD

is further investigated in Section 3, but first a few other basic concepts

have to be introduced.

2.2. Sensing and acting

Imagine an agent interacting with the environment. It perceives the

world through its sensors and acts upon the world with its actuators.

The sensors are defined as a function h : X → Y transforming a state

x ∈ X into a sensor state y ∈ Y [53, p. 561]. Y denotes the observa-
tion space, i.e., the set of all possible readings returned by the agent’s

sensors. Each y ∈ Y is a vector (y (1) , y (2) , ...) comprising simulta-

neous values from all sensors. Typical examples are a thermometer that

maps physical temperatures x to numbers y (1) ∈ R or a GPS receiver

that maps physical positions to latitude and longitude, y (2) ∈ R
2. Y

corresponds to the stimulus domain in behavior-based robotics [5].

On the actuator side, actions can be said to transform a state into an-

other state. Hence, actuators implement the function f : X × U → X
where U denotes the action space, i.e., the set of all possible actions

the agent can execute. A typical example is the requested velocity for

each motor of the robot. Note that this does not specify the actual mo-

tor velocity, and only the outgoing information is represented in U. The

actual velocity is usually represented in state space X .

Now a description of how the agent behaves, i.e. generates actions,

can be introduced. In general, such a description is referred to as a

controller, but is also known as a plan [53, p.560], behavior map-
ping [5, 27, 68, 71], motor primitive [3], control policy [4] or inverse
model [39]. Several important differences between these terms do ex-

ist, for example in terms of abstraction level and temporal extension,

but for now they can all be said to implement the function π:

π : X → U. (1)

Hence, π maps states x ∈ X to actions u ∈ U. As mentioned before,

X is not explicitly represented in the agent. Still, the physical sensors

and actuators can be said to implement the functions h and f , respec-

tively. In contrast, π can not be implemented without an explicit defi-

nition of and access to X . To solve this issue, π is later redefined and

then controls the agent based on the information space instead of the

state space.

2.3. Information space

The observation and action spaces are widely used by the robotics

community. These spaces are often combined into a information
space I = U × Y , also known as the sensory-motor space [73].

In each stage k the robot experiences a sensory-motor event ek =
(uk−1, yk ) ∈ I. The action at k − 1 is used since uk changes the

current stage to k + 1.

One approach that extensively uses representations in I is sensory-
motor coordination (SMC) [72]. From an SMC perspective, sensing

and acting are not two separate processes. In contrast to classical re-

active systems, SMC does not view the information flow purely as going

from sensors to actuators. Actions give rise to stimuli, just as much as

stimuli influences actions. If the agent can predict these relations, it

can intentionally control its interactions with the world. Hence, control

is seen as a problem of coordination. Similar views are common within

psychology, anthropology and cognitive science, [37, 45, 82].

The sensory-motor space I has several advantages when compared

to the state space. Most importantly, it is easily defined. If an agent is

designed with a fixed number of sensors and actuators, the size of I re-

mains constant independently of environment and task. Of course this

limits the possibility of adding new sensors or actuators to the agent

without changing the robot’s representational space and as a conse-

quence affects previous representations, but for many applications this

is a reasonable limitation. The sensory motor space also has a number

of drawbacks. In contrast to state space, I does not necessarily contain

all information necessary to make a control decision at each moment. A

decision, i.e., selection of the next action, may have to be based not on

the most recent sensor and motor readings, but on complex patterns of

previously observed sensory-motor events. Let Ỹk denote the history
observation space, i.e., the set of all possible observation histories ỹk

until current stage k :

ỹk = (y1, y2, . . . , yk ) ∈ Ỹk (2)

where each vector yi ∈ Y is provided by the sensors at stage i. Sim-

ilarly, let Ũk be the history action space, i.e., the set of all possible

action histories until current stage k :

ũk = (u1, u2, . . . , uk ) ∈ Ũk (3)

where each ui ∈ U is a particular action vector issued at stage i.
The histories ỹk and ũk in combination with the initial conditions η0 form

a history information state ηk , also referred to as an event history.

ηk includes all accumulated information up to stage k [53, p.566]:

ηk = (η0, ũk−1, ỹk ) ∈ Ik (4)

The initial conditions η0 describe presumptions about the state of the

world X before stage 1. The history information state is a central con-

cept in the formalism since it represents all the information the agent

has received, and as a consequence ηk is always known in stage k . Ik
is known as the history information space and should be understood

as the set of all possible event histories up until stage k [53, p.565]:

Ik = I0 × Ũk−1 × Ỹk (5)

where I0 represents the set of all possible initial conditions.

The definition of Ik becomes impractical in cases where the number

of stages is not fixed. Instead, we normally refer to the information
history space Ihist , which has an unspecified length [53, p.657]:

Ihist = I0 ∪ I1 ∪ I2 ∪ . . . (6)

Ihist includes all possible combinations of everything the agent could

possibly observe and do. Most η ∈ Ihist will of course never ap-

pear, due to limitations imposed by the environment and the physical

2



PALADYN Journal of Behavioral Robotics

shape of the robot. For example, imagine a simple robot, equipped with

a proximity sensor on each of its four sides, placed in an empty large

square box. In this environment, the robot never observes a yk with

high activation of all proximity sensors simultaneously. This is a simple

consequence of physical properties of the environment and the robot

itself. The same reasoning could easily be applied to a human agent.

There is a huge amount of patterns the human senses theoretically

could perceive, but only a fraction of these will actually be observed.

Most of the formal definitions in this paper take place in history infor-

mation space Ihist . You might ask why representations take place in

such a huge and complex space when only a fraction of its represen-

tational power is actually used. Ihist should not be understood as the
representational space, but a representational space, a very basic one.

Any information the agent can acquire is representable as an event his-

tory η ∈ Ihist . Furthermore, Ihist is, in contrast to state space X , both

well defined and completely task invariant and is as such very suitable

for learning purposes. However, in many other respects Ihist is not the

best representational space. Ihist contains a lot of redundant informa-

tion, making it difficult to extract features relevant to the specific task.

For this reason, a new derived information space Ider may be cre-

ated. Ider should be seen as a simplification of Ihist , where relevant fea-

tures are represented, while irrelevant information is not contained, [53,

p.571]. The observant reader may think this sounds disturbingly simi-

lar to the formulation of state space. This observation is highly relevant

and reflects to some extent the purpose of inferring Ider . The use of

derived information spaces as bias in learning, and its relation to the

state space, is further discussed in Sections 3.2 and 3.4.

2.4. Controller

The controller defined in Equation 1 can now be reformulated in a form

that allows it to be used without full access to state space X :

uk = π (ηk ) (7)

where uk ∈ U is the action vector issued at stage k and ηk ∈ Ik is the

agent’s event history at stage k . π is defined here as a function from

information history space to action space:

π : Ihist → U. (8)

In simple cases, a controller can be modeled as a function of only

the most recent sensory-motor event. Systems based purely on such

single-event controllers are called reactive systems [21]. Formally,

these systems implement π as

uk = π (yk ) (9)

which can be seen as a special case of Equation 7. This definition of

π is similar to Arkin’s behavior mapping β : S → R , where S and

R are stimulus and response, respectively [5]. However, in the general

case we use the definition of π given in Equation 7.

2.5. Behavior

The word behavior is commonly understood as an agent’s actions in

relation to the environment, but in the robotics community it has many

different meanings. In the present work, behavior is understood as

a purposeful way of acting. This does not imply that behaviors include

explicit representations of goals, but from an observer’s point of view,

the behavior can be said to implement some kind of purpose, or goal.

This argument is developed in Section 3.3.

Using the introduced terminology, a behavior B is defined as a subset

of information history space B ⊂ Ihist . Each element in B is an event

history η that represents one instance of the desired behavior.

Often, no explicit distinction is made between the observable in-

teractions with the world, and the mechanisms producing these in-

teractions. However, B describes nothing about how the behavior

is produced, and therefore this notion of behavior is different than

the terminology commonly used within behavior-based robot architec-

tures [5, 27, 58, 68]. B is purely an intrinsic definition and describes

exclusively the behavior from the agent’s perspective.

3. Learning From Demonstration

Learning From Demonstration (LFD) is a well established tech-

nique for robot learning. An overview of early work is found in the work

by Bakker and Kuniyoshi [6] while recent work and classification of the

field is found in the survey by Argall et al. [4]. Another excellent survey

of the area can be found in a recent book by Billard et al. [12]. The ba-

sic idea in LFD is that the robot learns to do things by observing other

agents, be it human beings or other robots. Several flavors of this ap-

proach exist and the terminology used differs somewhat in published

research. Similar approaches are presented under terms like Imitation
Learning, Learning From Experience, Learning From Observa-
tion and Robot Programming by Demonstration. See the work by

Argall et al. [4] for more details on terminology.

Research on LFD has been divided into four key problems: what, how,
when and who to imitate [11, 12]. What to imitate refers to the prob-

lem of identifying which aspects of the demonstration are relevant for

the task [20]. How to imitate is the question of how the skill is to be

encoded. A central part of this issue is the correspondence problem
[66, 67] which refers to the process of mapping the observed sequence

of events to corresponding actions of the pupil. In most practical situ-

ations the pupil is not given an explicit set of demonstrations, but the

pupil must detect when the teacher is doing something related to the

task to be learned. This problem is known as when to imitate. Fi-

nally, who to imitate refers to the identification of the teacher, which

is also a difficult issue in many applications. These four questions are

very general and can also be applied to learning situations with human

or animal pupils. In practice, what and how to imitate are the most

frequently studied problems within LFD.

New behavior can be demonstrated to a robot in many ways, for ex-

ample by having the robot pupil watch the teacher demonstrate the

desired behavior. Here we focus on LFD where the teacher directly

controls the robot, e.g. by teleoperation. The recorded data sequence

from such a control session, including both executed motor commands

and sensor readings, is denoted demonstration. The purpose of LFD

is to create a controller π capable of reproducing the demonstrated be-

havior. While there are many other ways to demonstrate a new behavior

to a robot, LFD via teleoperation constitutes a well defined setting that

can be generalized to many practical applications. Formally, a demon-

stration is, in this setting, an event history ηk ∈ Ihist (refer to Equation

4) where ũk−1 is the sequence of actions issued by the teacher up to

stage k − 1 and ỹk is the sequence of observations up to stage k .

In this setting, a direct correspondence between recorded events in a

demonstration and sensors and actuators is assumed (a direct record

mapping and no embodiment mapping, following the terminology by

Argall et al. [4]). The observations yk in the demonstration are as-

sumed to correspond to the observations that are generated in real-

time by the sensors and sent to the controller. Furthermore, the ob-

served action variables uk are assumed to directly correspond to the

actuator signals generated by the controller π. This relates to self-

3



PALADYN Journal of Behavioral Robotics

imitation, i.e., the pupil learns by performing the actions itself, with

help from a teacher [78, 79]. Self-imitation, in contrast to imitation of

others, avoids two difficult problems. Firstly, the problem of observing

the teacher’s actions, and secondly, the correspondence problem.

LFD has its roots in the more general approach to create computer

programs from demonstrations, known as Programming By Demon-
stration (PBD) or Programming By Example (PBE), e.g. [26, 54].

However, modern LFD is far from these general approaches. This paper

presents a formalism for robot learning through demonstration, which,

while it can be seen as the creation of a specific kind of computer pro-

grams, does not aim at the wider interpretations of PBD or PBE.

The goal of LFD is, in this context, to generate a controller π that en-

ables a robot to repeat a demonstrated behavior B. π may be a state-

action mapping, a model of the world dynamics (system model) or

a model of action pre- and postconditions (plans), see the work by Ar-

gall et al. [4] for details. If successful, the robot is said to have learned

behavior B. Formally, the process of learning B from a set of N demon-

strations b is understood as selecting π from the controller space Π
using a learning function λ:

π = λ (b) ∈ Π (10)

where b is the set of event histories η that constitute the demonstration.

The LFD process is illustrated in Figure 1. Π contains all possible con-

trollers for a specific chosen observation space and action space. This

is of course a huge space that is never computed explicitly.

The selected controller π must have specific qualities for the learning

to be regarded successful. These qualities are related to the event

histories η that may be generated by a robot using controller π. The

realization space R ⊂ Ihist for a π is defined as the set of all such

event histories, generated by the realization function Λ:

R = Λ (π) ∈ Ihist (11)

Λ can be seen as an abstraction of the physical robot placed in a par-

ticular environment and controlled by a specific π, able to produce the

set of all possible trajectories through Ihist . Of course, the robot can

not control the produced event histories η ∈ R entirely on its own, but

relies on an external component, the environment. This creates a nice

analogy to λ, which also relies on an external component, called bias.

Thus the learning function λ can be seen as the inverse function of

the robot represented by Λ. λ maps a set of event histories to a con-

troller and Λ maps a controller to a set of event histories. This is further

developed in Section 3.2.

The process of selecting π has many similarities to system identifica-

tion, where a model of the system is constructed from observed input

and output data [55]. The system, consisting of the agent and its en-

vironment, is modeled such that the system output uk+1 can be pre-

dicted given a sequence of previous inputs and outputs ηk until stage

k . However, the aim of system identification is in one sense much more

ambitious than LFD, since the system’s response to any input yk is to

be predicted. In LFD, we are satisfied with a π producing an action that,

if possible, leads to an event sequence ηk+1 ∈ B given that ηk ∈ B.

In other words, LFD does not necessarily model the outcome of all pos-

sible actions uk in each state, only the ones that occur for the robot in

a particular environment.

B should be understood as the set of event histories the human teacher

associates with a particular desired behavior. For example, if the

teacher wants to teach the robot to move to a door, B would contain

all event histories where the robot ends up by a door, in an accept-

able way. The behavior must be formulated such that the robot is able

R

B

λ

b

Λ

π

П
Ihist

Figure 1. The LFD process. The light-colored area represents the wanted
behavior B which is demonstrated with N training demonstrations

b =
{

η(1), ..., η(N)} ⊂ B represented by the dark-colored area.

The learning function λ creates a controller π ∈ Π. In interaction
with the environment, π realizes (repeats) the learned behavior. The
realization set R ⊂ Ihist is marked by the dashed line.

to reproduce the behavior in all desired environments. There may be

situations in which the robot can not distinguish between significant as-

pects of the world. In these cases, the robot’s sensing capabilities or

other aspects of the behavior have to be modified. Assume that the

move-to-door behavior is to be applied to a robot in a hotel environ-

ment. The robot must now be able to separate between doors. One

alternative is to add a new sensor allowing the robot to directly identify

each door it approaches, resulting in a redefined Ihist . Another alter-

native is to change the behavior such that the robot can use existing

sensors, e.g. wheel odometry, in order to distinguish different doors by

their locations. This corresponds to a modification of B.

The quality of the generated π is typically described as the ability to

“repeat a behavior”, which is the topic of the next section.

3.1. What does it mean to repeat a behavior?

The goal of LFD is to generate a controller π that enables a robot to

repeat a demonstrated behavior B given a set of demonstrations b.

This may sound like a well defined mission, but is actually both vague

and ambiguous. Consider the following example of a seemingly trivial

demonstration.

Figure 2. A simple demonstration where the tip of a robot arm starts at the red
cross in the lower right corner and moves over the table until it is po-
sitioned over the green cube. The demonstration can be interpreted
in a number of fundamentally different ways.

Observe a sequence of sensory-motor events describing a robot arm

moving over a table, finally stopping when positioned above a green

cube (Figure 2). What does it mean to repeat this sequence of events?

4



PALADYN Journal of Behavioral Robotics

One could imagine a vast number of interpretations. Here are a few

examples.

1. Assuming that the path is the important aspect of the demon-

stration, a successful controller may be written as u =
πPATH(y) where the function πPATH computes an action u for

each pose y, such that the arm follows the demonstrated path.

This kind of learning scenario refers to traditional programming

of industrial robot arms, as well as path-tracking autonomous

vehicles, e.g. [43].

2. Instead, if the demonstration is seen as an example of how

to reach the final position, the path itself becomes irrelevant

and the controller described above would not be suitable. In

this case, a successful controller could be written as u =
πTARGET (y) where the function πTARGET uses inverse kinemat-

ics to compute actions such that the tip of the robot arm reaches

the target.

Case 1 corresponds to what is often called action-level imitation
[22] where the robot carries out the same actions as the demonstrator.

Case 2 is often called functional imitation [29] in which the robot is

supposed to achieve the same effect on the environment [67]. In the

work by Alissandrakis et al. [2], the quality of action-level imitation is

measured in state and action metrics while functional imitation is mea-

sured in effect metrics. State and action metrics define the similarity of

behaviors in terms of the state and/or actions of the agent, while effect

metrics define behavior in terms of their effect on the environment.

Within these two categories one could imagine a vast number of inter-

pretations. Should the observed sequence of positions be understood

as fixed coordinates, or relative to the robot arm’s starting position?

Is the green cube really the relevant target, or is the target defined by

an absolute position? Is the target a cube of any color, or or is the

target perhaps any green object? Using many demonstrations of the

same behavior reduces some of the ambiguity, but in general it is im-

possible for the learner to tell which interpretation is “correct” without

further information. In fact, the learner can not even enumerate a set

of possible interpretations without a specification of state variables rel-

evant for the task to be learned. The discussion about what it means

to repeat a behavior becomes complicated further when the robot acts

in a dynamic, non-deterministic and partially accessible [77, ch.2] en-

vironment. Demonstrated event sequences may be both incomplete

and contain mistakes that should not be learned or repeated [28].

If the robot manages to successfully repeat a demonstrated behav-

ior under different conditions than during the demonstration we say

that the robot is able to generalize the demonstrated behavior. More

specifically, we refer to the robot’s ability to produce an event history

ηk ∈ B, under conditions ηk−1 not identical to the ones appearing dur-

ing the demonstrations in b. This can be formally described as how well

the realization space R corresponds to the desired behavior B, e.g. as

a minimization of R r B and B r R (refer to Figure 1).

Generalization can also be viewed as an extension of b by interpola-

tion or extrapolation of the demonstrated event histories. For this to

work one has to specify the aspects of the demonstrated data that

are important, i.e., the previously mentioned problem of what to imi-
tate (Section 3). One approach is to introduce a metric of imitation
performance [1, 2, 10]. Repeating a demonstration means minimiz-

ing the distance between the demonstrations and the repetitions us-

ing this metric. To find the metric, the variability in many demonstra-

tions is exploited such that the essential components of the task can

be extracted. One promising approach to construct such a metric is

to use the demonstrations to impose constraints in a dynamical sys-

tem [24, 38, 44]. Giovannangeli and Gaussier [35] use human-robot

interaction to improve generalization when learning sensory-motor be-

haviors for homing and path following. In the described work, teaching

by error correction (proscriptive learning), is shown to give superior gen-

eralization compared to a regular demonstration (prescriptive learning).

The generalization problem is also acknowledged outside the LFD com-

munity. In Machine Learning, the term generalization performance
of a learning algorithm relates to “its prediction capability on indepen-

dent test data” [41, p.193] which is identical to the common usage

of the term in robotics. The general problem with machine learning

in high-dimensional spaces is often expressed as the curse of dimen-

sionality [33, p.170], and is highly relevant also for robots with high-

dimensional observation and action spaces. Learning in such situa-

tions becomes inherently difficult since the demonstrated data fills his-

tory information space very sparsely and interpolation and extrapola-

tion become highly risky operations. The situation is related to the No
Free Lunch Theorem [85], which states that for a large class of ma-

chine learning algorithms, there is no universal best algorithm to solve

all problems. Instead, an algorithm has to be specialized to the prob-

lem under consideration to guarantee its superiority over any random

algorithm. This specialization consists of additional task-dependent in-

formation that has to be supplied to the learning algorithm as bias. In

the case of LFD, possible sources of bias are the robot’s prior knowl-

edge, feedback from the environment when the robot tries to repeat the

demonstrated behavior and human feedback before, during, and after

learning. The bias concept is further investigated in the next section.

3.2. Bias

The bias of a machine learning algorithm is defined as “any basis for

choosing one generalization over another, other than strict consistency

with the observed training instances” [63]. The basis may be seen as

form of pre-evidential judgment, or prejudice regarding the structure

of the data or the data generating process. In the case of numerical

regression, assuming a linear relation between input and output corre-

sponds to a high bias, while a cubic model corresponds to a lower bias.

In the case of LFD, bias can be applied to three different parts of the

problem definition:

1. Sensor variables. This can involve selection of relevant sensors,

or extraction of specific features that are judged relevant for the

specific task. It may also involve creation of intelligent sensors

to facilitate feature extraction.

2. Action variables. Most often this involves restricting the output

of the controller π to one or a few actuators. For example when

learning a grip operation, the actions for moving the robot may

be regarded irrelevant while the gripper motion is highly relevant.

This reduces the size of action space.

3. Controller function π. Bias can restrict the functional form of π,

e.g. to an artificial neural network of a specific size and archi-

tecture. Bias can also be expressed as general requirements of

π, such as smoothness criterion or lower/upper bounds. The

use of predefined skills as described below is another example.

Bias can be introduced into the learning process in a number of ways.

First of all, it may be hard-coded into the learning algorithm, e.g. by

choosing a specific neural network [57] or rule based framework Hell-

ström [42] to represent π. Another common and very powerful tech-

nique to introduce bias is to use predefined skills or behavior primi-

tives. Besides being biologically motivated [36, 64], the technique is

commonly used in robotics research, e.g. [34, 59, 61, 68]. Learning

is in this case reduced to selection of the right primitives and param-

eter estimation to adjust the primitives to the demonstrated data. The

5



PALADYN Journal of Behavioral Robotics

introduction of primitives is a way to reduce the dimensionality of the

learning problem (i.e. to deal with the curse of dimensionality men-

tioned above). The set of primitives is obviously much smaller than

Π which clearly simplifies learning. An analogy is numerical regres-

sion with a large feed-forward neural network compared to a low-level

polynomial. The polynomial introduces bias that makes learning much

easier, at the price of limiting the solution to the specific functional form

of the bias.

Regarding bias for sensors and actuators, it is common to hard-code

a set of relevant sensors and action variables for the task at hand,

or to pre-process the data before feeding it to the learning algorithm.

This kind of bias may also be introduced by interaction with the human

teacher who tells the robot to use specific sensor modalities. Saun-

ders and coworkers present an approach where relevant elements of

the state vector are weighted based on their information gain and on

manual selection from a teacher [70, 79].

Bias may also be subject to meta learning, suitable sensors can for ex-

ample be selected based on demonstrated data. This relates to atten-
tion and saliency which are important concepts in theories for human

and animal learning. The term shared attention refers to a teacher’s

and a learner’s simultaneous attention to the same objects. Scassel-

lati used the Cog platform [80] to investigate shared attention between

humans and robots. Saliency refers to the components of the environ-

ment that are important for a given task, and it clearly introduces a bias

by reducing the size of observation space Y . Breazeal and Scassel-

lati, [18] describe the relationship between attention and saliency and

how the concepts can be used to facilitate learning in robotics.

These techniques relate to the psychological term scaffolding, which

is used to denote interaction between caretakers and infants in order

to reduce distractions, marking a task’s important attributes and re-

ducing the number of degrees of freedom in the learning task in gen-

eral [19, 87]. All these operations aim at simplifying the learning task

by introducing bias to the problem definition.

From a formal perspective, bias regarding sensor and action variables

may be introduced by moving away from Ihist into a new, derived infor-

mation space Ider [53, p.571]. Ider is a reformulated or pre-processed

version of the information in Ihist . The mapping from Ihist to Ider is de-

noted κ, and may have an arbitrary shape:

κ : Ihist → Ider. (12)

An element of Ider is referred to as a derived event history ηder and

can be generated from η ∈ Ihist using the mapping κ. Therefore, Ider

does not serve as a general purpose representational space as Ihist

does, but rather as a task-specific representation where relevant fea-

tures become salient, while irrelevant information is not retained. The

purpose of Ider is similar to the purpose of the state space X . In fact,

a state space is one possible instance of Ider , but there are numerous

other possible derived information spaces that do not aim at represent-

ing states in the world.

The LFD process with bias included is illustrated in Figure 3. Various

ways to introduce bias regarding the control function π result in a re-

duced set Πp ⊂ Π. The learning function λ maps from the derived

information space Ider instead of straight from Ihist . This extended for-

mulation of LFD is further discussed in Section 3.4.

Referring to Figure 3, the what to imitate question shows up as

a transformation problem from Ihist to Ider , i.e., an identification of the

relevant aspects of the task. Since we are focusing on a self-imitation

setting, the correspondence problem is not present here. However,

there is still the problem of selecting a controller πp ⊆ Πp based

on bder , reflecting the remaining parts of the how to imitate question.

When to imitate appears as ensuring that b ⊆ B, i.e., that everything

in the demonstration set b is actually part of the desired behavior.

R

B

λκ

b

Λ

ПIhist

πp
П P

derI

bder

Figure 3. The LFD process with bias introduced. A derived information space
Ider is introduced as a space where the behavior may be represented
in a task-specific way. Training data b is mapped into Ider with an in-
formation mapping κ. The pre-processed information in Ider and var-
ious ways to introduce bias in λ result in a reduced set of possible
controllers ΠP , illustrated by the light colored area in Π. Compare
with Figure 1.

Our discussion about bias has so far been focused on knowledge in-

tentionally introduced into the system to facilitate learning. We like to

refer to this kind of information as ontological bias. However, there are

also a vast number of restrictions to the problem introduced for other

reasons. As mentioned before, selecting a specific type of algorithm to

represent π will introduce bias. A particular configuration of the robot’s

sensors and actuators restricts the ways in which it can solve a particu-

lar task. Often the choice of physical platform and software architecture

is made for practical reasons rather than for an understanding of on-

tological implications. We like to phrase these kind of restrictions as

pragmatical bias.

Independent of the type of bias being introduced into the system, it

limits the behaviors the robot can learn. Consequently bias is not nec-

essarily positive. Instead, one should aim at a suitable level of bias,

such that the robot can learn as many interesting behaviors as possi-

ble, while still being able to generalize correctly.

As mentioned above, using pre-defined skills or behavior primitives is

a common way to define Πp. The demonstrated data are in such cases

used to identify a suitable primitive and may also be used to set param-

eters for the selected primitive. One way to define such primitives is to

associate them with achievement of specific goals. This concept de-

serves special attention and is analyzed further in the next section.

3.3. Goal

The success or failure to repeat the demonstrated behavior is most

often judged by the human demonstrator, and to describe the human

intentions we use the word goal. The goal of a behavior is a human

concept and can be of two major types [68]:

1. Maintenance goals. A specific condition has to be maintained

for a time interval, such as the path-tracking scenario described

in Example 1 in Section 3.1.

2. Achievement goals. A specific condition has to be reached,

such as the motion to a green cube in Example 2 in Section

3.1.

6



PALADYN Journal of Behavioral Robotics

A behavior B was earlier introduced as a set of event histories that,

from a teacher’s perspective, fulfills some common purpose. This can

be understood as after performing B, specific conditions in the world

are satisfied. This is analogous with the common goal formulation from

classical AI, where a goal G is a set of states in state space [77]:

G ⊂ X. (13)

All the information the agent acquires about G is accumulated over

time in ỹ and ũ. Therefore, any goal G which can be measured with

the agent’s sensors can also be formulated as a set of event histories

η ∈ Ihist :

GI ⊂ Ihist . (14)

This should be understood as after observing an η ∈ GI we know

that G is satisfied. A consequence of this formulation is that behaviors

and goals are represented in the same way, and since any η ∈ B by

definition satisfies the goal of B, GI and B become identical:

GI = B. (15)

This may also be explained from the reversed perspective. When X is

viewed as a derived information space, G will cast a pre-image into Ihist

which per definition will be identical to B. Still, this formulation of goals

is not very satisfying. In state space, G most often has an intentional

definition, a neat formulation that describes the minimum requirements.

However, in the task invariant Ihist , a neat goal can not be formulated

since no bias has been introduced.

When a human teacher speaks about goals he or she uses task specific

information which in principle could be transferred to the robot as bias.

This is partly what is done when a state space is defined in classical

AI. But the information a human uses to formulate goals may not be

necessary for executing the same acts, maybe not even helpful. This

argument is nicely illustrated in the frame of reference [14, 73]. By

assuming the necessity for a human goal formulation we impose our

own frame of reference upon the agent, and may make representation

of the behavior much more complicated than it may be from the agent’s

perspective.

A common way to introduce this separation between the human’s and

the robot’s frame of reference is to introduce pre-programmed primi-

tives. The set of known primitives creates a space where the human

teacher can easily get an understanding of what the robot is doing,

while the specific controllers can create local information spaces suit-

able for the specific primitive. The use of primitives is further developed

in the following section.

3.4. Learning with behavior primitives

Based on the concepts of behavior, bias, and goal introduced above,

the learning task defined in Equation 10 is here refined. In Section 3.1

it was concluded that λ requires some bias to be able to find a suitable

controller, as illustrated in Figure 3. In the most basic form of LFD, λ
is simply learned by fitting the demonstrated data to a more or less

general functional form, such as a neural network [57] or a rule base

framework [42] which in such cases represents the reduced controller

set ΠP in Figure 3. The use of primitives, which was introduced in

Section 2.1, is fully compatible with this description of learning bias

such that learning consists of matching a demonstration with a pre-

defined primitive. This process is denoted behavior recognition and

can be approached in a number of ways as described below.

The description of LFD given above is valid for demonstrations of be-

haviors that can be repeated by choosing one single primitive. More

complex behaviors demand sequences or combinations of primitives.

For a given robot and class of learning scenarios, the set of primitives

ΠP is normally chosen such that a demonstration may be divided into

segments where each segment can be repeated by choosing the right

primitive. The general LFD process illustrated in Figure 3 is here ex-

tended to include handling of such sequences. Some types of behav-

iors are better described as combinations of several primitives executed

in parallel, e.g. [69]. This organization is common in behavior-based ar-

chitectures, e.g. [27, 58]. However, recognition of primitives executed

in parallel is incredibly complex in the general case. Furthermore, these

systems require a coordination function that integrate motor commands

from parallel primitives. Due to these issues, parallel primitives are less

common in LFD applications and we have therefore chosen to focus

on the purely sequential case.

Let us first look from a post learning perspective at how sequence con-

trol can be described for a robot using a set ΠP of predefined primitives

πp. To include the assignment of parameters for parameterized primi-

tives into the learning, ΠP is in the following regarded as containing all

possible parameterizations of primitives. Control can now be divided

into two steps:

1. Action selection where a function πsel selects a primitive πp ∈
ΠP :

πp = πsel(ηder) (16)

where πsel performs the mapping

πsel : Ider → ΠP (17)

ηder ∈ Ider is a pre-processed or derived version of the original

event history η ∈ Ihist , constructed by an information mapping

function κ [53, p.571], defined in Equation 12.

2. Low-level control using the chosen controller πp to generate an

action uk .

Stepping back to the learning phase, the problem is now reduced to

finding the action selection function πsel using demonstrated data b
pre-processed with the information mapping κ into the derived infor-

mation space Ider (see Figure 4)1. In this way, the dimensionality of the

learning problem is drastically reduced since λ is now selecting suit-

able πsel ∈ Πsel based on the pre-processed trajectory information in

Ider rather than working on the full Ihist and Π spaces. Compare with

Figures 1 and 3.

While the approaches to sequence learning with primitives vary widely,

the process of finding πsel can be divided into three tasks:

1. Behavior segmentation where a demonstration η(i) is divided

into smaller segments, referred to as task segments.

2. Behavior recognition where each segment is associated with

a primitive πp ∈ ΠP .

1 By comparing Equations 16 and 17 with Equations 7 and 8, the primitives
πp may be seen as generalized actions, generated by a controller πsel . Another
interesting analogy can be made between action selection and the correspondence
problem, i.e., the problem of finding the action(s) that corresponds to an observed
event sequence. Viewing the primitives as actions leads to an equivalent problem
formulation for action selection; find the primitive that corresponds to an observed
event sequence.

7



PALADYN Journal of Behavioral Robotics

R
B

λ

κ

b

Λ

ПIhist

πsel

selП

πp
П P

derI

bder

Figure 4. An extended version of the LFD process illustrated in Figure 3. Bias
is here introduced into the learning process by restricting Π to a set
of primitives ΠP . Primitives πp are selected by selection function

πsel : Ider → ΠP . Solid lines represent function mappings while the
dashed line represents the evaluation of πsel.

3. Behavior coordination, referring to identification of rules or

switching conditions for how the primitives are to be combined.

Referring to Figure 4, these tasks are realized by the function λ. In prac-

tice, task 1 and 2 are often intertwined. For Task 1, several approaches

exist, for example variance thresholding [46, 51], repeated pattern cor-

relation [49, 75, 76], thresholding mean velocity of joints [34, 65] and

entropy-based segmentation [25]. Auto-associative neural networks

have also been used for segmentation, both by measuring network

reconstruction performance [15] and by identifying bifurcations in the

network attractor dynamics [49, 50]. Calinon and coworkers [24] used

Dynamic Time Warping in combination with Gaussian Mixture Regres-

sion to decompose movement trajectories of a humanoid robot.

Task 2 is commonly seen as a classification problem. For example,

Bentivegna [8] uses a nearest-neighbor classifier on state data to iden-

tify skills in a marble maze and an air hockey game. In both these se-

tups, each primitive is assigned a query point in state space, which is

compared with the current system state. Pook and Ballard [74] present

an approach where sliding windows of data are classified using Learn-

ing Vector Quantization in combination with a k-NN classifier. The com-

plexity of the distance measure is highly dependent on the complexity

of B. For simple behaviors, a Euclidean distance function has been

shown to work well [9]. However, for more complex behaviors, other

measures are necessary. Tani [83, 84] does both recognition of be-

havior primitives and segmentation with extended recurrent neural net-

works that model different behavior primitives depending on the para-

metric bias in the network model. Recognition is done by finding the

optimal parametric bias for an observed sensory-motor sequence. Cali-

non and colleagues use Hidden Markov Models in combination with

Principal Component Analysis to compute the likelihood that the ob-

served data was generated by the model [23, 24].

One approach that addresses the complexity of higher level primitives

can be found in work by Nicolescu [68], where two behaviors are

regarded as being similar if their respective preconditions and goals

match, regardless of their internal differences. Nicolescu utilizes the

postconditions to recognize primitives in demonstrated data, i.e., task 1

and 2 as described above. Recognized primitives are arranged in a be-

havior network and during execution the behaviors’ preconditions in

combination with the network links are used for behavior coordination,

Task 3. Formally, any sequence of recognized primitives can be seen

as an element in a derived information space Ider , and consequently

a behavior network, represented as a set of behavior sequences, con-

stitutes a subspace of that Ider . In this setting, the definition of post-

conditions for each primitive constitutes an information mapping κ from

Ihist to Ider and the preconditions take part in the implementation of the

coordination function πsel. The primitive controller itself is represented

by πp ∈ Πp. Compare with Figure 4.

Demiris and Johnson [31] present a different approach where all prim-

itive controllers are continuously running in parallel, predicting actions

in response to incoming sensor data. The prediction errors are then

used to estimate how well each primitive represents the demonstrated

behavior. This approach is similar to our own method β-comparison,

which is also used for some primitives in the present example, c.f., Sec-

tion 4. Even though theoretically appealing and with strong connections

to biological findings, see [31] for details, direct comparison of pre-

dicted actions become infeasible for complex primitives. The method

presented by Demiris and Johnson, as well as our β-comparison, has

problems capturing the similarity of behaviors that may be executed

in many different ways, leading to the same goal. One way to handle

these issues is to move from a direct comparison of actions in Ihist to

more abstract concepts of actions or events in a derived event history

ηder ∈ Ider . An evaluation of β-comparison and two other methods

for behavior recognition can be found in [15]. In a generalized sense

these methods should be seen as an attempt to create a metric of
imitation performance, as discussed in Section 3.1.

Sometimes, a demonstrated behavior can not be decomposed into

a sequence of known discrete primitives. Several metrics may con-

flict and cause ambiguities in behavior recognition. In these situations,

continuous task representations are preferable since they can better

describe a smooth transition from one metric to another, see for in-

stance [24].

A distributed approach to Task 3 is presented by Maes and Brooks [56].

Global feedback is used, allowing the primitives themselves to learn

suitable activation conditions by correlating particular stimuli with posi-

tive or negative feedback. The feedback functions in combination with

the primitives themselves constitute the coordination function πsel. An-

other approach to behavior coordination is found in the MOSAIC archi-

tecture [39, 40, 86]. MOSAIC utilizes forward modes paired with prim-

itive controllers. Each forward model computes a responsibility signal

as a measure of how well the paired controller can handle the present

situation. When combined with a responsibility predictor this architec-

ture forms a powerful coordination system. MOSAIC is a theoretical

framework but the HAMMER architecture [30, 32], which has been im-

plemented and tested on robots, captures many aspects of MOSAIC.

Both these architectures are put in relation to LFD in our own recent

work [13]. A key aspect of this approach is the pairing of forward mod-

els (predictors) and inverse models (controllers) in a model-free way.

We are analyzing this issue deeper and propose a possible solution

based on the algorithm Predictive Sequence Learning algorithm in other

recent publications [16, 17].

There are several approaches to identify relevant aspects of the task

that do not employ behavior primitives. While we limit the present re-

view to approaches using primitives, the work by Kulic̀ et al. [52] is

worth mentioning even though it does not directly apply behavior prim-

itives. In this approach, demonstrations of movement patterns are en-

coded in Hidden Markov Models and then clustered into groups using

Hierarchical Agglomerative Clustering. Groups are formed incremen-

tally as new demonstrations are added, which makes this approach

display many of the advantages with behavior primitives as described

here. Furthermore, Kulic̀ et al. put forward the advantage of a hierarchi-

cal organization of behavior, a claim we support strongly and discuss

deeper in other work [13].

8



PALADYN Journal of Behavioral Robotics

Adding to the motivations presented above, one important reason for

the use of primitives in LFD is that primitives constitute high level repre-

sentations of the demonstrated behavior. Primitives can be labeled in

meaningful ways, which helps establish a common understanding be-

tween the human teacher and the robot pupil. It is natural for humans to

break down sequences of actions into meaningful sections and adults

appear to agree upon how segmentation should be made [7]. We there-

fore believe that identification and recombination of behavior primitives

is a critical aspect of LFD.

4. Demonstrator

The concepts and theory introduced above are here illustrated with an

experiment in which a Khepera robot [48] is used in an LFD setting. This

experimental setup is on purpose simplified to illustrate how ambigu-

ous even a very simple demonstration may be, and how the proposed

formalism can be used to describe the LFD process.

The Khepera robot has eight infra-red proximity sensors mounted

around the rim of the robot. The limited sensing capabilities have for this

experiment been augmented by an external camera mounted above

the robot arena. The setup can be seen in Figure 5 and an example

image from the top mounted camera can be seen in Figure 6. The

robot is equipped with a gripper and is placed in an environment with

a number of wood blocks and two colored areas located in one side of

the scene.

Figure 5. Experimental setup. In the center is a Khepera robot [48] with a grip-
per that can be raised and lowered. The objects around the scene
are painted wood blocks. Rubber bands have been placed around
the objects to facilitate gripping. A camera has been mounted directly
above the scene, see Figure 6.

The experiment comprises a sequence learning task in which a human

intends to teach a robot to pick up cubes and place them in the blue-

colored corner area. To demonstrate the wanted behavior, the human

tele-operates the robot towards a red cube, grips it, lifts it, moves to the

blue area and drops down the cube. The robot should then be able to

repeat the demonstrated behavior. The reader is referred to Figure 1

which summarizes much of the discussed formalism.

Observation space Y comprises the camera image (Figure 6), data

from the eight proximity sensors, position sensors for gripper and grip-

per arm and an optical barrier detecting objects in the gripper. Ac-

Figure 6. Example image from top mounted camera. A pink tape has been
placed on the Khepera gripper to facilitate recognition of the robot’s
position and orientation.

tion space U comprises the speed of the left and right wheel, and the

speeds of the motors controlling gripper lift motion and gripper close

motion. Sequences ỹk and ũk (Equations 2 and 3) are combined into

history information states ηk ∈ Ihist (Equations 5 and 6). Ihist is

a huge space comprising all possible sensor and action sequences

the robot in principle can experience. Given the task at hand, a more

suitable derived information space Ider is defined. It comprises se-

quences of the following entities derived from Y and U: Object proper-

ties distance, direction, orientation, type, and color where type is

either cube or cylinder. Directions and orientations are given in a coor-

dinate system relative to the robot. Distance and direction to the cen-

troids of the two colored areas are also extracted. Technically, these

entities are extracted from the camera image using a combination of

image analysis tools, including color segmentation, Sobel edge detec-

tion, Hough transform and mathematics morphology. Formally, these

techniques are parts of the κ, defined in Equation 12.

The generation of Ider should be seen as the first of many kinds of

biases that we introduce in order to make the learning task feasible.

This bias depends on the available sensors and actuators and also

on the task at hand. It is clear that the dimensionality of the learning

problem is significantly reduced by replacing the camera image in Ihist

by a small number of object properties.

The demonstrator performs the wanted task by tele-operating the robot

as described above. The resulting recorded data bder ⊂ Ider is a set

of event histories constituting the input to the learning function λ. To

support this process, the universe Π of all possible controllers is re-

duced to a much smaller set Πp that comprises pre-defined high-level

behavior primitives. The following primitives are defined: move_to_ob-
ject, move_to_area, grip, release, lift and put_down. The move_-
to_object primitive takes two parameters color and type, where

color = C ⊆ {red, green, blue, yellow} and type = T ⊆
{cube, cylinder}. The move_to_area primitive takes one argument

color just like move_to_object, but does not have any type parame-

ter. One could of course imagine many other possible parameters for

the these primitives, e.g. position and size, but the included param-

eters suffice for the present example. Referring to Section 3.3, each

parametrization of the move_to_object and move_to_area primitives

is associated with a specific goal GI (Equation 14). As been already

9



PALADYN Journal of Behavioral Robotics

mentioned, this is a very efficient way of introducing additional bias in

learning such that complex behaviors can be learned by few or even

a single demonstration. Conceptually, Πp comprises all possible pa-

rameterizations of the primitives.

To keep the example simple, all primitives are hard-coded into the robot,

i.e., both Ider and Πp are defined manually. However, in a realistic set-

ting primitives are often created during a previous learning phase, as

has been shown in for example the work by Saunders et al. [70, 79].

The use of primitives should be seen as a way to reuse knowledge

that may come either from a programmer manually designing the prim-

itive, or from a previous learning phase. Formally, this is described as

a gradual redefinition of Ider and Πp which corresponds to the concept

of scaffolding described above.

To learn a sequence of these primitives, the three steps described in

Section 3.4 are performed. Behavior segmentation and recognition are

executed in one step by continuously matching each primitive against

bder . The recognition method differs between different primitives. For

grip, release, lift and put_down, the start and end positions of the

gripper are used to indicate that the corresponding primitive has

been executed. For move_to_object and move_to_area the behavior

recognition method β − comparison [15] is used. In this approach,

an action vector for each parameterized primitive is computed, creating

a set of hypothesis. Each action vector is then compared to the ob-

served bder creating an error measure for each hypothesis. If the error

remains low while the robot is approaching a specific target object, the

hypotheses is confirmed and a move_to primitive with the correspond-

ing parametrization can be inserted into the recognized sequence.

Each primitive specifies a set of finish conditions, e.g. that the robot

should be within gripping range of a target object for move_to_object
to complete. The end result of the learning process λ is a function

πsel ∈ Πsel that selects an appropriate primitive πp ∈ Πp given the

current event history ηder (Equation 16). In this way, πsel acts as a

sequencer and the actual control of the robot and gripper motion is

done by the currently selected primitive πp.

release

put_down

Finish

grip

move_to_area(C) move_to_area(blue)

lift

move_to_object(red,cube)move_to_object(C,cube)move_to_object(red,T)move_to_object(C,T)

Start

Figure 7. A schematic of the demonstrated sequence going vertically from top
to bottom, where each square represents the execution of a prim-
itive. Alternative interpretations of the demonstrated sequence are
drawn horizontally, with the most general interpretation to the left and
the most specific to the right. C and T are unspecified attributes
representing all, or a subset of, possible values for color and type,
respectively. Dashed lines mark ambiguous steps in the sequence,
that require further information.

Even with the bias introduced by the construction of Ider and by the

pre-defined behavior primitives in Πp a substantial uncertainty, simi-

lar to the one discussed in Section 3.1, remains. This is illustrated in

Figure 7 where alternative interpretations at each step are drawn hor-

izontally and time flows vertically from top to bottom. In the shown

example, the first part of the demonstration may be interpreted in four

ways; move_to_object(C,T), move_to_object(red,T), move_to_ob-
ject(C,cube), move_to(red,cube). The second and third primitives

grip and lift are uniquely identified while move_to_area is subject to

similar ambiguity as move_to_object. Finally, the primitives put_down
and release are uniquely identified. The alternatives for each ambigu-

ity represent generalizations along different feature axes. In Section 3.1

this is described as interpolation or extrapolation of the demonstrated

event histories η. Figure 7 illustrates a subspace of Πsel. With the am-

biguities resolved, through human feedback or other kinds of bias, the

resulting sequence represents an instance of πsel ∈ Πsel as defined

in Equation 17.

Various types of feedback from the human can be applied such that

the ambiguous sequence collapses into a single well defined sequence

of behavior primitives that will enable repetition of the demonstrated

behavior according to the user’s intentions. In the described experi-

ment, the human teacher manually selects the appropriate alternatives

in a dialog system such that the generated πsel will execute the se-

quence žmove_to_object(C,cube), grip, lift, move_to_area(blue),
put_down, release~. The robot is then able to repeat the intended

sequence of primitives and autonomously move cubes of any color to

the blue area.

To sum up, the present example demonstrates how the huge and com-

plex Ihist can be transformed into a significantly smaller and more hu-

man interpretable space Ider . On the controller side, the set of all pos-

sible controllers Π have been reduced by introducing a set of primitives

Πp that can be composed into sequences by Πsel, c.f. Figure 4. A

more detailed description of the experimental setup will be presented

in future work, including a graphical interface in which the human user

is able to give feedback during and after a demonstration, in order to

resolve ambiguities such as the one illustrated in Figure 7.

5. Summary

A formalism for robot behaviors and Learning from Demonstration
(LFD) is presented. Building on terminology from LaValle [53, ch.11],

an agent’s sensory-motor history is conveniently described by an event

history, and a controller maps event histories to actions in action space.

As illustrated in Figure 1, a demonstration of a particular behavior can

be seen as an event history η ∈ b, and the behavior itself as the large

set B of allowed event histories, i.e., all possible ways to realize the

desired behavior. The quality of the learned controller can be judged by

the similarity between B and the realization space R .

The vague and ill-posed meaning of repeating a demonstrated be-

havior is discussed from a machine learning perspective. The concept

of generalization is defined in the framework of event histories and

leads to a discussion of bias in learning. In LFD, bias is essential and

can be introduced before, during, and after demonstration as feedback

from the human teacher. The huge information history space may be

reduced to a derived space, suitable for a limited set of tasks. Behav-

ior primitives are another common way to introduce bias, and are often

associated with specific goals, which are explicitly or implicitly defined

for each primitive. LFD can at a higher level be described as controller

selection. In this context, learning consists of finding and tuning a suit-

able primitive. More complex behaviors can be created by combining

several primitives into sequences. LFD can then be described in three

10



PALADYN Journal of Behavioral Robotics

steps, behavior segmentation, behavior recognition and behavior
coordination.

When using primitives created during a previous learning phase, learn-

ing can be seen as an evolutionary process where new knowledge is

gained through the use of previous knowledge as bias. Formally, this is

described as a gradual redefinition of Ider , Πp and Πsel which relates

to the concept of scaffolding.

The formalism is applied to a sequence learning task in which the in-

troduced concepts are illustrated with focus on how bias of various

kinds can be used to enable learning from a single demonstration. The

experiment shows how even a simple demonstration contains almost

unavoidable ambiguities that have to be handled one way or another.

In context of the presented formalism, these ambiguities appear clearly

as a transition problem from behavior B ⊂ Ihist to controller π ∈ Π,

or as a controller selection problem in Πsel. This research problem is

believed to be crucial for the development of learning robots and is ad-

dressed in our ongoing research.

The presented work is an attempt to structure and formalize general

principles and assumptions in LFD. Our aim is not to present the sin-

gle best way to talk about behaviors, generalization, goals, and other

LFD related concepts. Rather, we want to point out the importance of

defining these concepts clearly. It is our hope that the presented work

will provide useful insights to the mechanisms involved in LFD and thus

contribute to further development of this powerful and promising area

of robot learning.

Acknowledgments

The authors would like to thank Lars-Erik Janlert for many valuable

comments on this paper, and Steven LaValle for inspiring discussions

about information spaces.

References

[1] A. Alissandrakis, C. L. Nehaniv, and K. Dautenhahn. Imitation with

ALICE: learning to imitate corresponding actions across dissimilar

embodiments. IEEE Transactions on Systems, Man and Cyber-

netics, Part A: Systems and Humans, 32:482–496, 2002.

[2] A. Alissandrakis, C. L. Nehaniv, and K. Dautenhahn. Action,

state and effect metrics for robot imitation. In 15th IEEE Interna-

tional Symposium on Robot and Human Interactive Communica-

tion (ROMAN 2006), pages 232–237, Hatfield, September 2006.

[3] R. Amit and M. Mataric̀. Parametric primitives for motor repre-

sentation and control. In Int. Conf. on Robotics and Automation

(ICRA), Washington DC, May 2002.

[4] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey

of robot learning from demonstration. Robotics and Autonomous

Systems, 57(5):469–483, May 2009.

[5] R. C. Arkin. Behaviour-Based Robotics. MIT Press, 1998.

[6] P. Bakker and Y. Kuniyoshi. Robot see, robot do: an overview of

robot imitation. In Proceedings of the AISB Workshop on Learning

in Robots and Animals, pages 3–11, Brighton, 1996.

[7] D. Baldwin, A. Andersson, J. Saffran, and M. Meyer. Segmenting

dynamic human action via statistical structure. Cognition, 106(3):

1382–1407, March 2008.

[8] D. C. Bentivegna. Learning from Observation using Primitives.

PhD thesis, College of Computing, Georgia Institute of Technol-

ogy, 2004.

Table 1. Symbol index

Symbol Description Definition

X State space Sec. 2.1
Y Observation space Sec. 2.2
Ỹ Observation history space Sec. 2.3
ỹ ∈ Ỹ Observation history Eq. 2
U Action space Sec. 2.2
Ũ Action history space Sec. 2.3
ũ ∈ Ũ Action history state Eq. 3
h Sensor function Sec. 2.2
f Action function Sec. 2.2
Π Controller space Sec. 3
π ∈ Π Controller Eq. 1, Eq. 7
I Information space Sec. 2.3
e ∈ I Sensory-motor event Sec. 2.3
Ik History information space (up to stage k) Eq. 5
η ∈ Ihist History information state Eq. 4
η0 ∈ Ihist Initial conditions Sec. 2.3
Ihist Information history space (unbound) Eq. 6
B ⊂ Ihist Behavior Sec. 2.5
b ⊂ B Demonstration Sec. 3
R ⊂ Ihist Realization space Sec. 3
λ Learning function Eq. 10
Λ Realization function Eq. 11
Ider Derived information space Sec. 3.2
G ⊂ X Goal (defined in X ) Sec. 3.3
GI ⊂ Ihist Goal (defined in Ihist ) Sec. 3.3
Πp Set of primitive controllers Sec. 3.4
πp ∈ Πp Primitive controller Eq. 16
πsel Controller selection function Eq. 17
κ Information mapping Eq. 12

[9] D. C. Bentivegna, C. G. Atkeson, and G. Cheng. Learning similar

tasks from observation and practice. In Proceedings of the 2006

IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, pages 2677–2683, Beijing, China, October 2006.

[10] A. Billard, Y. Epars, G. Cheng, and S. Schaal. Discovering imita-

tion strategies through categorization of multi-dimensional data. In

Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and Systems, volume 3, pages 2398–2403 vol.3, 2003.

[11] A. Billard, Y. Epars, S. Calinon, S. Schaal, and G. Cheng. Dis-

covering optimal imitation strategies. Robotics and Autonomous

Systems, 47(2-3):69–77, June 2004.

[12] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot program-

ming by demonstration. In B. Siciliano and O. Khatib, editors,

Handbook of Robotics. Springer, 2008.

[13] E. A. Billing. Cognition Reversed - Robot Learning from Demon-

stration. PhD thesis, Umeå University, Department of Computing

Science, Umeå, Sweden, December 2009.

[14] E. A. Billing. Cognitive perspectives on robot behavior. In J. Filipe,

A. Fred, and B. Sharp, editors, Proceedings of 2nd International

Conference on Agents and Artificial Intelligence (ICAART), Special

11



PALADYN Journal of Behavioral Robotics

Session LAMAS, pages 373–382, Valencia, Spain, January 2010.

[15] E. A. Billing and T. Hellström. Behavior recognition for segmen-

tation of demonstrated tasks. In IEEE SMC International Confer-

ence on Distributed Human-Machine Systems, pages 228 – 234,

Athens, Greece, March 2008.

[16] E. A. Billing, T. Hellström, and L. E. Janlert. Model-free learning

from demonstration. In J. Filipe, A. Fred, and B. Sharp, editors,

Proceedings of 2nd International Conference on Agents and Artifi-

cial Intelligence (ICAART), pages 62–71, Valencia, Spain, January

2010.

[17] E. A. Billing, T. Hellström, and L. E. Janlert. Behavior recogni-

tion for learning from demonstration. In Proceedings of IEEE In-

ternational Conference on Robotics and Automation, Anchorage,

Alaska, May 2010.

[18] C. Breazeal and B. Scassellati. Challanges in building robots that

imitate people. In K. Dautenhahn and C. L. Nehahiv, editors, Imi-

tation in Animals and Artifacts. MIT Press, 2002.

[19] C. Breazeal and B. Scassellati. Infant-like social interactions be-

tween a robot and a human caretaker. Adaptive Behavior, 8(1):

49–74, 1998.

[20] C. Breazeal and B. Scassellati. Robots that imitate humans.

Trends in Cognitive Sciences, 6(11):481–487, November 2002.

[21] R. A. Brooks. New approaches to robotics. Science, 253(13):

1227–1232, 1991.

[22] R. W. Byrne and A. E. Russon. Learning by imitation: a hierarchical

approach. The Journal of Behavioral and Brain Sciences, 16(3),

1998.

[23] S. Calinon and A. Billard. Recognition and reproduction of ges-

tures using a probabilistic framework combining PCA, ICA and

HMM. In Proceedings of the 22nd international conference on

Machine learning, pages 105–112, Bonn, Germany, 2005. ACM.

[24] S. Calinon, F. Guenter, and A. Billard. On learning, representing

and generalizing a task in a humanoid robot. IEEE Transactions

on Systems, Man and Cybernetics, Part B. Special issue on robot

learning by observation, demonstration and imitation, 37(2):286–

298, 2007.

[25] P. Cohen, N. Adams, and H. B. Voting experts: An unsupervised

algorithm for segmenting. Intelligent Data Analysis, 11(6):607–

625, 2007.

[26] A. Cypher, editor. Watch What I Do: Programming by Demonstra-

tion. MIT Press, 1993.

[27] T. S. Dahl. Behavior-Based Learning. PhD thesis, Faculty of En-

gineering, University of Bristol, UK, 2002.

[28] N. Delson and H. West. Robot programming by human demon-

stration: The use of human inconsistency in improving 3D robot

trajectories. In Proceedings of the IEEE/RSJ/GI International Con-

ference on Intelligent Robots and Systems ’94. Advanced Robotic

Systems and the Real World, IROS ’94., volume 2, pages 1248–

1255, Munich, Germany, September 1994.

[29] J. Demiris and G. Hayes. Do robots ape? In Proceedings of the

AAAI Fall Symposium on Socially Intelligent Agents, pages 28–31,

1997.

[30] Y. Demiris and A. Dearden. From motor babbling to hierarchical

learning by imitation: a robot developmental pathway. In Proceed-

ings of the 5th International Workshop on Epigenetic Robotics,

pages 31—37, 2005.

[31] Y. Demiris and M. Johnson. Distributed, predictive perception of

actions: a biologically inspired robotics architecture for imitation

and learning. Connection Science, 15(4):231–243, 2003.

[32] Y. Demiris and B. Khadhouri. Hierarchical attentive multiple mod-

els for execution and recognition of actions. Robotics and Au-

tonomous Systems, 54(5):361–369, May 2006.

[33] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd

Edition). Wiley-Interscience, 2001.

[34] A. Fod, M. Mataric̀, and O. C. Jenkins. Automated derivation

of primitives for movement classification. Autonomous Robots,

pages 39–54, 2002.

[35] C. Giovannangeli and P. Gaussier. Human-Robot interactions as

a cognitive catalyst for the learning of behavioral attractors. In

16th IEEE International Symposium on Robot and Human interac-

tive Communication (RO-MAN 2007), pages 1028–1033, August

2007.

[36] S. F. Giszter, F. A. Mussa-Ivaldi, and E. Bizzi. Convergent force

field organized in the frog’s spinal cord. Journal of Neuroscience,

13(2):467–491, 1993.

[37] J. G. Greeno. Special issue on situated action. In Cognitive Sci-

ence, volume 17, pages 1–147. Ablex Publishing Corporation,

Norwood, New Jersey, 1993.

[38] F. Guenter, M. Hersch, S. Calinon, and A. Billard. Reinforce-

ment learning for imitating constrained reaching movements. RSJ

Advanced Robotics, Special Issue on Imitative Robots, 21(13):

1521–1544, 2007.

[39] M. Haruno, D. M. Wolpert, and M. M. Kawato. MOSAIC model

for sensorimotor learning and control. Neural Comput., 13(10):

2201–2220, 2001.

[40] M. Haruno, D. M. Wolpert, and M. Kawato. Hierarchical MOSAIC

for movement generation. In International Congress Series 1250,

pages 575– 590. Elsevier Science B.V., 2003.

[41] T. Hastie, R. Tibshirani, and J. H Friedman. The Elements of Sta-

tistical Learning. Springer, August 2001.

[42] T. Hellström. Teaching a robot to behave like a cockroach. In

Proceedings of the Third International Symposium on Imitation in

Animals and Artifacts in Hatfield UK, pages 54–61, 2005.

[43] T. Hellström, T. Johansson, and O. Ringdahl. Development of an

autonomous forest machine for path tracking. In P. Corke and

S. Sukkariah, editors, Field and Service Robotics - Results of the

5th International Conference FSR, volume 25 of Springer Tracts

in Advanced Robotics, pages 603–614. Springer, 2006.

[44] M. Hersch, F. Guenter, S. Calinon, and A. Billard. Dynamical

system modulation for robot learning via kinesthetic demonstra-

tions. Proceedings of IEEE Transactions on Robotics, 24(6):

1463–1467, 2008.

[45] E. Hutchins. Cognition in the Wild. MIT Press, Cambridge, Mas-

sachusetts, 1995.

[46] R. A. Peters II and C. L. Campbell. Robonaut task learning through

teleoperation. In Proceedings of the 2003 IEEE, International Con-

ference on Robotics and Automation, pages 23–27, Taipei, Tai-

wan, September 2003.

[47] L. E. Janlert. Modeling change - the frame problem. In Z. W.

Pylyshyn, editor, The Robot’s Dilemma, pages 1 – 41. Ablex Pub-

lishing, Norwood, New Jersey, 1987.

[48] K-Team. Khepera robot. http://www.k-team.com, 2007.

[49] H. Kadone and Y. Nakamura. Segmentation, memorization,

recognition and abstraction of humanoid motions based on corre-

lations and associative memory. In Proceedings of the 6th IEEE-

RAS International Conference on Humanoid Robots, pages 1–6,

University of Genova, Genova, Italy, 2006.

[50] H. Kadone and Y. Nakamura. Symbolic memory for humanoid

robots using hierarchical bifurcations of attractors in nonmono-

tonic neural networks. In Proceedings of IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 2900–

2905, Edmonton, AB, Canada, 2005.

[51] N. Koenig and M. J. Mataric̀. Behavior-Based segmentation of

demonstrated tasks. In International Conference on Development

and Learning (ICDL), Bloomington, USA, May 2006.

[52] D Kulic̀, W Takano, and Y Nakamura. Incremental learning, clus-

12



PALADYN Journal of Behavioral Robotics

tering and hierarchy formation of whole body motion patterns us-

ing adaptive hidden markov chains. The International Journal of

Robotics Research, 27(7):761–784, July 2008.

[53] S. M. LaValle. Planning Algorithms. Cambridge University Press,

Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[54] H. Lieberman, editor. Your Wish is My Command: Programming

by Example. Morgan Kaufmann, San Francisco, 2001.

[55] L. Ljung. System Identification. Prentice-Hall, Simon & Schuster,

Englewood Cliffs, New Jersey, 1987.

[56] P. Maes and R. A. Brooks. Learning to coordinate behaviors. In

National Conference on Artificial Intelligence (AAAI), pages 796–

802, 1990.

[57] P. Martin and U. Nehmzow. Programming by teaching: Neural

network control in the manchester mobile robot. In Proc. Intelligent

Autonomous Vehicles, Helsinki. Springer Verlag, 1995.

[58] M. J. Mataric̀. Behavior-Based control: Examples from naviga-

tion, learning, and group behavior. Journal of Experimental and

Theoretical Artificial Intelligence, 9(2–3):323–336, 1997.

[59] M. J. Mataric̀. Designing and understanding adaptive group be-

havior. Adaptive Behavior, 4(1):51–80, 1995.

[60] M. J. Mataric̀. Integration of representation into Goal-Driven

Behavior-Based robots. In IEEE Transactions on Robotics and

Automation, volume 8, pages 304–312, 1992.

[61] M. J. Mataric̀ and M. J. Marjanovic. Synthesizing complex behav-

iors by composing simple primitives. In Proceedings of the Eu-

ropean Conference on Artificial Life (ECAL-93), volume 2, pages

698–707, Brussels, Belgium, May 1993.

[62] J. McCarthy and P. J. Hayes. Some philosophical problems from

the standpoint of artificial intelligence. In B. Meltzer and D. Michie,

editors, Machine Intelligence 4, pages 463–502. Edinburgh Uni-

versity Press, 1969.

[63] T. M. Mitchell. The need for biases in learning generalizations.

Technical Report CBM-TR-117, Rutgers Computer Science De-

partment Technical Report, New Brunswick, New Jersey, 1980.

[64] F. A. Mussa-Ivaldi and S. F. Giszter. Vector field approximation: a

computational paradigm for motor control and learning. Biological

cybernetics, 67:479–489, 1992.

[65] S. Nakaoka, A. Nakazawa, K. Yokoi, and K. Ikeuchi. Recognition

and generation of leg primitive motions for dance imitation by a hu-

manoid robot. In Proceedings of 2nd International Symposium on

Adaptive Motion of Animals and Machines, Kyoto, Japan, 2003.

[66] C. L. Nehaniv and K. Dautenhahn. The correspondence problem.

In K. Dautenhahn and C. L. Nehahiv, editors, Imitation in Animals

and Artifacts. MIT Press, 2002.

[67] C. L. Nehaniv and K. Dautenhahn. Of hummingbirds and heli-

copters: An algebraic framework for interdisciplinary studies of

imitation and its applications. In J. Demiris and A. Birk, edi-

tors, Learning Robots: An Interdisciplinary Approach, volume 24,

pages 136–161. World Scientific Press, 2000.

[68] M. Nicolescu. A Framework for Learning from Demonstration,

Generalization and Practice in Human-Robot Domains. PhD the-

sis, University of Southern California, 2003.

[69] A. Olenderski, M. Nicolescu, and S. Louis. Robot learning by

demonstration using forward models of Schema-Based behav-

iors. In Proceedings of International Conference on Informatics

in Control, Automation and Robotics, Barcelona, Spain, 2005.

[70] N. Otero, J. Saunders, K. Dautenhahn, and C. L. Nehaniv. Teach-

ing robot companions: the role of scaffolding and event structur-

ing. Connection Science, 20:111–134, June 2008.

[71] J. Peters and S. Schaal. Policy learning for motor skills. In

Proceedings of 14th International Conference on Neural Informa-

tion Processing (ICONIP 2007), pages 1–10, Berlin, Germany,

November 2007. Springer.

[72] R. Pfeifer and C. Scheier. Sensory-motor coordination: the

metaphor and beyond. Robotics and Autonomous Systems, 20

(2):157–178, June 1997.

[73] R. Pfeifer and C. Scheier. Understanding Intelligence. MIT Press.

Cambrage, Massachusetts, 2001.

[74] P. K. Pook and D. H. Ballard. Recognizing teleoperated manipu-

lations. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 578–585, 1993.

[75] B. Rohrer and S. Hulet. BECCA - a brain emulating cognition and

control architecture. Technical report, Cybernetic Systems Inte-

gration Department, Univeristy of Sandria National Laboratories,

Alberquerque, NM, USA, 2006.

[76] B. Rohrer and S. Hulet. A learning and control approach based

on the human neuromotor system. In Proceedings of Biomedical

Robotics and Biomechatronics, BioRob, 2006.

[77] S. Russell and P. Norvig. Artificial Intelligence: A Modern Ap-

proach. Prentice Hall, NJ, 1995.

[78] J. Saunders, C. L. Nehaniv, and K. Dautenhahn. Using Self-

Imitation to direct learning. In 15th IEEE International Symposium

on Robot and Human Interactive Communication, pages 244–

250, 2006.

[79] J. Saunders, C. L. Nehaniv, K. Dautenhahn, and A. Alissandrakis.

Self-Imitation and environmental scaffolding for robot teaching.

International Journal of Advanced Robotics Systems, 4(1):109–

124, 2007.

[80] B. Scassellati. Imitation and mechanisms of joint attention: A

developmental structure for building social skills on a humanoid

robot. Lecture Notes in Computer Science, 1562:176–195, 1999.

[81] H. A. Simon. The Sciences of the Artificial. MIT Press, Cambridge,

Massachusetts, 1969.

[82] L. A. Suchman. Plans and Situated Actions. PhD thesis, Intelli-

gent Systems Laboratory, Xerox Palo Alto Research Center, USA,

1987.

[83] J. Tani. On the interactions between top-down anticipation and

bottom-up regression. Frontiers in Neurorobotics, 1:2, 2007.

[84] J. Tani and M. Ito. Self-organization of behavioral primitives as

multiple attractor dynamics: A robot experiment. IEEE Trans. on

Systems, Man, and Cybernetics Part A: Systems and Humans,

33(4):481–488, 2003.

[85] D. H. Wolpert and W. G Macready. No free lunch theorems for

optimization. In IEEE Transactions on Evolutionary Computation,

volume 1, pages 67–82, April 1997.

[86] D. M. Wolpert. A unifying computational framework for motor con-

trol and social interaction. Phil. Trans. R. Soc. Lond., B(358):593–

602, March 2003.

[87] D. Wood, J. Bruner, and G. Ross. The role of tutoring in problem

solving. Journal of Child Psychology and Psychiatry, 17:89–100,

1976.

13


